Journal für praktische Chemie Chemiker-Zeitung © Johann Ambrosius Barth 1992

Regio- und stereospezifische Addition von Diazomethan an Gibberellinsäure: Ein neuer effektiver Weg zu 1,2-Methylengibberellinen

B. Voigt, A. Porzel, D. Voigt und G. Adam

Halle, Institut für Biochemie der Pflanzen

L. Kutschabsky

Berlin, Zentralinstitut für Physikalische Chemie

Bei der Redaktion eingegangen am 12. Juni 1991

Herrn Professor Dr. Dr. h. c. Klaus Schreiber zum 65. Geburtstag gewidmet

Regio- and Stereospecific Addition of Diazomethane to Gibberellic Acid: A New Effective Pathway to 1α , 2α -Methylenegibberellins

Abstract. A new pathway to $1\alpha, 2\alpha$ -methylenegibberellines via pyrazoline intermediates is reported. In contrast to the addition of diazomethane to the Δ^1 -double bond of corresponding enones in the case of **1** "Umpolung" of the regioselectivity with cis-addition from the α -side to give pyrazoline ester 4 is observed. Subsequent photolysis of 4 leads to the 1,2-cyclopropyl derivative 6. The structures of the key compounds 4 and 6 are confirmed especially by n.m.r. and X-Ray analysis.

Einleitung

Zu den wenigen bisher bekannten Gibberellin-Strukturanaloga mit verstärkter Phytohormonwirkung gehören Vertreter mit 2-Alkyl-Funktion, die eine metabolische Desaktivierung durch 2β -Hydroxylierung verhindern [1]. Unter diesem Aspekt sind $1\alpha, 2\alpha$ -Methylengibberelline interessant, deren Gewinnung aus Gib-

Schema 1 Synthese von GA_1 -pyrazolin (3), GA_1 -pyrazolinmethylester (4), $1\alpha,2\alpha$ -Methylen- GA_1 (5) und 1,2-Methylen- GA_1 -methylester (6)

a: CH₂N₂, Ether, MeOH, 14 Tage, Raumtemperatur b: hv ($\lambda > 300$ nm), MeCN, Ar, Raumtemperatur berellinsäure (GA₃, 1) auf 6-stufigem Wege in lediglich 1 % iger Gesamtausbeute beschrieben wurde [2]. Nachstehend berichten wir über eine wesentlich effektivere Synthese aus 1 [3], die in nur 3 Stufen $1\alpha, 2\alpha$ -Methylengibberellin A₁ (6) liefert.

Ergebnisse und Diskussionen

Wir fanden, daß Langzeitumsetzung von 1 mit überschüssiger etherischer Diazomethan-Lösung bei Raumtemperatur in 66 % direkt zum Pyrazolinester 4 führt. Im Massenspektrum zeigt 4 ein intensives $M^+ \cdot -Ion$ bei m/z 402,1128 (C₂₁H₂₆N₂O₆). Abspaltung von Stickstoff führt über ein Methylenradikal zu m/z 374. Die Eliminierung weiterer funktioneller Gruppen sowie Gerüstspaltungen folgen dem bekannten Gibberellin-Fragmentierungsmuster [4]. Das ¹H-NMR-Spektrum von 4 steht mit der angegebenen Struktur im Einklang. Von den Signalen des A-Ringes erscheint H-1ß erwartungsgemäß bei tiefstem Feld (5,51 ppm, dd, $J_{1\beta/2\beta} = 9,7 \text{ Hz}$, $J_{1\beta/21\beta} = 2,7 \text{ Hz}$) und weist eine W-Kopplung zu H-21ß auf. Die Signale der geminalen Protonen an C-21 liegen bei 4,99 ppm (dd, = -17.9/11.2 Hz, H-21) bzw. 4,03 ppm (ddd, J J = -17,9/11,1/2,7, H-21 β). Der relativ große Betrag der geminalen Kopplungskonstante von 17,9 Hz bestätigt für beide Protonen einen Diederwinkel von etwa 30° zwischen der C-H-Bindung und der π -Bindungsebene der benachbarten N-N-Doppelbindung. Das Signal von H-2ß liegt bei 2,72 ppm (ddd, J = 11,2/11,1/9,7 Hz) und zeigt keine aufgelöste Kopplung zu H-3 (4,28 ppm, verbreitertes Singulett). Das steht gemäß der KARPLUS-Beziehung in Übereinstimmung mit dem entsprechenden Diederwinkel, der 97° [5] beträgt. Den endgültigen Strukturbeweis liefert die Kristallstrukturanalyse. Abb. 1 zeigt die erhaltene Molekülstruktur von 4 [5]. Die freie Pyrazolinsäure 3 wird aus 4 durch Demethylierung nach Bartlett [6] gewonnen.

