

Article

Subscriber access provided by UNIV OF NEW ENGLAND ARMIDALE

N-Heterocyclic olefin catalysis for the ring opening of cyclic amidine compounds: a pathway to the synthesis of #-caprolactam and #-lactam-derived amines

Daniela Peixoto, Gabriela Malta, Hugo Cruz, Sónia Barroso, Ana Luisa Carvalho, Luisa Maria Ferreira, and Paula Serio Branco

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b02823 • Publication Date (Web): 12 Feb 2019 Downloaded from http://pubs.acs.org on February 13, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

N-Heterocyclic olefin catalysis for the ring opening of cyclic amidine compounds: a pathway to the synthesis of ε -caprolactam and γ -lactam-derived amines

Daniela Peixoto,[†] Gabriela Malta,[†] Hugo Cruz,[†] Sónia Barroso,^{‡‡} Ana Luísa Carvalho,^{‡‡} Luísa M. Ferreira,[†] and Paula S. Branco^{*,†}.

[†]LAQV-REQUIMTE, DQ, 2829-516, Caparica, Portugal, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.

^{‡‡}UCIBIO-REQUIMTE, DQ, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal

Supporting Information

ABSTRACT: For the first time, 1,2-dimethyl-3-ethylimidazolium iodide (**1a**) catalyzes the ring opening of the bicyclic amidine system of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) or DBN (1,5-diazabicyclo[4.3.0]non-5-ene) on reaction with aldehydes. The mechanism here proposed involves a N-heterocyclic olefin (NHO) catalytic species that acts as a nucleophile to promote the cyclic amidine ring opening. The resulting ε -caprolactam and γ -lactam-derived imines were obtained in moderate to excellent yields (28-99%) and reduced to the corresponding amines by sodium borohydride. Confirmation of the imine product was achieved via single-crystal X-ray diffraction studies.

INTRODUCTION

N-heterocyclic olefins (NHO), the alkylidene derivatives of Nheterocyclic carbenes, emerged in the last years as promising organocatalysts with enhanced nucleophilicity and Brønsted basicity in result of its highly polarized C-C bond.^{1,2} The exceptional donor capacity of such electron-rich olefin was explored by some authors in metal complexes^{1,3-5} as a catalyst in polymerization of acrylic monomers^{6,7} or lactone monomers⁸ in transesterification reactions9 or as captors and catalyst in reactions with CO₂.^{10,11} As expected, alkylation of this 1,3-dipolar species is feasible and was used by Beller et al.¹² to prepare a phosphine ligand for a palladium catalyst. Notwithstanding the extensive work done with the frequently studied class of imidazolium-based ionic liquids (IL), very little has been published concerning the reactivity of these azolium salts when functionalized at the C2-position from where the NHO emerge on treatment with a base.¹³ From our recent work we have observed an unusual reactivity associated to NHO derived from 1,2-dimethyl-3-ethylimidazolium iodide (1a), namely the oxidation of aromatic aldehydes to the corresponding carboxylic acids (2) in the presence of a mild base¹⁴ or the synthesis of a new heteroarylidene-9(10H)-anthrone structure (3) (Scheme 1).¹⁵ In both

cases an oxidative role of 1,2-dimethyl-3-ethylimidazolium iodide (**1a**) was found with the isolation of a transient and unstable reduced species derived thereof.¹⁴ The overlap between these two important fields, the azolium salts and the NHO species to which it can give rise, may provide access to unknown and unpredictable reactivity with great advance in both parts and with a new area to which one should be paying attention, the concept of NHOs from azolium-based salts.^{16,17}

Diamines, specially 1,2-diamines or 1,4-diamines the majority of which display C2-symmetry have a special role in coordination chemistry.¹⁸⁻²⁰ The 1,3-diamine family has not been used so often in coordination chemistry²⁰⁻²² due to the limited methods documented for its synthesis. Furthermore, 1,3-diamines are important structural motifs existing in many natural products with an increasing importance in pharmaceutical chemistry.²³ They are also an important building block in synthetic organic chemistry namely as a substrate for the preparation of cyclic amidinium salts which are common synthetic precursors for the preparation of N-heterocyclic carbenes (NHC).²⁴ Even so, limited efforts have been devoted to the development of effective synthetic approach to 1,3-diamines.²⁵

ACS Paragon Plus Environment

Scheme 1. Reactivity of 2-substituted imidazolium salt with aldehydes

Rueping et al.²⁶ used enantiopure pyrazolidine and pyrazoline derivatives as precursors for the preparation of chiral 1,3-diamine derivatives through cleavage of the N-N bond of the pyrazolidine moiety in the presence of SmI₂.²⁶ Other methods described for the synthesis of 1,3-diamines involved the Michael addition of nitroalkanes to nitroalkenes ²⁷ or the Mannich-type reaction between aldimines and nitriles^{28,29} both requiring further hydrogenation. Other methods reported in the literature are more laborious involving the ring opening of the aziridine by nucleophiles.³⁰ Although scarcely reported in the literature, a way of achieving a 1,3-diamine propane chain involves the ring opening of cyclic amidine compounds such as DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) or DBN (1,5-diazabicyclo[4.3.0]non-5-ene). The role of DBN or DBU as a sterically hindered, weakly nucleophilic amidine type strong base and catalyst is well known,³¹ especially in dehydrohalogenation reactions, but some reports in literature revealed their ability to act as nucleophiles.³² Its capacity to act as nucleophile led to some unexpected results revealed by the ring opening of the bicyclic amidine reported the first time by Lambert in 1994³³ and followed by a few others involving as ultimate product, ε-caprolactam derivatives.³⁴⁻³⁷ The nucleophilic character of DBU and DBN was observed on the reaction with carbonyl electrophilic species namely, methyl esters,³⁸ *p*-nitrophenyl carbonate,³⁹ imidazolides⁴⁰) benzoxazinones,³⁷ on the hydrolysis of amide carbonyls⁴¹ or even in palladium-catalyzed carbonylation reactions⁴² in all cases towards lactams resulting from the ring opening of the cyclic amidine. 37,40

RESULTS AND DISCUSSION

Here we disclose a new role of NHO species as catalysts for the ring opening of DBU or DBN on reaction with aldehydes to form the corresponding ε -caprolactam (5) and γ -lactam (6) derived imines. Initial reactions were performed with benzaldehyde (4a) and DBU in the presence of a mole equivalent of 1, and unexpectedly a ring opening of the amidine system was observed with the formation of the ε -caprolactam derived imine 5a in 85% yield (Table 1 entry 1). Opposite to what was previously observed by us 14 when using other bases on reactions of 4a with 1, the formation of benzoic acid (2a) was here detected in very small amount (9%). This could correlate with the oxidative ability of the 2-methylimidazolium salts as studied by cyclic voltammetry and presents a cathodic peak (Ep between -2.59 and -2.62 V a very small shift) (see supporting information). The work up of the reaction involved evaporation to dryness and wash of the crude residue with Et₂O to remove the product and unreacted aldehyde followed by acidification of the residue with HCl 1M and extraction with dichloromethane to remove the corresponding carboxylic acid 2a.

Table 1. Ring opening of DBU on reaction with benzaldehydes to the corresponding ε-caprolactam derived imine by NHO catalysis^α

^aUnless otherwise noted, the reaction was conducted on a scale of 0.2 mmol of **4a**, 1.2 equiv of **1a** and DBU (1.2 equiv) in 5 mL of THF at 20-25 °C; ^brecovered; ^cyield obtained by NMR integration of the Et₂O layer; ^dreaction performed with 1 equiv of DBU; ^oDBU was identified as 20% in the Et₂O layer.

The imidazolium salt remained in the aqueous phase. By thin layer chromatography it was possible to observe, during the course of the reaction, the presence of aldehyde which could be due to unreacted starting material or hydrolysis of the imine during the elution. Thus, we ran the reaction for several days (Table 1, entries 1 to 4) without taking particular conditions to exclude moisture from the reaction mixture. In these cases we observed an increase on the amount of recovered aldehyde which could be associated with hydrolysis of compound 5a. Next, we turned our attention to a possible catalytic role of the imidazolium 1a. The yields decreased slightly as the amount of acid increased (Table 1, entry 1 vs entries 5 and 6). Since we observed that the yield of the aldehyde recovered increased with time, we reduced the time of reaction (6 h) without the imine formation yield being affected (Table 1, entries 5 vs 8 and 9 vs 10). A blank assay was performed in the absence of **1a** and no formation of 5a was observed (Table 1, entry 11). A similar study was performed with DBN which allowed us to achieve the γ -lactam derived imine (**6a**) in very good yield 99 %. Using benzaldehyde as substrate, the best reaction conditions found comprised the use of 10 mol% of 1a on reaction with DBU and 20 mol% of 1a in reaction with DBN. After optimization of the reaction conditions for both DBU and DBN, the substrate scope was explored (Scheme 2). With aliphatic aldehvdes we have observed the GC-MS and on the NMR crude the presence of 5i in trace amounts. The compound must be instable since the hydrolysis compound 8 (Scheme 3) was the major compound identified by GC-MS together with unreacted DBU. Fortunately, a crystal was obtained for compound 6b which allowed us to confirm by X-ray crystallography the structure of the γ lactam derived imine (SI, Figure S1).

