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A simple three-step synthetic routes toward 2-substituted 3-diarylmethylenylpiperidines 7 (Y = CN) and
8 (Y = allyl) starting with 3-diarylmethylenylpiperidines 9 is described. The process was carried out by
the bromomethoxylation of skeleton 9 with NBS in MeOH at reflux for 2 h, regioselective a-dehydrobro-
mination with DBU in THF at reflux for 10 h, and BF3�OEt2-catalyzed cross-coupling of the corresponding
enamine with trimethylsilyl-based nucleophiles (TMS-Y) in DCM at rt for 2 h. a-Amino ester 18 and b-
amino acid 19 are also synthesized via the simple three-step synthetic protocol.

� 2011 Elsevier Ltd. All rights reserved.
Introduction

The novel design and synthesis of conformationally multifunc-
tionalized a-amino acids and their related derivatives (e.g., a-amino
nitriles) have attracted considerable attention from both the syn-
thetic and medicinal chemistry communities.1,2 The high potential
of the biological activities of homophenylalanine analogues is
dependent on the three-dimensional orientation of the amino acid
side chains.3 As shown in Scheme 1, a number of cyclic-constrained
ll rights reserved.
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onformationally constrained
homophenylalanine derivatives 2–5 have been reported.4,5 Among
these useful skeletons, compound 6 represents a C3-benzhydryl
group on the skeleton of pipecolic acid. In this study, the related
syntheses were carried out by a simple key three-step protocol.

Recent use of a piperidine skeleton with a C3-benzhydryl group
in search of a novel neurokinin-1 receptor antagonist has focused
the potential utility of the 3-diarylmethylenyl group in the design
of constrained amino acid analogues.6 Due to the potential
pharmaceutical interest concerning the specific substitution pat-
terns of pipecolate derivatives, a simple three-step protocol for
the preparation of 2-pipecolinonitrile 7 and 2-allylpiperidine 8
from piperidine 9 with 3-diarylmethylenyl group was developed.

Results and discussion

The synthesis strategy as adopted is shown in Scheme 2.
Basically, the Y group was regioselectively introduced to the C-2
position of piperidine via (i) a-bromomethoxylation of 1-sulfonyl-
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Scheme 2. Retrosynthetic route toward 3-diarylmethylenyl 2-pipecolinonitrile 7
and 2-allylpiperidine 8.
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3-diarylmethylenylpiperidines 9 with NBS in MeOH, (ii) dehydro-
bromination with DBU in THF, and (iii) the BF3�OEt2-catalyzed inter-
molecular cross-coupling of the resulting cyclic enamine with the
trimethylsilyl-based nucleophiles (TMS-Y; Y = CN, allyl) in DCM.
This three-step protocol provided a convenient route to the synthe-
sis of skeleton 7 or 8 in moderate yields. The starting material 9 was
easily synthesized from commercially available piperidine-3-car-
boxylic acid ethyl ester 10 by N-sulfonation (R = Me, Ph), Grignard
addition (Ar = Ph, 4-F-Ph, 4-Me-Ph), and BF3�OEt2-mediated
dehydration.

Compounds 9a–e were prepared in 56–72% yields via the three-
step protocol according to the known synthesis route.7 With
skeleton 9 in hand, compound 9a was first chosen as the model
substrate for the following a-bromomethoxylation reaction (see
Scheme 3). Treatment of olefin 9a with NBS in MeOH produced a
sole 1,2-methoxybromide 11a at rt for 2 h. Compound 11a was
noticeably unstable ( Equation 1), but purification on silica gel
afforded a-arylketone 12a as the major product with a 65% yield.
This result showed that the phenyl group should displace the
tertiary bromo group during an intramolecular rearrangement of
pinacol to pinacolone via the possible intermediate I.8 The
rearranged product 12b was observed (49%) during the silica-gel
mediated purification procedure.

Without purification, crude compound 11a was further studied
for the regioselective dehydrobromination reaction with different
bases. Under a number of conditions (e.g., prolonged time, different
temperature and equivalent), we found that an excess amount of
11a
base
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Equation 2. Dehydrobromination of compound 11a.

N
S

11a, X = H
11b, X = Me

O O
Ph

OMeBr
column 

purification N
S

O O
Ph

OMeBr

N
S

12a, X = H (65%)
12b, X = Me (49%)

O O
Ph

O

X

XX

X
X

X

I

Equation 1. Silica gel-mediated rearrangement of skeleton 11.
DBU (10 equiv) was the optimal base for the formation of the major
enamine 13a among some commercial tertiary amines (DBU,
DMAP, 2,6-lutidine). As shown in Equation 2, when compound
11a was reacted with DBU at reflux for 10 h, a mixture of com-
pounds 13a and 14a with the approximate ratio value of 95/5
was observed. The ratio value was determined by the 1H NMR anal-
ysis of vinylic proton (13a, d = 7.06; 14a, d = 5.97). For the reaction
of compound 11a with DMAP, the ratio value of 60/40 (for 13a/
14a) was observed. In changing the base to 2,6-lutidine, the ratio
value of 13a/14a was converted into 20/80. From this phenome-
non, it was thought that the ratio values of 13a/14a were affected
by the appropriate bases with stronger basicity and greater bulk
via the regioselective hydrogen abstraction on the C2-Ha and C4-
Figure 1. X-ray structures of compounds 7a and 15a.