Im Vergleich zur bekannten Addition von Diazomethan an das Enonsystem von 3-Dehydro-gibberellinen [2], bei der das C-Atom des Diazomethans am C-1 der Kohlenstoff-Kohlenstoff-Bindung aktivierten angreift, erfolgt somit bei 1 eine Umpolung der Regioselektivität. Ein zweiter überraschender Unterschied besteht im sterischen Verlauf der cis-Addition, die im Gegensatz zu entsprechenden Enonen [2] bei 1 bzw. 2 von der gleichen Seite wie der α-ständige γ-Lactonring unter Bildung des $1\alpha, 2\alpha$ -Pyrazolins stattfindet. Der Lactonring zeigt somit nicht die zunächst erwartete sterisch abschirmende Wirkung, sondern scheint im Gegenteil zu einer hohen Ordnung im Übergangszustand des synchronen 1,3-dipolaren Additionsprozesses [7] beizutragen.

Bereits früher beobachteten Gross et al. [8] bei der Methylierung von 1 mit Diazomethan die Bildung

Abb.1 Struktur von GA_1 -pyrazolinmethylester (4) im Kristall

Abb. 2 Struktur von 1,2-Methylen-GA₁-methylester (6) im Kristall

eines Pyrazolins als Nebenprodukt, dessen Struktur jedoch nicht geklärt wurde (vgl. auch [9]).

Pyrazoline lassen sich photochemisch oder thermisch in Cyclopropyl-Verbindungen überführen [7]. Entsprechend liefert die Photolyse des Pyrazolins 4 $(\lambda > 300 \text{ nm}, \text{ absol. MeCN}) 40\%$ des gewünschten $1\alpha, 2\alpha$ -Methylen-Derivates 6 mit m/z 374 (M⁺·). Im ¹H-NMR-Spektrum von 6 erscheinen die Signale der beiden geminalen Cyclopropyl-Protonen bei 0,52 ppm (dt, J = -4, 4/6, 1 Hz) bzw. 1,50 ppm (dt, J = -4, 4/6)8,4 Hz) mit einer charakteristischen Kopplungskonstante von -4,4 Hz. Für H-3 wird ein Singulett bei 3,77 ppm gefunden. Die fehlende Kopplung zu H-2 β zeigt, daß der entsprechende Diederwinkel etwa 90° beträgt. Die Signale für H-1 β (0,71 ppm) und H-2 β (1,14 ppm) weisen das gleiche Kopplungsmuster (ddd) mit jeweils identischen Kopplungskonstanten zu den beiden Protonen an C-21 (J = 8,4 bzw. 6,1 Hz) und einer vicinalen H-1 β /H-2 β -Kopplung auf, deren Kopplungskonstante von 10,2 Hz im Erwartungsbereich für cis-ständige Cyclopropyl-Protonen liegt. Die so abgeleitete Struktur von 6 wird durch Kristallstrukturanalyse¹⁾ bestätigt (Abb. 2). Bartlett-Demethylierung von 6 lieferte 54 % gewünschtes 1a,2a-Methylen-GA₁ (5).