Page 2 of 9

^aUnless otherwise noted, the reaction was conducted on a scale of 0.66 mmol DBU and **4** (1 equiv) or 0.8 mmol of DBN and **4** (1 equiv) in 5 mL of THF at 30 °C for 6h. For the ε -caprolactam (**5**) 20 mol% of **1a** were used and for the γ -lactam (**6**) 10 mol% of **1a** were used.

Then, we turned our attention to other imidazolium salts as **1b** and **1c**. We have observed that the amount of benzoic acid increased in relation to **1a** (Table 2, entries 1 and 7 vs Table 1, entry 9).

Taking in attention the results, a mechanism proposal is presented in scheme 3. After the attack of the NHO to the activated intermediate of DBU-aldehyde (7), a ring opening of the amidine ring occurs in which, after water addition, the *\varepsilon*-caprolactam (5) is obtained and the NHO is recovered. The formation of the ε-caprolactam ring opening product of DBU (8) was also identified in mixtures of imine and DBU. Although initially we though that 8 could have origin on the hydrolysis of 5, the absence of aldehyde on these samples led us to propose a catalytic role for DBU on the hydrolysis reaction (Scheme 3) assisted by the presence of water (no measures for the exclusion of moisture were taken for the samples stored). To exclude the possible formation of 8 by catalysis of 1a, an assay was performed between the imidazolium salt 1a and DBU in the absence of aldehyde. After 6h and 24h no formation of 8 was observed. Also, resting samples of mixtures of DBU and 5a shows with time the formation of compound 8 justifying the mechanism presented.

43To extend the applicability of the methodology, the compounds44were further reduced with NaBH4/PTSA to get the correspond-45ing ε -caprolactam (9) γ -lactam (10) derived amines using a very46simple procedure⁴³ (Scheme 4).

Scheme 3. Proposed mechanism for the ring opening of cyclic amidine by NHO catalysis

		`\ (1b)	I	\ (1c)		
entry	4	DBN	1	2	5	6
		or DBU		yield (%)	yield (%)	yield (%)
1	4a	DBU ^a	1b	22	22	
2	4b	DBU ^a	1b		32	
3	4e	DBU ^a	1b		73	
4	4a	DBN ^b	1b			72
5	4b	DBN ^b	1b			72
6	4e	DBN ^b	1b			38
7	4a	DBU ^a	1c	13	65	
8	4b	DBU ^a	1c		10	
9	4e	DBU ^a	1c		29	
10	4a	DBN ^b	1c			78
11	4b	DBN ^b	1c			59
12	4 e	DBN ^b	1c			66

^aReaction conducted on a scale of 0.66 mmol of 4 in 5 mL of THF at 20-25 °C with 20 mol% of 1 for the reaction conducted with DBU (1 equiv); ^bReaction conducted on a scale of 0.80 mmol of 4 in 5 mL of THF at 20-25 °C 10 mol% of 1 for the reaction conducted with DBN (1 equiv). Scheme 4. Reduction of imines substrates^a

$$\begin{pmatrix} I^{-} & I^{-} \\ N^{+} & I^{-} \\ N^{+} & I^{-} \\ N^{-} & I$$

Scheme 4. Reduction of imines substrates^a

^aUnless otherwise noted, the reaction was conducted on a scale of 0.15 to 0.20 mmol of imines **5** or **6**.

CONCLUSIONS

In summary, new families of ε -caprolactam and γ -lactam derived imines were obtained in excellent yields by catalysis with 2-methylimidazolium salt derived NHO. The reactivity of 1,2-dimethyl-3-alkyl imidazolium iodide (1) highlighted by these unexpected results as well as by previous work from the group underlines the broad potential of these compounds, easily prepared and easy to handle, as non-passive species in effecting a wide range of synthetic applications. The work here presented is an interesting approach to 1,3-diamines privileged structures. This is an important motif in natural products, but also an important building block in synthetic organic chemistry with limited efforts devoted effectively to its synthetic approach in literature.

EXPERIMENTAL SECTION

General methods and materials. All the reagents and solvents were obtained commercially and these were used without further purification. The solvents used were dried using current laboratory techniques. Thin layer chromatography (TLC) was carried out on aluminium-backed Kieselgel 60 F254 silica gel plates (Merck). Plates were visualized either by UV light (254 and/or 366nm). Preparative layer chromatography (PLC) was performed on Merck Kieselgel GF 254 silica gel plates with a thickness of 0.5 mm or 1 mm. Column chromatography was carried out using silica gel Kieselgel 60 (Merck), 70 - 230 mesh particle size as stationary phase, in normal phase chromatography. Ultraviolet (UV) spectroscopy spectra were recorded on a Thermo Corporation spectrophotometer, Helius γ , on quartz cell support. Absorption spectrum measurements were made in the range of 220 to 400 nm. ¹H and ¹³C NMR spectra were recorded on a Bruker ARX400 at 400 and 100 MHz, respectively. Mass spectra (MS) using the ESI-TOF or APCI technique were obtained from Unidade de Masas e Proteómica, the University of Santiago de Compostela, Spain.

Crystallographic details: Crystals of 6b suitable for singlecrystal X-ray analysis grew from the oil obtained from the evaporation of a diethyl ether solution of **6b**. Selected crystals were covered with Fomblin (polyfluoroether oil) and mounted on a nylon loop. The X-ray diffraction data were collected at 296(2) K on a Bruker D8 Venture diffractometer equipped with a Photon 100 CMOS detector, using graphite monochromated Mo-Ka radiation ($\lambda = 0.71073$ Å). Data were processed using APEX2 suite software package, which includes integration and scaling (SAINT), absorption corrections (SADABS) and space group determination (XPREP). Structure solution and refinement were done using direct methods with the programs SHELXS-16 inbuilt in APEX and WinGX-Version 2014.144 software packages. All non-hydrogen atoms were refined anisotropically and the hydrogen atoms were inserted in idealized positions and allowed to refine riding on the parent carbon atom, except for the hydrogen atoms of the water molecule that were located in the electron density map and refined isotropically. The molecular diagrams were drawn with Mercury,45 included in the software package. Table S1 contains crystallographic experimental data and structure refinement parameters. Selected structural parameters are listed in Table S2. CCDC 1876034 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

General procedure for the synthesis of ε -caprolactam and γ -lactam derived imines (5 and 6): In a round bottom flask equipped with a magnetic stirrer, dry THF (C = 0.01M), DBU or DBN (1 equiv.) and 1,2-dimethyl-3-ethylimidazolium iodide (1) (20 mol % for DBU or 10 mol % for DBN) were stirred at rt for 15 min. Then, the aldehyde derivative (4) (1 equiv.) was added to the reaction mixture. The reaction was stirred at 30°C for 6h. The reaction was followed by TLC, eluting with a mixture of CH₂Cl₂/ MeOH (95/5). The reaction mixture was evaporated to dryness and the crude was washed with ethyl ether (20 to 30 mL). The ethyl phase was evaporated under reduced pressure to dryness to give the following products.

1-(3-(Benzylideneamino)propyl)azepan-2-one (5a): From DBU (0.05 mL, 0.34 mmol), compound 1 (16.9 mg, 0.07 mmol) and compound 4a (34 mmL, 0.34 mmol), compound 5a was obtained as a colorless oil (85.7 mg, 0.33 mmol); $\eta = 99\%$; ¹H NMR (CDCl₃, 400 MHz) δ: 8.28 (s, 1H, N=CH), 7.72-7.69 (m, 2H, ArH), 7.40-7.38 (m, 3H, ArH), 3.62 (t, J = 7.2 Hz, 2H, CH₂), 3.46 (t, J = 7.2 Hz, 2H, CH₂), 3.37-3.34 (m, 2H, CH₂), 2.50-2.47 (m, 2H, CH₂), 1.92 (t, J = 7.2 Hz, 2H, CH₂), 1.70-1.62 (m, 6H, CH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ: 175.9 (C=O), 161.6 (HC=N), 136.3 (C), 130.7(CH), 128.7 (2xCH), 128.3(2xCH), 59.2 (CH₂), 49.5 (CH₂), 46.5 (CH₂), 37.4 (CH₂), 30.1 (CH₂), 29.4 (CH₂), 28.8 (CH₂), 23.6 (CH₂) ppm. HRMS (ESI-TOF) m/z: [M]+ Calcd for C16H22N2O 258.1732; Found 258.1723.

