Supporting Information

Performance of SCS Palladium Pincer-Complexes in Borylation of Allylic Alcohols.

Control of the Regioselectivity in the One-Pot Borylation-Allylation Process

Nicklas Selander and Kálmán J. Szabó*

Stockholm University, Arrhenius Laboratory, Department of Organic Chemistry SE-106 91 Stockholm, Sweden. E-mail: kalman@organ.su.se. Fax: +46-8-15 49 08

Contents:

1. General Information	S2
2. Experimental Procedures and Spectral Data for 2a-c, 3a-e, 8a-c and 9a-c	S2-S9
3. References	S10
4. ¹ H, ¹³ C, ¹¹ B and ¹⁹ F NMR spectra of 2a-c , 3a-e , 8a-c and 9a-c	S11-S47

1. General Information

All reactions were performed in freshly distilled solvents under ambient atmosphere. The palladium pincer-complex **1**, was prepared according to literature procedure.¹ All other chemicals were obtained from commercial sources and used as received. ¹H NMR, ¹³C NMR, ¹¹B NMR, and ¹⁹F NMR spectra were recorded in CDCl₃ (internal standard: 7.26 ppm, ¹H; 77.00 ppm, ¹³C), acetone-*d*₆ (internal standard: 2.05 ppm, ¹H; 29.84 ppm, ¹³C) or methanol-*d*₄ (internal standard: 3.31 ppm, ¹H; 49.00 ppm, ¹³C) using Bruker 400 and 500 MHz spectrometers. ¹¹B NMR chemical shifts were referenced to external bis(pinacolato)diboron (30.70 ppm). ¹⁹F NMR chemical shifts were referenced to external α,α,α -trifluorotoluene (-63.73 ppm). Due to quadrupolar relaxation, the carbon atoms attached to boron atoms were not detected in ¹³C NMR. High resolution mass data (HRMS) were obtained using ESI technique. For column chromatography, Merck silica gel 60 (230-400 mesh) was used.

2. Experimental Procedures and Spectral Data

General Procedure A: Allylation of Aldehydes (Table 1). The corresponding allylic alcohol **4** (0.15 mmol) was dissolved in chloroform (0.4 mL) or a mixture of methanol and chloroform (0.2 mL/0.2 mL) (see Table 1), followed by addition of bis(pinacolato)diboron (**6**) (0.18 mmol), pincer complex **1** (0.0075 mmol, 5 mol %), p-toluenesulfonic acid (**7**) (0.0075 mmol, 5 mol %) and aldehyde **5** (0.18 mmol). Then, this reaction mixture was stirred at 50 °C for the allotted times listed in Table 1. After evaporation of the solvent, the products **2a-c** and **3a-e** were purified by silica gel chromatography.

1,2-Diphenyl-3-buten-1-ol (2a). Prepared in a mixture of methanol and chloroform (0.2 mL/0.2 mL) according to General Procedure A. Product **2a** was isolated in 72% yield (24.2 mg) using CH₂Cl₂ as eluent for silica gel chromatography. The NMR data obtained for **2a** are in agreement with previously reported literature values.² ¹**H** NMR (400 MHz, CDCl₃): δ 7.24-7.12 (m, 8H), 7.09-7.04 (m, 2H), 6.26 (ddd, J = 8.3, 10.3, 17.1 Hz, 1H), 5.28 (d, J = 10.3 Hz, 1H), 5.23 (d, J = 17.1 Hz, 1H), 4.86 (dd, J = 2.2, 8.3 Hz, 1H), 3.56 (t, J = 8.3 Hz, 1H), 2.32 (d, J = 2.2 Hz, 1H); ¹³**C** NMR (101 MHz, CDCl₃): δ 141.8, 140.6, 137.8, 128.33, 128.30, 127.9, 127.4, 126.64, 126.58, 118.4, 77.2, 59.2; **HRMS** (pos. ESI) *m/z*: calcd for C₁₆H₁₆NaO [M+Na]⁺ 247.1093, found 247.1097.