Beschreibung der Versuche

Die Chromatographie erfolgte an Kieselgel der Fa. Merck (Darmstadt). Die Messungen wurden nach Standardmethode mit folgenden Geräten ausgeführt:

Schmelzpunkte (korrigiert): Mikroheiztisch nach Boëtius

(Aceton/n-Hexan), monoklin, P2₁, a 3 9,236, b=7,109, c=14,155 A, β =104,61, Z=2.

¹⁾ Kristallographische Daten: $C_{21}H_{26}O_6$

Spezifische Drehung: Zeiß-Polarimeter Polamat A IR-Spektren: Zeiß-Zweistrahl-Spektrometer IR 75 UV-Spektren: Zeiß-Specord M 40

MS: EI-MS (70 eV) und Hochauflösung: Joel JMS (PFK, A = 10000)

EI-MS (10 - 16 eV) und EA-MS (2 - 4 eV): Elektronenanlagerungs-Massenspektrograph des Forschungsinstitutes "M. v. Ardenne", Dresden [10] PIDCI (NH₃): VARIAN MAT 44

- ¹H-NMR: 200-MHz-Bruker-Instrument WP 200
- X-Ray: automatisches Vierkreisdiffraktometer CAD-4 Strukturbestimmung nach direkter Methode mit dem Computersystem SDP von Enraf-Nonius (R = 0,098 für 1359 unabhängig beobachtete Reflexe. Weitere Einzelheiten können im Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, GB-Cambridge CB 2, 1 EW, angefordert werden).

*GA*₁-pyrazolinmethylester (4)

Zu einer Lösung vom 346 mg (1 mMol) GA₃ (1) in 20 ml MeOH wurde eine frisch dargestellte etherische Lösung von Diazomethan portionsweise zugefügt und der Reaktionsverlauf durch DC-Testung verfolgt. Nach 2 Wochen wurden die Lösungsmittel i. Vak. abdestilliert und der Rückstand an Kieselgel chromatographiert. Mit Benzin/Ethylacetat 1:1 v/v wurden 268 mg (66 %) unter Berücksichtigung von zurückgewonnenem GA₃-methylester (2) einer polaren Substanz 4 isoliert. 4 kristallisiert aus Aceton/n-Hexan in Nadeln vom Schmp. 242–245 °C und $/\alpha/_D$ + 136,9 ° (c = 0,232 in EtOH).

IR (Nujol): λ_{max} 900 (>C = CH₂), 1550 (N = N), 1718 (COOMe), 1772 (γ -Lacton), 3500 und 3580 cm⁻¹ (OH).

UV (MeOH, c = 0.810): λ_{max} (ϵ) 327 (357) und 263 nm (238.)

MS (Hochauflösung) (70 eV): Gef. 402,1778, C₂₁H₂₆N₂O₆.

Niedervolt-EI-MS: (10 - 60 eV) m/z (%) 402 (M⁺ ·, 12), 374 (M-N₂, 10), 356 (374 - H₂O, 11), 343 (M-COOMe, 18), 340 (13), 324 (21), 314 (22), 296 (24), 136 (100).

EA-MS: (2-4 eV) m/z (%) 402 M⁻·, 56), 400 (65), 374 (78), 360 (M⁺· - CH₂N₂, 56), 342 (360 - H₂O, 47), 327 (100), 299 (59).

PIDCI: m/z (%) 420 (M + NH₄, 71), 403 (M + H, 100).

¹H-NMR (200 MHz, py-d₅): δ 1,68, s, H₃-18; 2,72, ddd, J = 11,2/11,1/9,7 Hz, H-2 β ; 3,30, d, J = 10,2 Hz, H-6; 4,03, ddd, J = -17,9/11,1/2,7 Hz, H-21 β ; 4,08, d, J = 10,2 Hz, H-5; 4,28, verbr. s, H-3; 4,99, dd, J = -17,9/11,2 Hz, H-21; 5,08, br. s und 5,63 br. s, H-17 und H-17'; 5,51 ppm, dd, J = 9,7/2,7 Hz, H-1 β .

