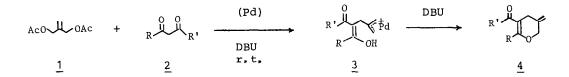
NOVEL PALLADIUM CATALYZED SYNTHESIS OF PYRAN DERIVATIVES


Yujin Huang and Xiyan Lu*

Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai 200032, China

<u>Abstract</u>: Pyran derivatives can be synthesized by the reaction of 2methylene propane-1,3-diol diacetate (1) with β -diketones or β -ketoesters in the presence of DBU under palladium(0) catalysis.

The palladium catalyzed reactions of allylic compounds with nucleophiles have been studied widely¹. When β -diketones or β -ketoesters are used as nucleophiles, either C- or O-alkylation will take place depending on the different ligands used². However, palladium catalyzed reactions in which both C- and O-alkylation occur simultaneously by use of such ambident nucleophiles are rare³.

Here, we wish to report the palladium catalyzed reaction of a bifunctional allylic acetates, 2-methylene propan-1,3-diol diacetate (1), with β -diketones or β -ketoesters (2) bearing two active hydrogen atoms. It is found that those ambident nucleophiles can react with 1 first as a carbon nucleophile, then subsequently as an O-nucleophile to form pyran derivatives in one pot reaction. The carbanion formed will first attack 1 under the catalysis of palladium to form 3, then the O-alkylation takes place intramolecularly to give 4. The yield is moderate. The results are shown in Table.

The following procedure is typical: To a stirred solution of $\underline{1}$ (400 mg. 2.3 mmol), methyl acetoacetate ($\underline{2a}$, 230 mg, 2mmol), Pd(OAc)₂ (22 mg, 0.1 mmol), PPh₃ (100 mg, 0.39 mmol) in THF (5 ml), DBU (690 mg, 4.5 mmol) was added with a syringe under argon atmosphere. The solution was stirred at room temperature until the disappearance of $\underline{2a}$ as monitored by TLC. Water was added, the mixture was extracted with ether and the ether solution was dried with MgSO₄. After distilling off the ether, the product $\underline{4a}$ (170 mg) was isolated by chromatographic purification on alumina.

The presence of a six membered oxygen heterocycle ring in a range of naturally occurring compounds provided the stimulus for the development of synthetic routes to these compounds⁴. Our results provides a convenient and simple synthetic method for these compounds.

The reactions of 1 with other nucleophiles are being investigated in our

laboratory.

Table,	Falladium	Catalyzed	Synthesis	of	Pyran	Derivatives	(4)
--------	-----------	-----------	-----------	----	-------	-------------	-----

				-	
Nucleophile	Time (h)	Product ^a		Isolat <i>e</i> d Yield (१)	
0 0 0 0 0 CH ₃ (<u>2a</u>)	3	сн30	(<u>4a</u>)	51	
Ph , OCH 3 (2b)	3	CH30	(<u>4b</u>)	65	
0 = (2c)	5		(<u>4c</u>)	52	
0 0 (<u>2d</u>)	3		(<u>4d</u>)	84 ^b	
$Ph \xrightarrow{0} Ph (2e)$	5		(<u>4e</u>)	55	
		Ph ~0/	4		

a: All compounds gave satisfactory H NMR, IR and MS data, b: Determined by G.C.

Acknowledgement: Thanks are due to the National Natural Science Foundation of China for financial support.

References and Notes:

1. For reviews see (a) Tsuji, J., "Organic Synthesis with Palladium Com-pounds", Springer Verlag, Berlin, 1980; (b) Tsuji, J., Pure Appl. Chem. 1982, <u>54</u>, 197; (c) Trost, B, M., Tetrahedron, 1977, <u>33</u>, 2615; (d) Trost, B. M., Acc. Chem. Res., 1980, 13, 385. 2. (a) Tsuji, J., Kobayashi, Y., Kataoka, H. and Takahashi, T., Tetrahedron Lett., 1980, <u>21</u>, 1475; (b) Trost, B. M., Runge, T, A. and Jungheim, L. N., J. Am. Chem. Soc., 1982, <u>102</u>, 2840. 3. (a) Tsuji, J., Watanabe, H., Minami, I. and Schimizu, I., J. Am. Chem. Soc., 1985, <u>107</u>, 2196; (b) Minami, I., Yuhara, M. and Tsuji, J., Tetrahedron Lett., 1987, <u>28</u>, 629. 4. (a) Hepworth, J. D. in "Comprehensive Heterocyclic Chemistry", Eds. Katritzky, A. and Rees, C. W., Vol. 3, Pergamon Press, Oxford, 1984, p.737, (b) Seoano, C., Soto, J. L. and Quinteriro, M., Heterocycles, 1980, $\frac{14}{4}$, 337. 5. 4a: B.p. 60-80°C(oil bath)/2mm Hg; IR(neat): 1710, 1660, 1620; H NMR (CCl₄, 60 MHz): 2.16(s, 3H), 2.96(s, 2H), 3.62(s, 3H), 4.30(s, 2H), 5.05(m, 2H); MS: 169(M+1), 153, 137, 109, 43; Calcd. exact mass for $C_9H_{12}O_3$: 168.0786, found: 168 found: 168.0789. $\begin{array}{r} \text{found: 168.0789.} \\ \underline{4b: \text{ oil; IR (neat): 1720, 1695, 1620, 1600, 770, 700; }^{1} \text{H NMR (CCl}_{4}, 60 \text{ MHz}): \\ 3.13(\overline{5}, 2\text{H}), 3.35(\overline{5}, 3\text{H}), 4.45(\overline{5}, 2\text{H}), 5.10(\overline{m}, 2\text{H}), 7.5(\overline{5}, 5\text{H}); \text{MS: 230(M}^{+}), 215, \\ 171, 105, 77, 51; \text{ Calcd. exact mass for C}_{14}\text{H}_{14}\text{O}_{3}: 230.0943, \text{ found: 230.0946.} \\ \underline{4c: B.p. 85-100^{\circ}\text{C}(\text{oil bath})/0.8 \text{ mm Hg; IR (neat): 1720, 1650, 1610; }^{1} \text{H NMR} (\text{CCl}_{4}, 60 \text{ MHz}): 1.70-2.60(\overline{m}, 6\text{H}), 2.90(\overline{s}, 2\text{H}), 4.40(\overline{s}, 2\text{H}), 5.15(\text{broad, 2H}); \\ \text{MS: 164 (M^{+}), 149, 136, 108; Calcd. exact mass for C}_{10}\text{H}_{12}\text{O}_{2}: 164.0837, \text{ found: 164.0837} \\ \end{array}$ 164.0830. 4d: B. p. 60-80°C(oil bath)/16 mm Hg; IR(neat): 1700, 1670, 1580; ¹H NMR (CCl₄, 60 MHz): 2.15(s, 3H), 3.05(s 2H), 4.30(s, 2H), 5.05(broad, 2H); MS: 152 (M⁺), 137, 109, 43; Calcd. exact mass for C_{gH12}O₂: 152.0827, found: 152.0828. <u>4e:</u> IR(KCl): 1710, 1650(broad), 1595, 770, 695; ¹H NMR(CCl₄, 60 MHz): 3.2(s, 2H), 4.5(s, 2H), 5.0(broad, 2H), 6.7-7.2(m, 8H), 7.2-7.5(m, 2H); MS: 276(M⁺), 199, 171, 105, 77; Calcd. exact mass for C₁₉H₁₆O₂: 276.1160, found: 276.1170. 276.1170.

(Received in Japan 28 August 1987)