I-(*3*-((*4*-*Nitrobenzylidene*)*amino*)*propyl*)*azepan*-2-*one* (5*b*): From DBU (0.05 mL, 0.34 mmol), compound **1** (16.9 mg, 0.067 mmol) and compound **4b** (50.6 mg, 0.34 mmol), compound **5b** was obtained as a yellow oil (100.7 mg, 0.33 mmol); $\eta = 99\%$; ¹H NMR (CDCl₃, 400 MHz) δ : 8.38 (s, 1H,N=CH), 8.26 (d, *J* = 8.4 Hz, 2H, ArH), 7.53 (d, *J* = 8.4 Hz, 2H, ArH), 3.61 (t, *J* = 7.2 Hz, 2H, CH₂), 3.45 (t, *J* = 7.2 Hz, 2H, CH₂), 3.37-3.35 (m, 2H, CH₂), 2.51-2.48 (m, 2H, CH₂) 1.91 (t, *J* = 7.2 Hz, 2H, CH₂), 1.72-1.63 (m, 6H, 3x CH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ : 175.9 (C=O), 159.4 (HC=N), 149.1 (C), 141.8 (C), 128.9 (2xCH), 124.0 (2xCH), 59.4 (CH₂), 28.9 (CH₂), 23.6

4

59

60

(CH₂) ppm. GC-MS: tr 25.89, m/z 303. HRMS (APCI) m/z: [M + H]⁺ Calcd for $C_{16}H_{22}N_3O_3$ 304.1656; Found 304.1654. 4-(((3-(2-Oxoazepan-1-vl)propyl)imino)methyl)benzonitrile

2 $4 \cdot (((3 - (2 - 0xoazepan - 1 - yl)propyl)imino)methyl)benzonitrile$ 3 <math>(5c): From DBU (0.05 mL, 0.34 mmol), compound **1** (16.9 mg, 4 0.067 mmol) and compound **4c** (43.9 mg, 0.34 mmol), com-5 pound **5c** was obtained as a yellow oil (94 mg, 0.33 mmol); $\eta =$ 99%;¹H NMR (CDCl₃, 400 MHz) δ : 8.32 (s, 1H,N=CH), 7.83 (d, J = 8.0 Hz, 2H, ArH), 7.69 (d, J = 8.0 Hz, 2H, ArH), 3.66 (t, J = 6.8 Hz, 2H, CH₂), 3.46 (t, J = 6.8 Hz, 2H, CH₂), 3.37-3.35 (m, 2H, CH₂), 2.51-2.48 (m, 2H, CH₂) 1.94 (t, J = 6.8 Hz, 2H, 9 CH₂) 1.72-1.64 (m, 6H, 3x CH₂) pm⁻¹³C/1H3 NMR (CDCl₃)

1-(3-((4-Bromobenzylidene)amino)propyl)azepan-2-one (5d): 16 From DBU (0.05 mL, 0.34 mmol), compound 1 (16.9 mg, 0.067 17 mmol) and compound 4d (61.9 mg, 0.34 mmol), compound 5d 18 was obtained as a yellow oil (112 mg, 0.33 mmol); $\eta = 99\%$; ¹H 19 NMR (CDCl₃, 400 MHz) δ : 8.24 (s, 1H,N=CH), 7.59 (d, J = 8.420 Hz, 2H, ArH), 7.53 (d, J = 8.4 Hz, 2H, ArH), 3.68 (t, J = 7.221 Hz, 2H, CH₂), 3.47 (t, J = 7.2 Hz, 2H, CH₂), 3.38-3.36 (m, 2H, 22 CH₂), 2.51-2.48 (m, 2H, CH₂) 1.95 (t, J = 6.8 Hz, 2H, CH₂), 23 1.72-1.64 (m, 6H, 3x CH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ: 175.9 (C=O), 160.4 (HC=N), 135.2 (C), 131.9 24 (2xCH), 129.6 (2xCH), 125.1 (C), 59.2 (CH₂), 49.8 (CH₂), 46.4 25 (CH₂), 37.4 (CH₂), 30.1 (CH₂), 29.4 (CH₂), 28.9 (CH₂), 23.6 26 (CH₂) ppm. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for 27 C₁₆H₂₂BrN₂O 337.0911; Found 337.0910. 28

1-(3-((4-Methoxybenzylidene)amino)propyl)azepan-2-one

29 (5e):From DBU (0.050 mL, 0.34 mmol), compound 1 (16.9mg, 30 0.067 mmol) and compound 4e (40.7 mmL, 0.33 mmol), com-31 pound 5e was obtained as a yellow oil (75.5 mg, 0.26 mmol); n 32 = 78%; ¹H NMR (CDCl₃, 400 MHz) δ : 8.21 (s, 1H,N=CH), 7.66 (d, J = 8.4 Hz, 2H, ArH), 6.91 (d, J = 8.4 Hz, 2H, ArH), 33 3.84 (s, 3H, OMe), 3.58 (t, J = 7.2 Hz, 2H, CH₂), 3.45 (t, J =34 7.2 Hz, 2H, CH₂), 3.37-3.35 (m, 2H, CH₂), 2.51-2.48 (m, 2H, 35 CH₂) 1.91 (t, J = 7.2 Hz, 2H, CH₂), 1.71-1.63 (m, 6H, 3x CH₂) 36 ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ: 175.9 (C=O), 161.7 37 (C), 160.9 (HC=N), 129.7 (2xCH), 129.3 (C), 114.1 (2xCH), 38 59.2 (CH₂), 55.5 (OMe), 49.8 (CH₂), 46.5 (CH₂), 37.5 (CH₂), 39 30.1 (CH₂), 29.5 (CH₂), 28.9 (CH₂), 23.6 (CH₂) ppm. HRMS 40 (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₇H₂₅N₂O₂ 289.1913; 41 Found 289.1911.

42 *1-(3-((3-Hydroxybenzylidene)amino)propyl)azepan-2-one*

43 (5f):; From DBU (0.05 mL, 0.34 mmol), compound 1 (16.9 mg, 0.067 mmol) and compound 4f (40.9 mg, 0.34 mmol), com-44 pound **5f** was obtained as a yellow oil (91 mg, 0.33 mmol); $\eta =$ 45 99%; ¹H NMR (CDCl₃, 400 MHz) δ: 8.19 (s, 1H, N=CH), 7.22 46 (s, 1H, ArH), 7.17 (t, J = 8.0 Hz, 1H, ArH), 7.08 (d, J = 7.2 Hz, 47 1H, ArH), 6.90 (d, J = 7.2 Hz, 1H, ArH), 3.60 (t, J = 6.8 Hz, 48 2H, CH₂), 3.47 (t, J = 6.4 Hz, 2H, CH₂), 3.37-3.31 (m, 2H, CH₂), 49 2.54-2.49 (m, 2H, CH₂) 1.92 (t, J = 7.2 Hz, 2H, CH₂), 1.71-1.63 50 (m, 6H, 3x CH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ: 51 176.2 (C=O), 162.5 (HC=N), 158.8 (C), 137.2 (C), 129.7 (CH), 52 119.2 (CH), 118.9 (CH), 115.0 (CH), 58.9 (CH₂), 49.8 (CH₂), 46.6 (CH₂), 37.3 (CH₂), 30.0 (CH₂), 29.2 (CH₂), 28.7 (CH₂), 53 23.4 (CH₂) ppm. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for 54 C₁₆H₂₃N₂O₂ 275.1756; Found 275.1754. 55

56 *1-(3-((3-Chlorobenzylidene)amino)propyl)azepan-2-one (5g):* 57 From DBU (0.05 mL, 0.34 mmol), compound 1 (16.9mg, 0.067 mmol) and compound 4g (0.039mL, 0.34 mmol), compound 5g

was obtained as a yellow oil (50 mg, 0.17 mmol); $\eta = 51\%$; ¹H NMR (CDCl₃, 400 MHz) δ : 8.24 (s, 1H, N=CH), 7.75 (s, 1H, ArH), 7.56 (d, J = 7.6 Hz, 1H, ArH), 7.37-7.40 (m, 2H, ArH), 3.62 (t, J = 6.8 Hz, 2H, CH₂), 3.46 (t, J = 6.4 Hz, 2H, CH₂), 3.37-3.35 (m, 2H, CH₂), 2.51-2.49 (m, 2H, CH₂) 1.92 (t, J = 7.2 Hz, 2H, CH₂), 1.73-1.64 (m, 6H, 3x CH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ : 175.9 (C=O), 160.2 (HC=N), 138.1 (C), 134.9 (C), 130.7 (CH), 130.0 (CH), 127.8 (CH), 126.6 (CH), 59.2 (CH₂), 49.8 (CH₂), 23.6 (CH₂) ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₂₂ClN₂O 293.1415; Found 293.1415.

