

\$0040-4039(96)00508-4

Synthesis of a Novel Chiral 1, 3-Benzoxazinone Auxiliary and Its Application to Highly Diastereoselective Aldol Reaction

Tsutomu Miyake, Masahiko Seki, Yoshinori Nakamura and Hiroshi Ohmizu*

Lead Optimization Research Laboratory, Tanabe Seiyaku Co., Ltd., 16-89, Kashima-3-chome, Yodogawa-ku, Osaka 532, Japan

Abstract: Condensation of *l*-menthone with salicylamide followed by isomerization of the adduct withDBU afforded a novel chiral 1, 3-benzoxazinone auxiliary, the usefulness of which was demonstrated by highly diastereoselective aldol reaction with aldehydes. Copyright © 1996 Elsevier Science Ltd

Since the discovery of 2-oxazolidones¹ and camphor sultams,² an auxiliary-mediated second generation method of asymmetric synthesis has been recognized as one of the steadiest access to optically active compounds.³ As a part of our project to develop a carbapenem antibiotic, the 2, 2-disubstituted 1, 3-benzoxazinones **1** have been shown to induce a high level of stereoselectivity in the Reformatsky reaction of *N*- α -bromopropionyl derivative with acetoxyazetidinone.⁴ The successful result prompted us to synthesize a chiral 1, 3-benzoxazinone auxiliary and examine its efficacy in the asymmetric synthesis. We report herein synthesis of a novel chiral 1, 3-benzoxazinone auxiliary **2** and its induction of excellent diastereoselectivities in aldol reaction.

Synthesis of the chiral auxiliary 2 was carried out by dehydrative condensation of *l*-menthone with salicylamide (Scheme 1). Refluxing equimolar amount of *l*-menthone and salicylamide in toluene for 24 h in the presence of *p*-TsOH (5 mol%) in a Dean-Stark apparatus gave a mixture of the chiral 1, 3-benzoxazinones 2 and its diastereomer 3 (2/3=2:1).⁵ The predominant formation of 2 may be due to a repulsive interaction between the isopropyl group and the amide hydrogen atom observed in 3.⁶ Since the 1, 3-benzoxazinones 2 and 3 are acetal-type compounds, it seemed likely that there is an equilibrium between 2 and 3 under certain conditions, and consequently the attempt to shift the equilibrium to 2 by isomerization was undertaken. Although acid-catalyzed isomerization of 3 was not fruitful (Table 1, entries 1 and 2), base-catalyzed counterpart using DBU in *N*-methylpyrrolidone (NMP) was found to be very effective (Table 1, entry 3). Treatment of 3 with a catalytic

a: *p*-TsOH (0.05 eq.), toluene, reflux, 24 h; b: DBU (0.1 eq.), NMP, 25°C, 24 h, -20°C, 24 h; c: EtCOCI, *i*-Pr₂EtN, CuCI (cat.), toluene, 50°C, 3 h.

amount of DBU (10 mol %) in NMP at 25°C for 24 h then at -20°C for 24 h yielded 2 in predominance over 3 (2:3=14:1). A mixture of 2 and 3 (2:3=2:1) was subjected to the same isomerization to afford the same ratio of the mixture (2:3=14:1). In addition, a mixture of 2 and 3 was kinetically differentiated in subsequent acylation. N-Propionyl 1, 3-benzoxazinone 4 was exclusively formed from a mixture of 2 and 3 under the acylation conditions using a weak base⁷ [EtCOCl, *i*-Pr₂EtN, CuCl (cat.), 50°C, 3 h]. It seems plausible that the exclusive formation of 4 may also be accounted for by repulsive interactions between the isopropyl group and incoming base and/or acid chloride encountered in the case of 3. Combination of these three chemical transformations (steps a-c) furnished the N-propionylbenzoxazinone 4 in 75% yield based on *l*-menthone.

Table 1	3	> 2	+ 3	
Entry ^a	Reagent (eq.)	Solvent	Conditions	2:3 ^b
1	<i>p</i> -TsOH (0.1)	Toluene	reflux, 6 h	2:1
2	PPTS (0.1)	Toluene	reflux, 24 h	3:1
3	DBU (0.1)	NMP	25°C, 24 h -20°C, 24 h	14:1

^aAll the reactions were conducted in 1 mmol scale. ^bDetermined by HPLC.