GA_{I} -pyrazolin (3)

84 mg Methylester **4** wurden unter Argon bei Raumtemp. mit 4 ml einer frisch dargestellten Bartlett-Lösung geschüttelt. Nach 10 Stdn. wurde die Reaktionslösung in Eiswasser gegossen, mit 2N HCl auf ph = 3 eingestellt, mit Ethylacetat extrahiert und aufgearbeitet. SiO₂-Chromatographie und Elution mit Ethylacetat/Eisessig 98: 2 v/v lieferte 31 mg (38 %) **3**, das aus Aceton/n-Hexan in Nadeln vom Schmp. 229 – 232 °C und $/\alpha/_{\rm D}$ + 135,8 ° (c = 0,267; EtOH) kristallisiert. ¹H-NMR (200 MHz, py-d₅): δ 1,51, s, H₃-18; 2,72, ddd, J = 11,3/11,2/9,7 Hz, H-2 β ; 3,12, d, J = 10,0 Hz, H-6; 3,91, d, J = 10,0 Hz, H-5; 4,03, ddd, J = -17,9/11,2/2,6 Hz, H-21 β ; 4,22, verbr. s, H-3; 4,96, dd, J = -17,9/11,3 Hz, H-21; 5,07, br. s, und 5,61, br. s, H-17 und H-17'; 5,48 ppm, dd, J = 9,7/2,6 Hz, H-1 β .

1,2-Methylen-GA1-methylester (6)

59 mg Pyrazolinmethylester **4** wurden in 10 ml absol. MeCN 5 Stdn. mit UV-Licht ($\lambda > 300$ nm), Argon (Raumtemp.) bestrahlt. SiO₂-Chromatographie und Elution mit Benzin/ Ethylacetat 7:3 v/v lieferte 22 mg (40 %) **6** mit Schmp. 229 – 232 °C (Nadeln aus Aceton/n-Hexan) und / α /_D + 43,0 ° (c=0,616, EtOH). IR (Nujol): λ_{max} 1705 (Estercarbonyl), 1755 (γ -Lacton) und 3440 cm⁻¹ (OH). EI-MS: (10–16 eV) m/z (%) 374 (M⁺⁺, 32), 360 (M⁺⁺-CH₂,5), 356 (M⁺⁺-H₂O,18), 342 (M⁺⁺-MeOH,

 $(M^+ - CH_2, 5)$, 356 $(M^+ - H_2O, 18)$, 342 $(M^+ - MeOH, 47)$, 314 $(M^+ - HCOOMe, 56)$; EA-MS (2 - 4eV) 374 $(M^- \cdot, 75)$, 360 $(M^- - CH_2, 100)$, 316 $(360 - CO_2, 18)$, 284 (316-MeOH).

¹H-NMR (300 MHz, Aceton-d₆): δ 0,52, dt, J=6,1/ -4,4 Hz und 1,50, dt, J=8,4/-4,4 Hz, H-21 und H-21β; 0,72, ddd, J=10,2/8,4/6,1 Hz, H-1β; 1,09, s, H₃-18; 1,14, ddd, J=10,2/8,4/6,1 Hz H-2β; 2,56, d, J=10,3 Hz, H-6; 3,09, d, J=10,3 Hz, H-5; 3,77, br. s, H-3; 4,90, br. s und 5,21 ppm, br. s, H-17 und H-17'.