1-(3-((Furan-2-ylmethylene)amino)propyl)azepan-2-one (5h): From DBU (0.05 mL, 0.34 mmol), compound 1 (16.9 mg, 0.067 mmol) and compound 4h (0.028 mL, 0.34 mmol), compound **5h** was obtained as a yellow oil (67 mg, 0.27 mmol); $\eta = 80\%$; ¹H NMR (CDCl₃, 400 MHz) δ: 8.10 (s, 1H, N=CH), 7.50 (d, J = 2.0 Hz, 1H, HetArH), 6.72 (d, J = 3.6 Hz, 1H, HetArH), 6.47 (dd, J = 3.6 and 2.0 Hz, 1H, HetArH), 3.59 (t, J = 6.8 Hz, 2H, CH₂), 3.44 (t, J = 7.2 Hz, 2H, CH₂), 3.36-3.34 (m, 2H, CH₂), 2.51-2.48 (m, 2H, CH₂) 1.94 (t, J = 7.2 Hz, 2H, CH₂), 1.71-1.61 (m, 6H, 3x CH₂) ppm. ${}^{13}C{1H}$ NMR (CDCl₃, 100 MHz) δ : 175.9 (C=O), 151.6(C), 150.2 (HC=N), 144.8 (CH), 114.3 (CH), 111.7 (CH), 59.4 (CH₂), 49.7 (CH₂), 46.3 (CH₂), 37.5 (CH₂), 30.1 (CH₂), 29.4 (CH₂), 28.9 (CH₂), 23.6 (CH₂) ppm. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C14H21N2O2 249.1597; Found 249.15981-(3-(Benzylideneamino)propyl)pyrrolidin-2-one (6a): From DBN (0.05 mL, 0.40 mmol), compound 1 (16.9 mg, 0.067 mmol) and compound 4a (0.041 mL, 0.40 mmol), compound 6a was obtained as a colourless oil (103.5 mg, 0.40 mmol); $\eta = 99\%$; ¹H NMR (CDCl₃, 400 MHz) δ: 8.29 (s, 1H, N=CH), 7.72-7.71 (m, 2H, ArH), 7.41-7.39 (m, 3H, ArH), 3.64-3.61 (m, 2H, CH₂), 3.43-3.37 (m, 4H, 2xCH₂), 2.32 (t, J = 8.4 Hz, 2H, CH₂), 2.00-1.93 (m, 4H, 2xCH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ: 175.1 (C=O), 161.7 (HC=N), 136.3 (C), 130.7 (CH), 128.7 (2xCH), 128.2 (2xCH), 59.3 (CH₂), 47.3 (CH₂), 40.9 (CH₂), 31.2 (CH₂), 28.5 (CH₂), 18.0 (CH₂) ppm. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₄H₁₉N₂O 231.1492; Found 231.1492.

1-(3-((4-Nitrobenzylidene)amino)propyl)pyrrolidin-2-one

(*b*): From DBN (0.05 mL, 0.40 mmol), compound **1** (16.9mg, 0.067 mmol) and compound **4b** (61 mg, 0.40 mmol), compound **1** (16.9mg, **6b**): From DBN (CDC1₃, 400 MHz) δ : 8.37 (s, 1H, N=CH), 8.26 (d, *J* = 8.4 Hz, 2H, ArH), 7.89 (d, *J* = 8.4 Hz, 2H, ArH), 3.68 (t, *J* = 6.8 Hz, 2H, CH₂), 3.44-3.36 (m, 4H, 2x CH₂), 2.33 (t, *J* = 8.0 Hz, 2H, CH₂), 2.04- 1.94 (m, 4H, 2x CH₂) ppm. ¹³C{1H} NMR (CDC1₃, 100 MHz) δ : 175.2 (C=O), 159.7 (HC=N), 149.1 (C), 141.8 (C), 128.9 (2xCH), 124.0 (2xCH), 59.3 (CH₂), 47.2 (CH₂), 40.7 (CH₂), 31.2 (CH₂), 28.2 (CH₂), 18.0 (CH₂) ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₁₈N₃O₃ 276.1343; Found 276.1346.

4-(((3-(2-Oxopyrrolidin-1-yl)propyl)imino)methyl)benzonitrile (6c): From DBN (0.05 mL, 0.40 mmol), compound **1** (16.9mg, 67,00μmol) and compound **4c** (53 mg, 0.40 mmol), compound **6c** was obtained as a yellow solid (73 mg, 0.26 mmol); $\eta = 63\%$; ¹H NMR (CDCl₃, 400 MHz) δ: 8.31 (s, 1H, N=CH), 7.83 (d, *J* = 8.0 Hz, 2H, ArH), 7.69 (d, *J* = 8.4 Hz, 2H, ArH), 3.65 (t, *J* = 6.8 Hz, 2H, CH₂), 3.43-3.35 (m, 4H, 2x CH₂), 2.33 (t, *J* = 8.0 Hz, 2H, CH₂), 2.03- 1.92 (m, 4H, 2x CH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ: 175.1 (C=O), 160.0 (HC=N), 140.1 (C), 132.6 (2xCH), 128.6 (2xCH), 118.7 (C), 114.0 (C), 59.2 (CH₂), 47.2 (CH₂), 40.7 (CH₂), 31.2 (CH₂), 28.2 (CH₂), 18.0 (CH₂) ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₈N₃O 256.1444; Found 256.1446.

1-(3-((4-Bromobenzylidene)amino)propyl)pyrrolidin-2-one

1

59

60

2 (6d): From DBN (0.05 mL, 0.40 mmol), compound 1 (16.9 mg, 3 0.067 mmol) and compound 4d (74.9 mg, 0.40 mmol), com-4 pound 6d was obtained as a brown oil (121.6 mg, 0.36 mmol); 5 $\eta = 89\%$; ¹H NMR (CDCl₃, 400 MHz) δ : 8.23 (s, 1H, N=CH), 6 7.59 (d, J = 8.4 Hz, 2H, ArH), 7.52 (d, J = 8.4 Hz, 2H, ArH), 7 $3.60 (t, J = 6.8 Hz, 2H, CH_2), 3.42-3.35 (m, 4H, 2x CH_2), 2.32$ 8 $(t, J = 8.0 \text{ Hz}, 2H, CH_2), 2.02 - 1.90 (m, 4H, 2x CH_2) \text{ ppm}.$ 9 ¹³C{1H} NMR (CDCl₃, 100 MHz) δ: 175.1 (C=O), 160.6 10 (HC=N), 153.1 (C), 132.0 (2xCH), 129.6 (2xCH), 125.1 (C), 11 59.2 (CH₂), 47.2 (CH₂), 40.8 (CH₂), 31.2 (CH₂), 28.3 (CH₂), 18.0 (CH₂) ppm. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for 12 13 C₁₄H₁₈BrN₂O 309.0594; Found 309.0597.