N

S
7a (X-Ray)O O

Ph

N

S
O OPh

N

S
15a (X-Ray)O O

Ph

+
III

CN

CN

N

S
O O

Ph

+

N

S
O O

Ph 13a

N

S
O O

Ph

+

14a

OMe

OMe

TMS-CN, 
BF3 OEt2,

DCM

IV

OMe

BF3

TMS-CN

OMe
BF3TMS-CN

2

4

2

4

Equation 3. BF3�OEt2-mediated cross-coupling of mixture 13a and 14a with TMS-
CN.
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Hb positions of the intermediate II. Attempts to separate the mix-
ture of compounds 13a and 14a failed as compound 13a was
unstable under the column purification.

In the following step, two amino nitriles 7a and 15a were iso-
lated from the BF3�OEt2-mediated intramolecular cross-coupling
of mixtures 13a and 14a (ratio value �95/5) in a co-solvent of tri-
methylsilyl cyanide (TMS-CN, 3 mL) and dichloromethane (10 mL)
at rt for 2 h. Between the C-2 of intermediate III and the C-4 of
Table 1
Synthesis of skeletons 7 and 8

1) NBS, MeOH, reflux, 2
2) DBU, THF, reflux, 10

3) TMS-Y, BF3 OEt2, DC
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b The isolated products were >95% pure as determined by 1H NMR
intermediate IV, cyanide ions formed a new bond to push off the
methoxy group via the regioselective nucleophilic substitution
reaction.9 The total synthesis procedure was monitored through
the TLC method until the reaction was complete. This study
showed a new synthetic approach for constructing a-amino nitrile
7 and c-amino nitrile 15 from compound 9 by the overall three-
step protocol. The structures of compounds 7a and 15a were deter-
mined using single-crystal X-ray analysis (Fig. 1).10 From the sim-
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 h
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ple three-step transformation (see Scheme 3), we found that the
base was the key factor for the formation of compound 7a. The
overall synthetic procedure had to be monitored by TLC until the
reaction was completed that day and compound 7a was isolated
in a 71% yield by only column chromatography purification on sil-
ica gel (Equation 3).

Given the above results, we envisioned that this three-step
route could regioselectively introduce a CN group to the C-2 posi-
tion of the piperidine skeleton by using DBU as the base. According
to the protocol, treatment of compounds 9b–e produced 2-amino
nitriles 7b–e in 55–73% yields. After changing the trimethylsilyl-
based nucleophile from the cyano to the allyl group, compounds
8a–e were also isolated in 55–74% yields (Table 1).11

However, when the BF3�OEt2-promoted cross-coupling of model
enamine 13a was treated without the addition of the trimethyl-
silyl-based nucleophile, the equilibrium between 2-hydroxypiper-
idine 16a and d-aminoaldehyde 17a was observed by 1H NMR
analysis (Equation 4). There was also a similar result in the reaction
of enamine 13b by BF3�OEt2. Fortunately, the structure of com-
pound 16b was determined using single-crystal X-ray analysis
(Fig. 2).10

Furthermore, the BF3�OEt2-promoted reaction of compound 13a
with trimethylsilane converted it into the starting material 9a.
Figure 2. X-ray structure of compound 16b.
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Equation 4. BF3�OEt2-mediated reaction of crude compounds 13a and 13b without
addition of trimethylsilyl-based nucleophile.
Notably, this strategy was an interesting reversible process be-
tween compounds 13a and 9a (Equation 5).12 On the basis of the
three-step protocol, a-amino ester 18 and b-amino acid 19 were
chosen as the next targets. Furthermore, the acid-mediated hydro-
lysis of 2-pipecolinonitrile 7 in methanol converted it into a-amino
ester 18 in an 89% yield, as shown in Scheme 4. By the three-step
protocol, compound 18 was prepared as a cyclic-constrained hom-
ophenylalanine derivative 6, while 2-allylpiperidine 8a was trans-
formed to b-amino acid 19 by osymlation and subsequently
followed by bond cleavage with sodium periodate and Jones oxida-
tion in a 67% yield. The two structures, a-amino ester 18 and b-
amino acid 19, were determined using single-crystal X-ray analysis
(Figs. 3 and 4).10
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Equation 5. Interconversion of compounds 9a and 13a.
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Figure 3. X-ray structure of a-amino ester 18.



Figure 4. X-ray structure of b-amino acid 19.

M.-Y. Chang et al. / Tetrahedron Letters 53 (2012) 627–631 631
Conclusion

A synthetic methodology for producing a series of 2-substituted
3-diarylmethylenylpiperidines 7 (Y = CN) and 8 (Y = allyl) has been
successfully presented using NBS-mediated a-bromomethoxyla-
tion reaction, DBU-promoted regioselective dehydrobromination
reaction, and BF3�OEt2-promoted cross-coupling reaction involving
trimethylsilyl-based nucleophiles. Under the three-step protocol,
a-amino ester 18 and b-amino acid 19 were also synthesized. Sev-
eral structures of the target products were confirmed by X-ray
crystal analysis.
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