In order to examine the utility of the chiral auxiliary 2 in the asymmetric synthesis, aldol reaction of *N*-propionyl derivative 4 was next carried out. Enolization of 4 with LDA followed by addition of benzaldehyde afforded the aldol in favor of the *syn*-isomer $5a^8$ in moderate yield (Table 2, entry 1). The yield and the *syn*-selectivity were remarkably improved by the use of the sodium enolate generated by reaction of 4 and NaN(TMS)₂ yielding the aldol in 85% yield with a ratio of 5a:6a=91:2 (Table 2, entry 2). Transmetallation of the sodium enolate of 4 into the titanium enolate with ClTi(Oi-Pr)₃ and subsequent addition of benzaldehyde

gave the *syn*-isomer $6a^{8, le}$ in high yield with high stereoselectivity (81% yield, 5a:6a=3:94) (Table 2, entry 3). Direct generation of the more reactive chlorotitanium enolate^{1f} of **4** by deprotonation of the TiCl4-complexed **4** with Et3N followed by the reaction of the enolate with benzaldehyde as well gave rise to the *syn*-isomer **6a** in high yield with high selectivity (Table 2, entry 4). To check the further versatility of the chiral auxiliary, the aldol reaction of **4** with acetaldehyde, an example of an alkanal, was also examined and observed that the *syn*-aldol **6b** yielded both in high yield and with high stereoselectivity (Table 2, entry 5). In all cases, the products were easily obtained in >99% d.e. by simple column chromatography on silica-gel.

Table 2 i) Enolization RCHO (2 eq.) -78°C, 0.5 h 5a,b 6a. Xc: Chiral auxiliary a: R=Ph; b: R=Me Major Productd Enolization 5:6^c Yield (%) ^b Entrv^a R Yield (%) Reagent (eq.) Solvent Conditions _е THF -78°C, 2 h 66:10 (24) 1 Ph LDA (1.1) 45 NaN(TMS) 2 (1.1) -78°C, 0.5h 91:2 (7) 2 Ph THF 85 72 -78°C, 0.5 h^f NaN(TMS) 2 (1.6) f з Ph THF 3:94 (3) 75 86 -40°C, 0.2 h^g CITi(O /-Pr) 3 (1.6)9 4 Ph TiCl₄ (2.0), Et₃N (2.0) CH₂Cl₂ -78°C, 2 h 2:96 (2) 84 76 5^h Me TiCl₄ (2.0), Et₃N (2.0) CH₂Cl₂ -78°C, 0.5 h 2:97(1) 98 91

^aAll the reactions were conducted in 1 mmol scale. ^bCombined isolated yields. ^cThe ratio was determined by HPLC. The figures in the parenthesis denote the combined isolated yields of *anti*-products. ^dIsolated yields of the pure major product (>99% d.e.). ^eThe major product was not isolated. ^fThe conditions for enolization. ^gThe conditions for transmetallation. ^h10 eq. of aldehyde was used for the reaction.

Additional usefulness of the novel chiral auxiliary is demonstrated by its facile recovery from the product, which is shown in Scheme 2. Conversion of **6a** into the silyl ether **7** followed by treatment with LiOH/H₂O₂ in aqueous THF afforded the optically pure *O*-TBS acid $8^{1d, 9}$ in 82% yield and the chiral auxiliary in 85% yield.

Scheme 2

d: TBS-CI, imidazole, DMF, 25 °C, 17 h; e: H2O2, LiOH, THF, H2O, 0°C, 20 min

In summary, the newly synthesized 1, 3-benzoxazinone auxiliary 2 has the following distinct advantages: 1) easy accessibility of the starting materials, *l*-menthone and salicylamide; 2) facile preparation; 3) high yield in N-acylation by the use of a weak base (*i*- Pr_2EtN); 4) high level of asymmetric induction observed in aldol reaction; 5) facile recovery of the auxiliary without affecting the developed chiral centers. Owing to these excellent features, the 1, 3-benzoxazinone auxiliary 2 represents a new entry of a chiral auxiliary for the auxiliary-mediated asymmetric synthesis. Utilization of the present auxiliary to the asymmetric synthesis of natural products are under way which will be described elsewhere in due course.