1-(3-((4-Methoxybenzylidene)amino)propyl)pyrrolidin-2-one 14

(6e): From DBN (0.05 mL, 0.40 mmol), compound 1 (16.9mg, 15 0.067 mmol) and compound 4e (0.049 mL, 0.40 mmol), com-16 pound **6e** was obtained as a brown oil (115.7 mg, 0.40 mmol); 17 $\eta = 99\%$; ¹H NMR (CDCl₃, 400 MHz) δ : 8.20 (s, 1H, N=CH), 18 7.64 (d, J = 8.4 Hz, 2H, ArH), 6.90 (d, J = 8.4 Hz, 2H, ArH), 19 3.83 (s, 3H, OMe), 3.58 (t, J = 6.8 Hz, 2H, CH₂), 3.42-3.35 (m, 20 4H, 2x CH₂), 2.31 (t, J = 8.0 Hz, 2H, CH₂), 2.01- 1.84 (m, 4H, 21 2x CH₂) ppm. ${}^{13}C{1H}$ NMR (CDCl₃, 100 MHz) δ : 175.1 22 (C=O), 161.7 (C-OMe), 161.1 (HC=N), 129.7 (2xCH), 129.2 (C), 114.1 (2xCH), 59.2 (CH₂), 55.5 (OMe), 47.2 (CH₂), 40.9 23 (CH₂), 31.2 (CH₂), 28.5 (CH₂), 18.0 (CH₂) ppm. HRMS (ESI-24 TOF) m/z: $[M + H]^+$ Calcd for C₁₅H₂₁N₂O₂ 261.1600; Found 25 261.1598. 26

1-(3-((3-Chlorobenzylidene)amino)propyl)pyrrolidin-2-one

27 (6g): From DBN (0.05 mL, 0.40 mmol), compound **1** (16.9mg, 28 0.067 mmol) and compound 4g (0.048 mL, 0.40 mmol), com-29 pound 6g was obtained as a colourless oil (116.5 mg, 0.39 30 mmol); $\eta = 98\%$; ¹H NMR (CDCl₃, 400 MHz) δ : 8.23 (s, 1H, 31 N=CH), 7.74 (s, 1H, ArH), 7.56 (d, J = 7.2 Hz, 1H, ArH), 7.38-32 7.30 (m, 2H, ArH), 3.62 (t, J = 6.8 Hz, 2H, CH₂), 3.43-3.35 (m, 4H, 2x CH₂), 2.33 (t, J = 8.0 Hz, 2H, CH₂), 2.03-1.90 (m, 4H, 33 2x CH₂) ppm. ${}^{13}C{1H}$ NMR (CDCl₃, 100 MHz) δ : 175.1 34 (C=O), 160.3 (HC=N), 138.0 (C), 134.9 (C), 130.7 (CH), 130.0 35 (CH), 127.8 (CH), 126.6 (CH), 59.2 (CH₂), 47.3 (CH₂), 40.8 36 (CH₂), 31.2 (CH₂), 28.4 (CH₂), 18.0 (CH₂) ppm. HRMS (ESI-37 TOF) m/z: $[M + H]^+$ Calcd for $C_{14}H_{18}ClN_2O$ 265.1102; Found 38 265.1102.

39 1-(3-((Furan-2-ylmethylene)amino)propyl)pyrrolidin-2-one

40 (6h): From DBN (0.05 mL, 0.40 mmol), compound 1 (16.9 mg, 41 0.067 mmol) and compound 4h (0.034 mL, 0.40 mmol), com-42 pound 6h was obtained as a colourless oil (24.6mg, 0.099 43 mmol); $\eta = 28\%$; ¹H NMR (CDCl₃, 400 MHz) δ : 8.09 (s, 1H, N=CH), 7.49 (br s, 1H, HetArH), 6.72 (br s, 1H, HetArH), 6.46 44 (br s, 1H, HetArH), 3.58 (t, J = 6.8 Hz, 2H, CH₂), 3.42-3.34 (m, 45 4H, 2x CH₂), 2.33 (t, J = 8.0 Hz, 2H, CH₂), 2.01-1.94 (m, 4H, 46 2x CH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ: 175.1 47 (C=O), 151.5 (C), 150.4 (HC=N), 144.9 (CH), 114.4 (CH), 48 111.7 (CH), 59.4 (CH₂), 47.2 (CH₂), 40.8 (CH₂), 31.2 (CH₂), 49 28.4 (CH₂), 18.0 (CH₂) ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ 50 Calcd for C12H17N2O2 221.1282; Found 221.1285.

51 General procedure for the synthesis of *ɛ*-caprolactam and 52 γ-lactam derived amines (9 and 10):43 The sodium borohy-53 dride (1 equiv.) and p-toluenesulfonic acid monohydrate (1 equiv.) were added to ε -caprolactam (5) or γ -lactam compound 54 (6) (1 equiv.) in glass vails for 10–15 min at room temperature 55 under solvent-free conditions. The reaction mixture was 56 quenched with saturated aqueous solution of NaHCO₃ (10 ml) 57 and extracted with CH₂Cl₂ (3x10 mL). The combined extract 58

was dried over anhydrous Na₂SO₄, filtered and concentrated to give the following products.

1-(3-(Benzylamino)propyl)azepan-2-one (9a): From compound 5a (50 mg, 0.19 mmol), sodium borohydride (7.3 mg, 0.19 mmol) and p-toluenesulfonic acid monohydrate (36.8 mg, 0.19 mmol), compound 9a was obtained as a colourless oil (31.4 mg, 0.12 mmol); $\eta = 62\%$; ¹H NMR (CDCl₃, 400 MHz) δ : 7.16-7.28 (m, 5H, ArH), 3.70 (s, 2H, CH₂), 3.34 (t, J = 6.8 Hz, 2H, CH₂), 3.23-3.20 (m, 2H, CH₂), 2.53 (t, J = 6.8 Hz, 2H, CH₂), 2.42-2.39 (m, 2H, CH₂), 1.67-1.50 (m, 8H, 4xCH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ: 176.2 (C=O), 139.4 (C), 128.4(2xCH), 128.4 (2xCH), 127.1(CH), 53.8 (CH₂), 49.6 (CH₂), 45.9 (CH₂), 45.7 (CH₂), 37.2 (CH₂), 30.0 (CH₂), 28.5 (CH₂), 27.9 (CH₂), 23.4 (CH₂) ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₂₅N₂O 261.1961; Found 261.1963.

4-(((3-(2-Oxoazepan-1-yl)propyl)amino)methyl)benzonitrile (9c): From compound 5c (50 mg, 0.18 mmol), sodium borohydride (6.7 mg, 0.18 mmol) and p-toluenesulfonic acid monohydrate (33.6 mg, 0.18 mmol), compound 9c was obtained as a yellow oil (40.3 mg, 0.14 mmol); $\eta = 80\%$; ¹H NMR (CDCl₃, 400 MHz) δ : 7.56 (d, J = 7.6 Hz, 2H, ArH), 7.42 (d, J = 7.6 Hz, 2H, ArH), 3.78 (s, 2H, CH₂), 3.41 (br s, 2H, CH₂), 3.26 (br s, 2H, CH₂), 2.53 (br s, 2H, CH₂), 2.45 (br s, 2H, CH₂), 1.67 (br s, 4H, 2xCH₂), 1.59 (br s, 4H, 2xCH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ: 176.1 (C=O), 146.1 (C), 132.1 (2xCH), 128.7 (2xCH), 119.0 (CN), 110.5 (C), 53.4 (CH₂), 49.4 (CH₂), 45.8 (CH₂), 45.4 (CH₂), 37.1 (CH₂), 29.9 (CH₂), 28.5 (CH₂), 28.0 (CH₂), 23.4 (CH₂) ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C17H24N3O 286.1916; Found 286.1916.

1-(3-((4-Bromobenzyl)amino)propyl)azepan-2-one (9d): From compound 5d (50 mg, 0.15 mmol), sodium borohydride (5.6 mg, 0.048 mmol) and p-toluenesulfonic acid monohydrate (28.2 mg, 0.15 mol), compound 9d was obtained as a light brown oil (26.4 mg, 0.078 mmol); $\eta = 52\%$; ¹H NMR (CDCl₃, 400 MHz) δ: 7.42 (d, J = 7.6 Hz, 2H, ArH), 7.19 (d, J = 7.6 Hz, 2H, ArH), 3.70 (s, 2H, CH₂), 3.41 (br s, 2H, CH₂), 3.28-3.26 (m, 2H, CH₂), 2.55 (br s, 2H, CH₂), 2.49-2.46 (m, 2H, CH₂), 1.66-1.67 (m, 4H, 2xCH₂), 1.63-1.60 (m, 4H, 4xCH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ: 176.2 (C=O), 139.1 (C), 131.5 (2xCH), 130.1 (2xCH), 120.8 (C), 53.3 (CH₂), 49.6 (CH₂), 45.9 (CH₂), 45.6 (CH₂), 37.2 (CH₂), 30.0 (CH₂), 28.6 (CH₂), 28.1 (CH₂), 23.5 (CH₂) ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₂₄BrN₂O 339.1068; Found 339.1067.