1-(4-Nitrophenyl)-2-phenyl-3-buten-1-ol (2b). Prepared in chloroform (0.4 mL) according to General Procedure A. Product **2b** was isolated in 74% yield (29.9 mg) using

CH₂Cl₂ as eluent for silica gel chromatography. The NMR data obtained for **2b** are in agreement with previously reported literature values.³ ¹**H** NMR (400 MHz, CDCl₃): δ 8.07-8.03 (m, 2H), 7.30-7.18 (m, 5H), 7.06-7.02 (m, 2H), 6.23 (ddd, J = 9.1, 10.1, 17.1 Hz, 1H), 5.32 (d, J = 10.1 Hz, 1H), 5.27 (d, J = 17.1 Hz, 1H), 4.93 (d, J = 7.8 Hz, 1H), 3.47 (t, J = 8.5 Hz, 1H), 2.49 (br s, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 149.1, 147.2, 139.5, 136.8, 128.7, 128.1, 127.4, 127.2, 123.1, 119.5, 76.4, 59.5; **HRMS** (pos. ESI) *m/z*: calcd for C₁₆H₁₅NNaO₃ [M+Na]⁺ 292.0944, found 292.0941.

OH C_5H_{11} C_5H_{11} A, except that 0.30 mmol of aldehyde **5c** was used. Product **2c** was isolated in 78% yield (26.0 mg) using pentane/diethyl ether (5:1 ratio) as eluent for silica gel chromatography. The NMR data obtained for **2c** are in agreement with previously reported literature values.² **¹H NMR** (400 MHz, CDCl₃): δ 7.35-7.29 (m, 2H), 7.25-7.18 (m, 3H), 6.13 (ddd, J = 9.0, 10.3, 17.0 Hz, 1H), 5.23 (d, J = 10.3 Hz, 1H), 5.20 (d, J = 17.0 Hz, 1H), 3.79 (dt, J = 3.8, 7.4 Hz, 1H), 3.25 (dd, J = 7.4, 9.0 Hz, 1H), 1.71 (br s, 1H), 1.52-1.14 (m, 8H), 0.85 (t, J = 7.0 Hz, 3H); ^{**13**C **NMR** (101 MHz, CDCl₃): δ 141.7, 138.4, 128.7, 128.0, 126.6, 117.8, 74.0, 57.4, 34.4, 31.8, 25.4, 22.6, 14.0; **HRMS** (pos. ESI) *m/z*: calcd for C₁₅H₂₂NaO [M+Na]⁺ 241.1563, found 241.1558.}

Ph (3E)-1,4-Diphenyl-3-buten-1-ol (3a). Prepared in chloroform (0.4 mL) according to General Procedure A. Product 3a was isolated in 73% yield (24.6 mg) using CH₂Cl₂ as eluent for silica gel chromatography. The NMR data obtained for 3a are in agreement with previously reported literature values.⁴ ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.20 (m, 10H), 6.51 (d, *J* = 15.8 Hz, 1H), 6.22 (td, *J* = 7.4, 15.8 Hz, 1H), 4.82 (br t, *J* = 6.3 Hz, 1H), 2.71-2.64 (m, 2H), 2.12 (br s 1H); ¹³C NMR (101 MHz, CDCl₃): δ 143.9, 137.2, 133.4, 128.50, 128.45, 127.6, 127.3, 126.1, 125.9, 125.8, 73.7, 43.1; HRMS (pos. ESI) *m/z*: calcd for C₁₆H₁₆NaO [M+Na]⁺ 247.1093, found 247.1085.

Ph (1E)-1-Phenyl-1-nonen-4-ol (3b). Prepared in chloroform (0.4 mL) according to General Procedure A. Product 3b was isolated in 60% yield (19.7 mg) using CH₂Cl₂ as eluent for silica gel chromatography. The NMR data obtained for 3b are in agreement with previously reported literature values.⁵ ¹**H** NMR (400 MHz, CDCl₃): δ 7.39-7.19 (m, 5H), 6.49 (d, J = 15.8 Hz, 1H), 6.24 (ddd, J = 7.0, 7.7, 15.8 Hz, 1H), 3.77-3.69 (m, 1H), 2.50-2.25 (m, 2H), 1.60 (br s, 1H), 1.56-1.23 (m, 8H), 0.90 (t, J = 6.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 137.3, 133.1, 128.5, 127.2, 126.4, 126.1, 71.2, 41.2, 36.9, 31.9, 25.4, 22.6, 14.0; **HRMS** (pos. ESI) m/z: calcd for C₁₅H₂₂NaO [M+Na]⁺ 241.1563, found 241.1564.