References and Notes

- (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127-2129. (b) Evans, D. A.; 1. Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.; Bartroli, J. Pure & Appl. Chem. 1981, 53, 1109-1127. (c) Evans, D. A. Aldrichimica Acta, 1982, 15, 318- 327. (d) Gage, J. R.; Evans, D. A. Organic Synthesis; Wiley: New York, 1990, vol. 68, 77-82, 83-91. (e) Nerz-Stormes, M.; Thornton, E. R. J. Org. Chem. 1991, 56, 2489-2498. (f) Evans, D. A.; Clark, J. S.; Metternich, R.; Novack, V. J.;
- (a) Oppolzer, W. Pure & Appl. Chem. 1988, 60, 39-48. (b) Oppolzer, W.; Blogg, J.; Rodriguez, I.; Walther, E. J. Am. Chem. Soc. 1990, 112, 2767-2772. 2.
- Stinson, S. Chem. Eng. News, Aug. 5, 1985, 22-23. 3.
- Kondo, K.; Seki, M.; Kuroda, T.; Yamanaka, T.; Iwasaki, T. J. Org. Chem. 1995, 60, 1096-1097. 4.
- 2: mp 82-83°C. IR (KBr) vmax: 1677, 1605 cm⁻¹. ¹H-NMR (CDCl₃) δ: 7.93 (dd, J=7.7, 1.7 Hz, 1H); 5. 7.44 (ddd, J=8.0, 7.5, 1.7 Hz, 1H); 7.05 (ddd, J=7.7, 7.5, 1.0 Hz, 1H); 6.92 (dd, J= 8.0, 1.0 Hz, 1H); 6.08 (brs, 1H); 2.38-2.44 (m, 2H); 1.61-1.76 (m, 5H); 1.26-1.33 (m, 1H); 1.02-1.09 (m, 1H); 0.97 (d, J=7.1 Hz, 3H); 0.93 (d, J=6.8 Hz, 3H); 0.79 (d, J=6.7 Hz, 3H). ¹³C-NMR (CDCl₃) δ : 163.07, 155.49 (2s); 134.42, 127.68, 121.52, 117.15 (4d); 117.01, 91.59 (2s); 49.95 (d); 45.92, 34.31 (2t); 28.81, 26.14 (2d); 23.39, 21.58 (2g); 21.29 (t); 18.00 (g). Mass m/z: 273 (M⁺). $\lceil \alpha \rceil D^{25}$ -82.3° (c, 1.1, MeOH). 3: mp 159-160°C. IR (KBr) v_{max} : 1673, 1612 cm⁻¹. ¹H-NMR (CDCl₃) δ : 7.91 (dd, J=7.7, 1.7 Hz, 1H); 7.44 (ddd, J=8.0, 7.5, 1.7 Hz, 1H); 7.04 (dt, J=7.7, 7.5, 1.0 Hz, 1H); 6.90 (dd, J=8.0, 1.0 Hz, 1H); 7.75 (brs, 1H); 2.25-2.38 (m, 2H); 1.50-1.90 (m, 5H); 1.08-1.24 (m, 2H); 1.03 (d, J=7 Hz, 3H); 0.91 (d, J=6.8 Hz, 3H); 0.83 (d, J=6.7 Hz, 3H). ¹³C-NMR (CDCl₃) δ : 162.79, 156.11 (2s); 134.50, 127.65, 121.29, 116.97 (4d); 116.89, 91.82 (2s); 49.94 (d); 46.32, 34.31 (2t); 28.75, 26.11 (2d); 23.73 (q); 22.66 (t); 21.77 (q); 18.84 (q). Mass m/z: 273 (M⁺). $[\alpha]D^{25}$ +64.8° (c, 1.0, MeOH). The structure of 2 and 3 was unequivocally confirmed by X-ray crystallographic analysis. The X-ray data have been deposited at Cambridge Crystallographic Data Center.
- Similar steric interactions found in *l*-menthonide, see: Harada, T.; Ueda, S.; Yoshida, T.; Inoue, A.; Takeuchi, M.; Ogawa, N.; Oku, A. J. Org. Chem. **1994**, 59, 7575-7576. Suda, H.; Hosono, Y.; Hosokawa, Y.; Seto, T. Kogyo Kagaku Zasshi, **1970**, 73, 1250-1251. 6.
- 7.
- **5a**: colorless oil, $[\alpha]_D^{25}$ +87.5° (c, 1.0, MeOH). **6a**: colorless oil, $[\alpha]_D^{25}$ +41.4° (c, 1.0, MeOH). **6b**: 8. colorless oil. $[\alpha]D^{25} + 19.1^{\circ}$ (c, 1.0, MeOH). The structure of compounds 5a and 6a was substantially confirmed by X-ray crystallographic analysis of corresponding racemic derivatives. The X-ray data have been deposited at Cambridge Crystallographic Data Center. The structure of 6b was confirmed on corresponding hydroxy acid by comparison with the reported physicochemical properties.2b
- 8: colorless oil. IR (KBr) v_{max}: 1700, 2956 cm⁻¹. ¹H-NMR (CDCl₃) δ: 7.16-7.30 (m, 5H); 5.07 (d, 9. Hz, 1H); 2.61-2.75 (m, 1H); 1.09 (d, J= 7.0 Hz, 3H); 0.66 (s, 9H); 0.03 (s, 3H); -0.21 (s, J=5.0 3H). ¹³C-NMR (CDCl₃) δ : 179.9, 142.5 (2s); 128.1, 127.5, 126.5, 75.6, 48.5 (5d); 25.8 (q), 18.2 (s); 10.9 (q); 0.01 (q); -4.6 (q). Mass m/z: 295 (M⁺+1). $[\alpha]_D^{25}$ -31.5° (c, 1.1, MeOH). The corresponding hydroxy acid obtained by removal of the TBS group of 8 (TBAF, THF, 25°C, 30 min, 95%) had an optical rotation { $[\alpha]D^{24}$ -26.4° (c, 1.13, CH₂Cl₂)} in good accordance with the reported value { $[\alpha]D^{24}$ -26.4° (c, 1.04, CH2Cl2)}.1d