(9e): 1-(3-((4-Methoxybenzyl)amino)propyl)azepan-2-one From compound 5e (50 mg, 0.17 mmol), sodium borohydride (6.6mg, 0.17 mmol) and p-toluenesulfonic acid monohydrate (32.9 mg, 0.17 mmol), compound 9e was obtained as a brown oil (33.8 mg, 0.12 mmol); $\eta = 67\%$; ¹H NMR (CDCl₃, 400 MHz) δ: 7.22 (d, J = 8.4 Hz, 2H, ArH), 6.82 (d, J = 8.4 Hz, 2H, ArH), 3.76 (s, 3H, OMe), 3.70 (s, 2H, CH₂), 3.40 (br s, 2H, CH₂), 3.27 (br s, 2H, CH₂), 2.58 (br s, 2H, CH₂), 2.46 (br s, 2H, CH₂), 1.70-1.68 (m, 4H, 2xCH₂), 1.60 (br s, 4H, 4xCH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ: 176.2 (C=O), 158.7 (C-OMe), 131.8 (C), 129.6 (2xCH), 113.8 (2xCH), 55.3 (OMe), 53.2 (CH₂), 49.6 (CH₂), 45.8 (CH₂), 45.7 (CH₂), 37.2 (CH₂), 30.0 (CH₂), 28.6 (CH₂), 27.9 (CH₂), 23.5 (CH₂) ppm. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{17}H_{27}N_2O_2$ 291.2067; Found 291.2067.

1-(3-((3-Hydroxybenzyl)amino)propyl)azepan-2-one (9f): From compound 5f (50 mg, 0.18 mol), sodium borohydride (6.9 mg, 0.18 mmol) and p-toluenesulfonic acid monohydrate (34.7 mg, 0.18 mmol), compound 9f was obtained as a colourless oil $(22.3 \text{ mg}, 0.080 \text{ mmol}); \eta = 44\%; {}^{1}\text{H NMR} (\text{CDCl}_{3}, 400 \text{ MHz})$ δ: 7.32 (br s, 1H, ArH), 7.24 – 7.20 (m, 3H, ArH), 4.65 (s, 1H,

2

3

4

5

6

7

8

59

60

NH), 3.74 (s, 2H, CH₂), 3.42 (t, J = 6.8 Hz, 2H, CH₂), 3.30 – 3.27 (m, 2H, CH₂), 2.56 (t, J = 6.8 Hz, 2H, CH₂), 2.50 – 2.47 (m, 2H, CH₂), 1.73-1.67 (m, 4H, 2xCH₂), 1.64 – 1.58 (m, 4H, 4xCH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ : 176.9 (C=O), 157.5 (C), 139.8 (C), 129.7 (CH), 119.8 (CH), 115.7 (CH), 115.0 (CH), 53.4 (CH₂), 49.6 (CH₂), 45.7 (CH₂), 45.6 (CH₂), 37.1 (CH₂), 30.0 (CH₂), 28.5 (CH₂), 27.4 (CH₂), 23.4 (CH₂) ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₂₅N₂O₂ 277.1914; Found 277.1911.

9 1-(3-((3-Chlorobenzyl)amino)propyl)azepan-2-one (9g): From 10 compound 5g (50 mg, 0.17 mmol), sodium borohydride (6.5 11 mg, 0.17 mmol) and p-toluenesulfonic acid monohydrate (32.5 12 mg, 0.17 mmol), compound 9g was obtained as a colourless oil (17.8 mg, 0.06 mmol); $\eta = 35\%$; ¹H NMR (CDCl₃, 400 MHz) 13 δ : 7.10 (t, J = 7.6 Hz, 1H, ArH), 6.88 (br s, 1H, ArH), 6.74 (t, J 14 =8.4 Hz, 2H, ArH), 3.71 (s, 2H, CH₂), 3.44 (t, J = 7.2 Hz, 2H, 15 CH_2), 3.29 - 3.27 (m, 2H, CH_2), 2.61 (t, J = 6.4 Hz, 2H, CH_2), 16 2.51 - 2.48 (m, 2H, CH₂), 1.69-1.67 (m, 4H, 2xCH₂), 1.61 -17 1.58 (m, 4H, 4xCH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) 18 δ: 176.4 (C=O), 134.3 (C), 128.5 (CH), 127.5 (C), 127.3 (CH), 19 127.0 (CH), 126.6 (CH), 53.3 (CH₂), 49.7 (CH₂), 45.8 (CH₂), 20 45.7 (CH₂), 37.2 (CH₂), 30.1 (CH₂), 28.6 (CH₂), 27.9 (CH₂), 21 23.5 (CH₂) ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for 22 C₁₆H₂₄ClN₂O 295.1572; Found 295.1570.

23 1-(3-(Benzylamino)propyl)pyrrolidin-2-one (10a): From compound 6a (50 mg, 0.22 mmol), sodium borohydride (8.2 mg, 24 0.22 mmol) and p-toluenesulfonic acid monohydrate (41.3 mg, 25 0.22 mmol), compound 10a was obtained as a colourless oil (38 26 mg, 0.16 mmol); $\eta = 70\%$; ¹H NMR (CDCl₃, 400 MHz) δ : 7.34-27 7.29 (m, 5H, ArH), 4.65 (s, 1H, NH), 3.75 (s, 2H, CH₂), 3.38 -28 3.29 (m, 4H, 2xCH₂), 2.58 (t, J = 6.8 Hz, 2H, CH₂), 2.33 (t, J = 29 8.0 Hz, 2H, CH₂), 2.00-1.92 (m, 2H, CH₂), 1.75-1.68 (m, 2H, 30 CH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ: 175.3 (C=O), 31 139.5 (C), 128.5 (2xCH), 128.4 (2xCH), 127.0 (CH), 53.9 32 (CH₂), 47.2 (CH₂), 46.0 (CH₂), 40.2 (CH₂), 31.0 (CH₂), 27.2 (CH₂), 17.9 (CH₂) ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd 33 for C₁₄H₂₁N₂O 233.1648; Found 233.1648. 34

35 *4-(((3-(2-Oxopyrrolidin-1-yl)propyl)amino)methyl)benzoni-*

- trile (10c): From compound 6c (50 mg, 0.20 mmol), sodium 36 borohydride (7.4 mg, 0.20 mmol) and p-toluenesulfonic acid 37 monohydrate (37.3 mg, 0.20 mmol), compound 10c was obtai-38 ned as a colourless oil (25.7 mg, 0.10 mmol); $\eta = 50\%$; ¹H NMR 39 (CDCl₃, 400 MHz) δ: 7.62 (d, J = 8.0 Hz, 2H, ArH), 7.54 (d, J 40 = 8.0 Hz, 2H, ArH), 4.77 (s, 1H, NH), 3.90 (s, 2H, CH₂), 3.40 41 -3.25 (m, 4H, 2xCH₂), 2.66 (t, J = 6.8 Hz, 2H, CH₂), 2.40 (t, J42 = 8.0 Hz, 2H, CH₂), 2.07-1.99 (m, 2H, CH₂), 1.87-1.82 (m, 2H, 43 CH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ: 176.9 (C=O), 146.4 (C), 132.7 (2xCH), 128.1 (C), 127.2 (2xCH), 118.6 (CN), 44 52.3 (CH₂), 48.0 (CH₂), 45.4 (CH₂), 39.9 (CH₂), 30.9 (CH₂), 45 25.6 (CH₂), 18.1 (CH₂) ppm. HRMS (ESI-TOF) m/z: [M + H]⁺
- 46 25.0 (CH₂), 18.1 (CH₂) ppin. HKMS (ESF10F) ff/2: 47 Calcd for $C_{15}H_{20}N_{3}O$ 258.1597; Found 258.601.

1-(3-((4-Bromobenzyl)amino)propyl)pyrrolidin-2-one (10d): 48 From compound 6d (50 mg, 0.16 mmol), sodium borohydride 49 (6.1 mg, 0.16 mmol) and p-toluenesulfonic acid monohydrate 50 (30.8 mg, 0.16 mmol), compound 10d was obtained as a light 51 brown oil (25.7 mg, 0.083 mmol); $\eta = 51\%$; ¹H NMR (CDCl₃, 52 400 MHz) δ: 7.41 (d, J = 8.8 Hz, 2H, ArH), 7.20 (d, J = 8.8 Hz, 53 2H, ArH), 3.72 (s, 2H, CH₂), 3.35 - 3.32 (m, 4H, 2xCH₂), 2.57 $(t, J = 6.8 \text{ Hz}, 2\text{H}, \text{CH}_2), 2.35 (t, J = 8.0 \text{ Hz}, 2\text{H}, \text{CH}_2), 2.02$ -54 1.90 (m, 2H, CH₂), 1.98-1.71 (m, 2H, CH₂) ppm. ¹³C{1H} NMR 55 (CDCl₃, 100 MHz) δ: 175.8 (C=O), 131.8 (2xCH), 131.1 (C), 56 130.5 (2xCH), 128.7 (C), 52.9 (CH₂), 47.5 (CH₂), 45.7 (CH₂), 57 40.1 (CH₂), 31.0 (CH₂), 26.7 (CH₂), 18.0 (CH₂) ppm. HRMS 58

(ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{14}H_{20}BrN_2O$ 311.0752; Found 311.0754.