(*3E*)-1-Phenyl-3-nonen-1-ol (3c). Prepared in chloroform (0.4 mL) according to General Procedure A. Product 3c was isolated in 74% yield (24.1 mg) using CH₂Cl₂ as eluent for silica gel chromatography. The NMR data obtained for 3c are in agreement with previously reported literature values.⁶ ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.24 (m, 5H), 5.58 (td, *J* = 6.7, 15.2 Hz, 1H), 5.44-5.35 (m, 1H), 4.70-4.66 (m, 1H), 2.51-2.35 (m, 2H), 2.04 (br s, 1H), 2.01 (q, *J* = 7.1 Hz, 2H), 1.40-1.20 (m, 6H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 144.0, 135.3, 128.3, 127.4, 125.8, 125.3, 73.4, 42.9, 32.6, 31.3, 29.1, 22.5, 14.0; HRMS (pos. ESI) *m/z*: calcd for C₁₅H₂₂NaO [M+Na]⁺ 241.1563, found 241.1560.

 C_5H_{11} (*E*)-8-Tetradecen-6-ol (3d). Prepared in chloroform (0.4 mL) according to General Procedure A, except that 0.45 mmol of aldehyde 5c and 10 mol % p-toluenesulfonic acid (7) was used. Product 3d was isolated in 72% yield (23.0 mg) using CH₂Cl₂ as eluent for silica gel chromatography. ¹H NMR (400 MHz, CDCl₃): δ 5.54 (td, J = 6.7, 15.2 Hz, 1H), 5.45-5.36 (m, 1H), 3.61-3.54 (m, 1H), 2.27-2.20 (m, 1H), 2.10-1.98 (m, 3H), 1.57 (br s, 1H), 1.48-1.23 (m, 14H), 0.89 (t, J = 6.9 Hz, 3H), 0.88 (t, J = 6.9 Hz, 3H);

S5

¹³C NMR (101 MHz, CDCl₃): δ 134.8, 125.8, 70.9, 40.7, 36.7, 32.6, 31.9, 31.4, 29.2, 25.4, 22.6, 22.5, 14.0; HRMS (pos. ESI) *m/z*: calcd for C₁₄H₂₈NaO [M+Na]⁺ 235.2032, found 235.2035.

(3*E*)-1-Phenyl-3,6-heptadien-1-ol (3*e*). Prepared in chloroform (0.4 mL) according to General Procedure A. Product 3*e* was isolated in 63% yield (17.7 mg) using CH₂Cl₂ as eluent for silica gel chromatography. The NMR data obtained for 3*e* are in agreement with previously reported literature values.⁷ ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.25 (m, 5H), 5.81 (tdd, J = 6.4, 10.2, 16.8 Hz, 1H), 5.64-5.42 (m, 2H), 5.04-4.97 (m, 2H), 4.70 (dd, J = 5.0, 7.8 Hz, 1H), 2.78 (t, J = 6.4 Hz, 2H), 2.54-2.40 (m, 2H), 1.96 (br s, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 144.0, 136.7, 132.2, 128.4, 127.5, 126.9, 125.8, 115.2, 73.5, 42.7, 36.7; HRMS (pos. ESI) *m/z*: calcd for C₁₃H₁₆NaO [M+Na]⁺ 211.1093, found 211.1094.

General Procedure B: Preparation of Pinacolboronates 8a-c and Potassium Trifluoroborates 9a-c (Table 2). The corresponding allylic alcohol 4 (1.00 mmol) was dissolved in chloroform (2.0)mL) followed by addition of bis(pinacolato)diboron (6) (1.20 mmol) and pincer complex 1 (0.05 mmol, 5 mol %). This reaction mixture was then stirred at 50 °C for the allotted times listed in Table 2. Thereafter, 2.0 mL of pentane was added followed by flash chromatography using pentane/diethyl ether (95:5 ratio) as eluent to yield analytically pure allylboronates 8a-c. Potassium Trifluoroborates from Pinacolboronates. To the purified allylboronates, 6.0 equiv of KHF₂ in water/methanol (2.0 mL/2.0 mL) was added and this mixture was stirred at room temperature for 2 h. Thereafter, the precipitate

was separated and the filtrate containing the crude potassium trifluoroborates was evaporated. The remaining solid was extracted with acetone and filtered through cotton. Subsequently, the solvent was evaporated and the potassium trifluoroborates **9a-c** were recrystallized from acetone/diethyl ether.