1a, 2a-Methylen- GA_1 (5)

60 mg **6** wurden wie für **3** beschrieben mit 2,5 ml Bartlett-Reagenz umgesetzt und aufgearbeitet. SiO₂-Chromatographie ergab bei Elution mit Ethylacetat/Eisessig 98:2 v/v 30 mg (54 %) **5** vom Schmp. 251 – 255 °C (Nadeln aus Aceton/n-Hexan) und /α/_D + 47,4 ° (c = 0,330, EtOH). IR (Nujol): λ_{max} 875 (>C = CH₂), 1722 (Carboxyl), 1755 (γ-Lacton), 3071 (>C = CH₂), 3405 und 3 500 cm⁻¹ (OH). MS: (10 – 16 eV) m/z (%) 360 (M⁺ · , 41), 342 (M⁺ · – H₂O, 55), 328 (M⁺ · – MeOH, 21), 324 (342 – H₂O, 14), 136 (100). ¹H-NMR (200 MHz, Aceton-d₆): δ 0,52, dt, J = 6,1/ –4,4 Hz und 1,50, dt, J = 8,4/ – 4,4 Hz, H-21 und H-21β; 0,72, ddd, J = 10,2/8,4/6,1 Hz, H-1β; 1,01, s, H₃-19; 1,13, ddd, J = 10,2/8,4/6,1 Hz, H-2β; 2,54, d, J = 10,1 Hz, H-6; 3,07, d, J = 10,1 Hz, H-5; 3,73, br. s, H-3, 4,86, br. s und 5,17 ppm, br. s, H-17 und H-17'.

Literatur

- G.V. Hoad, J. MacMillan, V.A. Smith, V.M. Sponsel, T.A. Taylor, Gibberellin 2β-Hydroxylases and Biological Activity of 2β-Alkyl Gibberellins. In: Wareing, P.E. (Edit.), Plant Growth Substances. Academic Press London (1982), 91
- [2] J. MacMillan, C.L. Willis, J. Chem. Soc., Perkin Trans. I 1985, 2177
- [3] G. Adam, Chr. Bergner, M. Lischewski, A. Schierhorn, G. Sembdner, B. Voigt, L. Kutschabsky, Gibberellins Synthesis and Bioactivity. Proc. 3th Noordwijkerhout Symp. on Medicinal Chem., 3. – 6. Sept. 1985. In: Harms, A.F. (Edit.), Innovative Approaches in

Drug Research. Elsevier Science Publishers B. V., Amsterdam (1986) 171

- [4] D. Voigt, G. Adam, J. Schmidt, P. Franke, Org. Mass Spectrom. 13 (1978) 599
- [5] L. Kutschabsky, B. Voigt, G. Adam, Cryst. Res. Technol., im Druck. Kristallographische Daten: $C_{21}H_{26}N_2O_6$, orthorhombisch, $P2_12_12_1$ a = 8,853, b = 9,642, C = 23,307, Z = 4, R = 0,038 für 1957 unabhängig beobachtete Reflexe
- [6] P.A. Bartlett, W.S. Johnson, Tetrahedron Lett. 46 (1970) 4459
- [7] Vgl. Houben-Weyl, Methoden der organischen Chemie, X/4, G. Thieme Stuttgart (1968) 804, N.R. El-Rayyes, N.R. Al-Awadi, Synthesis 1985, 1028
- [8] B.E. Cross, J.F. Grove, A. Morrison, J. Chem. Soc. (London) 1961, 2498

- [9] E.P. Serebryakov, M. Lischewski, G. Adam, Izv. Akad. Nauk SSSR, Ser. Khim. 9 (1978) 2181
- [10] M. v. Ardenne, K. Steinfelder, R. Tuemmler, Elektronenanlagerungs-Massenspektrographie organischer Verbindungen, Springer-Verlag Berlin, 1971
- [11] Enraf-Nonius, Structure Determination Pashage, Enraf-Nonius, Delft, Holland, 1979

Korrespondenzanschrift:

Prof. Dr. G. Adam Institut für Biochemie der Pflanzen Weinberg 3 O-4050 Halle/Saale, Bundesrepublik Deutschland