1-(3-((4-Methoxybenzyl)amino)propyl)pyrrolidin-2-one (10e): From compound **6e** (50 mg, 0.19 mmol), sodium borohydride (7.3 mg, 0.19 mmol) and p-toluenesulfonic acid monohydrate (36.5 mg, 0.19 mmol), compound **10e** was obtained as a brown oil (23.3 mg, 0.089 mmol); $\eta = 46\%$; ¹H NMR (CDCl₃, 400 MHz) δ : 7.25 (d, *J* = 8.4 Hz, 2H, ArH), 6.84 (d, *J* = 8.4 Hz, 2H, ArH), 3.78 (s, 3H, OMe), 3.75 (s, 2H, CH₂), 3.37 – 3.31 (m, 4H, 2xCH₂), 2.64 (t, *J* = 6.8 Hz, 2H, CH₂), 2.36 (t, *J* = 8.0 Hz, 2H, CH₂), 2.03-1.964 (m, 2H, CH₂), 1.81-1.76 (m, 2H, CH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ : 175.7 (C=O), 159.1 (C-OMe), 131.7 (C), 130.0 (2xCH), 114.0 (2xCH), 55.4 (OMe), 53.0 (CH₂), 47.5 (CH₂), 45.7 (CH₂), 40.2 (CH₂), 31.0 (CH₂), 26.8 (CH₂), 18.0 (CH₂) ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₂₃N₂O₂ 263.1758; Found 263.1754.

I-(*3*-(*(*3-*Chlorobenzyl*)*amino*)*propyl*)*pyrrolidin*-2-*one* (10*g*): From compound **6g** (50 mg, 0.19 mmol), sodium borohydride (7.1 mg, 0.19 mmol) and p-toluenesulfonic acid monohydrate (35.9 mg, 0.19mol), compound **10g** was obtained as a colourless oil (25.8 mg, 0.097 mmol); $\eta = 51\%$; ¹H NMR (CDCl₃, 400 MHz) δ : 7.37 – 7.28 (m, 4H, ArH), 3.86 (m, 2H, CH₂), 3.37 – 3.31 (m, 4H, 2xCH₂), 2.65 (t, *J* = 6.8 Hz, 2H, CH₂), 2.36 (t, *J* = 8.0 Hz, 2H, CH₂), 2.02 - 1.95 (m, 2H, CH₂), 1.86 - 1.79 (m, 2H, CH₂) ppm. ¹³C{1H} NMR (CDCl₃, 100 MHz) δ : 175.6 (C=O), 141.0 (C), 134.4 (C), 129.9 (CH), 128.6 (CH), 127.6 (CH), 126.7 (C), 53.1 (CH₂), 47.4 (CH₂), 45.9 (CH₂), 40.1 (CH₂), 31.0 (CH₂), 27.0 (CH₂), 18.0 (CH₂) ppm. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₂₀ClN₂O 267.1260; Found 267.1259.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Crystallographic data, voltamograms, NMR and mass spectra for compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

* Email: <u>paula.branco@fct.unl.pt</u>

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work was supported by the LAQV which is financed by national funds from FCT/MEC (UID/QUI/50006/2013) and cofinanced by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145- 710-FEDER-007265), and by UCIBIO which is financed by national funds from FCT/MEC (UID/Multi/04378/2013) and co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007728). The National NMR Facility and the SCXRD facility are supported by Fundação para a Ciência e Tecnologia (RECI/BBB-BQB/0230/2012 and RECI/BBB-BEP/0124/2012, respectively). We acknowledge the Laboratório de Análises REQUIMTE for the technical support for the mass spectrometry analyses.

REFERENCES

(1) Kronig, S.; Jones, P. G.; Tamm, M., Preparation of 2-alkylidene-substituted 1,3,4,5tetramethylimidazolines and their reactivity towards RhI complexes and B(C6F5)₃, *Eur. J. Inorg. Chem.* **2013**, 2301-2314.

(2) Roy, M. M. D.; Rivard, E., Pushing chemical boundaries with N-heterocyclic olefins (NHOs): From catalysis to main group element chemistry, *Acc. Chem. Res.* **2017**, *50*, 2017-2025.

(3) Furstner, A.; Alcarazo, M.; Goddard, R.; Lehmann, C. W., Coordination chemistry of ene-1,1diamines and a prototype "Carbodicarbene", *Angew. Chem. Int. Edit.* **2008**, *47*, 3210-3214.

(4) Causero, A.; Elsen, H.; Pahl, J.; Harder, S., Calcium hydride reactivity: Formation of an anionic Nheterocyclic olefin ligand, *Angew. Chem. Int. Edit.* **2017**, *56*, 6906-6910.

(5) Iturmendi, A.; Garcia, N.; Jaseer, E. A.; Munarriz, J.; Miguel, P. J. S.; Polo, V.; Iglesias, M.; Oro, L. A., N-Heterocyclic olefins as ancillary ligands in catalysis: a study of their behaviour in transfer hydrogenation reactions, *Dalton Trans.* **2016**, *45*, 12835-12845.

(6) Naumann, S.; Dove, A. P., N-Heterocyclic carbenes as organocatalysts for polymerizations: trends and frontiers, *Polym. Chem.* **2015**, *6*, 3185-3200.

(7) Wang, Q. Y.; Zhao, W. C.; Zhang, S. T.; He, J. H.; Zhang, Y. T.; Chen, E. Y. X., Living polymerization of conjugated polar alkenes catalyzed by n-heterocyclic olefin-based frustrated lewis pairs, *ACS Catal.* **2018**, *8*, 3571-3578.

(8) Walther, P.; Naumann, S., N-Heterocyclic olefin-based (co)polymerization of a challenging monomer: Homopolymerization of omegapentadecalactone and its copolymers with gammabutyrolactone, delta-valerolactone, and epsiloncaprolactone, *Macromolecules* **2017**, *50*, 8406-8416.

(9) Blumel, M.; Noy, J. M.; Enders, D.; Stenzel, M. H.; Nguyen, T. V., Development and applications of transesterification reactions catalyzed by N-heterocyclic olefins, *Org. Lett.* **2016**, *18*, 2208-2211.

(10) Finger, L. H.; Guschlbauer, J.; Harms, K.; Sundermeyer, J., N-Heterocyclic olefin-carbon dioxide and -sulfur dioxide adducts: Structures and interesting reactivity patterns, *Chem. Eur. J.* **2016**, *22*, 16292-16303.

(11) Wang, Y. B.; Sun, D. S.; Zhou, H.; Zhang, W. Z.; Lu, X. B., CO2, COS and CS2 adducts of N-heterocyclic olefins and their application as organocatalysts for carbon dioxide fixation, *Green Chem.* **2015**, *17*, 4009-4015.

(12) Dumrath, A.; Wu, X. F.; Neumann, H.; Spannenberg, A.; Jackstell, R.; Beller, M., Recyclable catalysts for palladium-catalyzed C-O coupling reactions, buchwald-hartwig aminations, and sonogashira reactions, *Angew. Chem. Int. Edit.* **2010**, *49*, 8988-8992.

(13) Wang, B.; Qin, L.; Mu, T.; Xue, Z.; Gao, G., Are ionic liquids chemically stable?, *Chem. Rev* **2017**, 7113–7131.

(14) Peixoto, D.; Figueiredo, M.; Gawande, M. B.; Corvo, M. C.; Vanhoenacker, G.; Afonso, C. A. M.; Ferreira, L. M.; Branco, P. S., Developments in the reactivity of 2-methylimidazolium salts, *J. Org. Chem.* **2017**, *82*, 6232-6241.