Ph Bpin (*E*)-2-(3-Phenyl-2-propenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (8a). Prepared according to General Procedure B. Compound 8a was isolated in 79% yield (192.0 mg) using pentane/diethyl ether (95:5 ratio) as eluent for silica gel chromatography. The NMR data obtained for 8a are in agreement with previously reported literature values.⁸ ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.14 (m, 5H), 6.37 (d, *J* = 15.8 Hz, 1H), 6.29 (td, *J* = 7.1, 15.8 Hz, 1H), 1.88 (d, *J* = 7.1 Hz, 2H), 1.26 (s, 12H); ¹³C NMR (101 MHz, CDCl₃): δ 138.2, 130.2, 128.3, 126.5, 126.3, 125.8, 83.4, 24.8; ¹¹B NMR (128 MHz, CDCl₃): δ 32.9; HRMS (pos. ESI) *m/z*: calcd for C₁₅H₂₁BNaO₂ [M+Na]⁺ 267.1530, found 267.1527.

C₅H₁₁ Bpin (*E*)-2-(2-Octenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**8b**). Prepared according to General Procedure B. Compound **8b** was isolated in 73% yield (174.3 mg) using pentane/diethyl ether (95:5 ratio) as eluent for silica gel chromatography. ¹H NMR (500 MHz, CDCl₃): δ 5.46-5.33 (m, 2H), 1.98-1.92 (m, 2H), 1.62 (d, J = 6.4 Hz, 2H), 1.34-1.20 (m, 6H), 1.24 (s, 12H), 0.86 (t, J = 6.8 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 131.0, 124.6, 83.1, 32.7, 31.3, 29.3, 24.7, 22.5, 14.1; ¹¹B NMR (161 MHz, CDCl₃): δ 33.0; HRMS (pos. ESI) *m/z*: calcd for C₁₄H₂₇BNaO₂ [M+Na]⁺ 261.1999, found 261.1991. ^{Bpin} (*E*)-2-(2-Butenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (8c). Prepared according to General Procedure B. Compound 8c was isolated in 73% yield (132.6 mg) using pentane/diethyl ether (95:5 ratio) as eluent for silica gel chromatography. The NMR data obtained for 8c are in agreement with previously reported literature values.⁹ ¹H NMR (400 MHz, CDCl₃): δ 5.49-5.33 (m, 2H), 1.63-1.60 (m, 5H), 1.23 (s, 12H); ¹³C NMR (101 MHz, CDCl₃): δ 125.8, 125.3, 83.1, 24.7, 18.0; ¹¹B NMR (128 MHz, CDCl₃): δ 33.1; HRMS (pos. ESI) *m/z*: calcd for C₁₀H₁₉BNaO₂ [M+Na]⁺ 205.1372, found 205.1370.

Ph BF₃K Potassium (*E*)-Trifluoro(3-phenyl-2-propenyl)borate (9a). Prepared according to General Procedure B. Compound 9a was isolated in 77% yield (171.9 mg) calculated from allylic alcohol 4a. The NMR data obtained for 9a are in agreement with previously reported literature values.¹⁰ ¹H NMR (400 MHz, acetone-*d*₆): δ 7.26 (d, *J* = 7.9 Hz, 2H), 7.19 (t, *J* = 7.9 Hz, 2H), 7.02 (t, *J* = 7.9 Hz, 1H), 6.51 (td, *J* = 7.8 Hz, 15.8 Hz, 1H), 6.08 (d, *J* = 15.8 Hz, 1H), 1.25 (br s, 2H); ¹³C NMR (101 MHz, acetone-*d*₆): δ 140.8, 136.4, 129.0, 126.4, 126.0, 125.9; ¹¹B NMR (128 MHz, acetone-*d*₆): δ 4.5; ¹⁹F NMR (377 MHz, acetone-*d*₆): δ -139.9; HRMS (neg. ESI) *m/z*: calcd for C₉H₉BF₃ [M-K]⁻ 185.0757, found 185.0754.