(15) Peixoto, D.; Figueiredo, M.; Malta, G.; Roma-Rodrigues, C.; Baptista, P. V.; Fernandes, A. R.; Barroso, S.; Carvalho, A. L.; Afonso, C. A. M.; Ferreira, L. M.; Branco, P. S., Synthesis, cytotoxicity evaluation in human cell lines and in vitro DNA interaction of a hetero-arylidene-9(10H)-anthrone, *Eur. J. Org. Chem.* **2018**, 545-549.

(16) Knappke, C. E. I.; Arduengo, A. J.; Jiao, H. J.; Neudorfl, J. M.; Jacobi von Wangelin, A., On the dual role of N-heterocyclic carbenes as bases and nucleophiles in reactions with organic halides, *Synthesis* **2011**, 3784-3795.

(17) Powers, K.; Hering-Junghans, C.; McDonald, R.; Ferguson, M. J.; Rivard, E., Improved synthesis of N-heterocyclic olefins and evaluation of their donor strengths, *Polyhedron* **2016**, *108*, 8-14.

(18) Cole, A. P.; Mahadevan, V.; Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P., Bis(muoxo)dicopper(III) complexes of a homologous series of simple peralkylated 1,2-diamines: Steric modulation of structure, stability, and reactivity, *Inorg. Chem.* **2005**, *44*, 7345-7364.

(19) Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S., Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding, *J. Am. Chem. Soc.* **2013**, *135*, 18536-18548.

(20) Hems, W. P.; Groarke, M.; Zanotti-Gerosa, A.; Grasa, G. A., (Bisphosphine) Ru(II) diamine complexes in asymmetric hydrogenation: Expanding the scope of the diamine ligand, *Acc. Chem. Res.* **2007**, *40*, 1340-1347.

(21) Braun, W.; Calmuschi-Cula, B.; Englert, U.; Hofener, K.; Alberico, E.; Salzer, A., Novel chiral 1,3diamines by a highly modular umpolung strategy employing a diastereoselective fluorination-nucleophilic aromatic substitution sequence, *Eur. J. Org. Chem.* **2008**, 2065-2074.

(22) Facchetti, G.; Gandolfi, R.; Fuse, M.; Zerla, D.; Cesarotti, E.; Pellizzoni, M.; Rimoldi, I., Simple 1,3diamines and their application as ligands in ruthenium(II) catalysts for asymmetric transfer hydrogenation of aryl ketones, *New J. Chem.* **2015**, *39*, 3792-3800.

(23) Sundermann, B.; Buschmann, H.; Kögel, B.-Y.; Merla, B.; Risch, N. 2002; Vol. WO 2002066432 A1.

(24) Koppenwallner, M.; Rais, E.; Uzarewicz-Baig, M.; Tabassum, S.; Gilani, M. A.; Wilhelm, R., Synthesis of new camphor-based carbene ligands and their

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 application in a copper-catalyzed michael addition with B(2)Pin(2), *Synthesis* **2015**, *47*, 789-800.

(25) Ji, X. L.; Huang, H. M., Synthetic methods for 1,3-diamines, *Org. Biomol. Chem.* **2016**, *14*, 10557-10566.

(26) Rueping, M.; Maji, M. S.; Kucuk, H. B.; Atodiresei, I., Asymmetric bronsted acid catalyzed cycloadditionsefficient enantioselective synthesis of pyrazolidines, pyrazolines, and 1,3-diamines from N-acyl hyrazones and alkenes, *Angew. Chem. Int. Edit.* **2012**, *51*, 12864-12868.

(27) Lu, S. F.; Du, D. M.; Xu, J. X.; Zhang, S. W., Asymmetric Michael addition of nitroalkanes to nitroalkenes catalyzed by C-2-symmetric tridentate bis(oxazoline) and bis(thiazoline) zinc complexes, *J. Am. Chem. Soc.* **2006**, *128*, 7418-7419.

(28) Yin, L.; Kanai, M.; Shibasaki, M., Nucleophile generation via decarboxylation: Asymmetric construction of contiguous trisubstituted and quaternary stereocenters through a Cu(I)-catalyzed decarboxylative mannich-type reaction, *J. Am. Chem. Soc.* **2009**, *131*, 9610-9611.

(29) Zhao, J. N.; Liu, X. H.; Luo, W. W.; Xie, M. S.; Lin, L. L.; Feng, X. M., Asymmetric synthesis of betaamino nitriles through a Sc-III-catalyzed threecomponent mannich reaction of silyl ketene imines, *Angew. Chem. Int. Edit.* **2013**, *52*, 3473-3477.

(30) Liew, S. K.; He, Z.; Denis, J. D. S.; Yudin, A. K., Stereocontrolled synthesis of 1,2-and 1,3-diamine building blocks from aziridine aldehyde dimers, *J. Org. Chem.* **2013**, 78, 11637-11645.

(31) Nand, B.; Khanna, G.; Chaudhary, A.; Lumb, A.; Khurana, J. M., 1,8-Diazabicyclo 5.4.0 undec-7-ene (DBU): A versatile reagent in organic synthesis, *Cur. Org. Chem.*

2015, 19, 790-812.

(32) Taylor, J. E.; Bull, S. D.; Williams, J. M. J., Amidines, isothioureas, and guanidines as nucleophilic catalysts, *Chem. Soc. Rev.* **2012**, *41*, 2109-2121.

(33) Lammers, H.; Cohenfernandes, P.; Habraken, C. L., Pyrazole studies .20. Nucleophilic behavior of dbu and dbn in reactions with 4-halo-3,5-dimethyl-1-nitro-1h-pyrazoles, *Tetrahedron* **1994**, *50*, 865-870.

(34) Ma, L. F.; Dolphin, D., Nucleophilic reaction of 1,8-diazabicyclo 5.4.0 undec-7-ene and 1,5-diazabicyclo-4.3.0 non-5-ene with methyl pheophorbide a. Unexpected products, *Tetrahedron* **1996**, *52*, 849-860.

(35) Im, Y. J.; Gong, J. H.; Kim, H. J.; Kim, J. N., Nucleophilic behaviour of DBU and DBN toward acetylated Baylis-Hillman adducts, *Bull. Korean Chem. Soc.* **2001**, *22*, 1053-1055.

(36) Johnson, M. G.; Fogelsong, R. J., Nucleophilic behavior of DBU in a conjugate addition reaction, *Tetrahedron Lett.* **1997**, *38*, 7003-7006.

(37) Baravkar, S. B.; Roy, A.; Gawade, R. L.; Puranik, V. G.; Sanjayan, G. J., Nucleophilic ringopening of benzoxazinones by dbu: Some observations, *Synth. Commun.* **2014**, *44*, 2955-2960. (38) Shemyakina, O. A.; Volostnykh, O. G.; Stepanov, A. V.; Mal'kina, A. G.; Ushakov, I. A.; Trofimov, B. A., Synthesis of acetylenic amides with propyllactam moieties by in situ dbu or dbn ring-opening rearrangement in the presence of acetylenic esters, *Synthesis* **2018**, *50*, 853-858.

(39) Vangala, M.; Shinde, G. P., p-Nitrophenyl carbonate promoted ring-opening reactions of DBU and DBN affording lactam carbamates, *Beilstein J. Org. Chem.* **2016**, *12*, 2086-2092.

(40) Nirmala, R.; Ponpandian, T.; Venkatraman, B. R.; Rajagopal, S., Nucleophilic behaviour of DBU towards imidazolides: one-pot synthesis of epsiloncaprolactam derived carbamates and amides, *Tetrahedron Lett.* **2013**, *54*, 5181-5184.

(41) Chakrabarty, M.; Ghosh, N.; Khasnobis, S.; Chakrabarty, M., DBU, a highly efficient reagent for the facile regeneration of (hetero)arylamines from their acetamides and benzamides: Influence of solvent, temperature, and microwave irradiation, *Synth. Commun.* **2002**, *32*, 265-272.

(42) Chen, J. B.; Natte, K.; Wu, X. F., Convenient palladium-catalyzed carbonylative synthesis of caprolactam and butyrolactam derived phthalimides and amides by using DBU and DBN as the nitrogen source, *Tetrahedron Lett.* **2015**, *56*, 342-345.

(43) Cho, B. T.; Kang, S. K., Direct and indirect reductive amination of aldehydes and ketones with solid acid-activated sodium borohydride under solvent-free conditions, *Tetrahedron* **2005**, *61*, 5725-5734.

(44) Farrugia, L. J., WinGX and ORTEP for Windows: an update, *J. Appl. Crystallogr.* **2012**, *45*, 849-854.

(45) Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; van De Streek, J., Mercury: visualization and analysis of crystal structures, *J. Appl. Crystallogr.* **2006**, *39*, 453-457.