 C_5H_{11} BF₃K Potassium (*E*)-Trifluoro(2-octenyl)borate (9b). Prepared according to General Procedure B. Compound 9b was isolated in 72% yield (158.0 mg) calculated from allylic alcohol 4b. The NMR data obtained for 9b are in agreement with previously reported literature values.¹⁰ ¹H NMR (500 MHz, methanol-*d*₄): δ 5.51 (td, *J* = 7.6 Hz, 15.0 Hz, 1H), 5.14 (td, *J* = 6.7, 15.0 Hz, 1H), 1.92 (q, *J* = 6.7 Hz, 2H), 1.36-1.23 (m, 6H), 1.05 (br s, 2H), 0.89 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (126 MHz, methanol- d_4): δ 133.0, 127.3, 34.2, 32.7, 31.1, 23.7, 14.4; ¹¹B NMR (161 MHz, methanol- d_4): δ 4.9; ¹⁹F NMR (377 MHz, methanol- d_4): δ -142.5; HRMS (neg. ESI) m/z: calcd for C₈H₁₅BF₃ [M-K]⁻ 179.1226, found 179.1220.

BF₃K Potassium (*E*)-Trifluoro(2-butenyl)borate (9c). Prepared according to General Procedure B. Compound 9c was isolated in 60% yield (96.4 mg) calculated from allylic alcohol 4d. The NMR data obtained for 9c are in agreement with previously reported literature values.¹¹ ¹H NMR (400 MHz, acetone- d_6): δ 5.58-5.49 (m, 1H), 5.11-5.01 (m, 1H), 1.53 (qd, J = 1.4, 6.4 Hz, 3H), 1.00 (br s, 2H); ¹³C NMR (101 MHz, acetone- d_6): δ 135.2, 119.7, 18.4; ¹¹B NMR (128 MHz, acetone- d_6): δ 4.7; ¹⁹F NMR (377 MHz, acetone- d_6): δ -140.6; HRMS (neg. ESI) *m/z*: calcd for C₄H₇BF₃ [M-K]⁻ 123.0599, found 123.0601.

Monitoring the One-pot Transformation of Cinnamyl Alcohol (4a) by ¹H NMR Spectroscopy (Figure 1). In an NMR tube, cinnamyl alcohol 4a (0.15 mmol) was dissolved in CDCl₃ (0.4 mL) followed by addition of bis(pinacolato)diboron 6 (0.18 mmol), p-toluenesulfonic acid (7) (5 mol %), aldehyde 5a (0.18 mmol) and palladium catalyst 1 (5 mol%). The reaction was conducted in the NMR tube at 50 °C for 12 h. The progress of the reaction was monitored using ¹H NMR spectroscopy (400 MHz), by measuring the integrals for the corresponding peaks of 2a, 3a, 4a, 5a and 8a. Due to different relaxation times and partial overlap of certain peaks, the estimated error of this measuring method is about 10-15 %.

3. References:

(1) Aydin, J.; Kumar, K. S.; Eriksson, L.; Szabó, K. J. Adv. Synth. Catal. 2007, 349, 2585.

- (2) Selander, N.; Kipke, A.; Sebelius, S.; Szabó, K. J. J. Am. Chem. Soc. 2007, 129, 13723.
- (3) Wallner, O. A.; Szabó, K. J. J. Org. Chem. 2003, 68, 2934.
- (4) Sumida, S.; Ohga, M.; Mitani, J.; Nokami, J. J. Am. Chem. Soc. 2000, 122, 1310.
- (5) Loh, T.-P.; Tan, K.-T.; Hu, Q.-Y. Angew. Chem. Int. Ed. 2001, 40, 2921.
- (6) Katritzky, A. R.; Wu, H.; Xie, L. J. Org. Chem. 1996, 61, 4035.
- (7) Braddock, D. C.; Badine, D. M.; Gottschalk, T.; Matsuno, A.; Rodriguez-Lenz,M. *Synlett* 2003, 345.
- (8) Dutheuil, G.; Selander, N.; Szabó, K. J.; Aggarwal, V. K. Synthesis 2008, 2293.
- (9) Keck, G. E.; Giles, R. L.; Cee, V. J.; Wager, C. A.; Yu, T.; Kraft, M. B. *J. Org. Chem.* **2008**, *73*, 9675.
- (10) Olsson, V. J.; Sebelius, S.; Selander, N.; Szabó, K. J. J. Am. Chem. Soc. 2006, 128, 4588.
- (11) Batey, R. A.; Thadani, A. N.; Smil, D. V.; Lough, A. J. Synthesis 2000, 990.

4. NMR spectra

S12

S18

S19

S22

S23

S27

S28

S33

S34

S38

S39

S41

S46

