Dyes and Pigments 97 (2013) 469-474

Contents lists available at SciVerse ScienceDirect

Dyes and Pigments

journal homepage: www.elsevier.com/locate/dyepig

Synthesis and separation of the constitutional isomers of 1(4),8(11),15(18), 22(25)-tetrakis[(pentyloxycarbonyl)phenoxy]-phthalocyaninato zinc(II) complexes

Ming Bai*, Yan Zhang, Rui Song, Senjian Han, Peihong Wan, Chongxi Zhang

Marine College, Shandong University at Weihai, Weihai 264209, People's Republic of China

ARTICLE INFO

Article history: Received 22 October 2012 Received in revised form 17 January 2013 Accepted 19 January 2013 Available online 29 January 2013

Keywords: Phthalocyanines Low symmetry Constitutional isomers Silica-gel column chromatography NMR Distribution

1. Introduction

Phthalocyanines as versatile functional dves have got a wide range of applications in the fields of organic semiconductors. nonlinear optical and optical limiting materials, chemosensors, organic photovoltaics, catalysis, and photosensitisers for photodynamic therapy [1–7]. Their physichemical, electrochemical, and spectroscopic properties, and intermolecular interactions can be modulated by rational modification of the metal center and the substituents of phthalocyanines. In line with this idea, lowering the molecular symmetry of phthalocyanine derivatives through suitable modification on the peripheral substituents and/or the nature of the π -conjugation system has been attracting increasing research interests [8]. Among the low symmetry phthalocyanines, isolation of constitutional isomers arising from cyclic tetramerization of one unsymmetrical precursor such as 3-subsituted-phthalonitrile has been common but extremely difficult. However, quite a few constitutional isomers of corresponding low symmetry phthalocyanine compounds have been successfully isolated by means of HPLC technique or TLC method [9]. Separation of constitutional isomers depending on simple silica-gel column

ABSTRACT

Cyclic tetramerization of 3-[(methyloxycarbonyl)phenoxy]phthalonitrile (**1a–1c**) in the presence of $Zn(OAc)_2 \cdot 2H_2O$ and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) followed by transesterification in refluxing *n*-pentanol afforded 1(4),8(11),15(18),22(25)-tetrakis[(pentyloxycarbonyl)phenoxy]phthalocyaninato zinc(II) complexes (**2a–2c**) as a mixture of four constitutional isomers. Simple silica-gel column chromatography leads to the successful separation of pure isomers with the C_{4h} and D_{2h} symmetry together with a section containing the C_{2v} and C_s isomers, which have been characterized with a wide range of spectroscopic methods including MALDI-TOF mass, electronic absorption, ¹H NMR, and 2D COSY spectroscopy. Synthesis yields in combination with the NMR spectroscopic results reveal that the distribution of the four isomers in the final product for **2a–2c** does not strictly follow that expected according to statistical calculation with the ratio of $C_{4h}:C_{2v}:C_s:D_{2h} = 1:2:4:1$, indicating the effect of steric hindrance of substituents on the formation of various constitutional isomers.

© 2013 Elsevier Ltd. All rights reserved.

chromatography was still rarely reported, to the best of our knowledge. In 2004, the C_{4h} and C_{2v} isomers of phthalocyaninato metal complexes of Zn and Pb were prepared from cyclic tetramerization of 3-(2.4-dimethyl-3-pentyloxy)phthalonitrile and separated by column chromatography on silica gel [10a], while the other two isomers with D_{2h} and C_s symmetry were not detected. In a similar manner, a trace amount of D_{2h} isomer was isolated from the mixture of four constitutional isomers of tetrahexyl phthalocyaninato vanadium(IV) oxide complex [10b]. Very recently, three of the four constitutional isomers with the C_{4h} , C_s , and C_{2v} symmetry (except the D_{2h} one) for the triazolo-fused azaphthalocyanine synthesized from 3-substituted 8-(diethylamino)-[1,2,4]triazolo[4,3-a]-pyrazine-5,6-dicarbonitrile were successfully isolated [10c]. However, it should be mentioned that the C_{4h} isomer of phthalocyanine derivatives with bulky substituents at the 1,8,15,22-positions usually could be obtained and isolated by controlling the reaction at relatively low temperature condition [11,12].

In the presented paper, a series of 1(4),8(11),15(18),22(25)-tetrakis[(pentyloxycarbonyl)phenoxy]phthalocyaninato zinc(II) complexes **2a–2c**, which are a mixture of four constitutional isomers, were synthesized by the cyclic tetramerization of 3-[(methyloxycarbonyl)phenoxy]phthalonitrile (**1a–1c**) and the transesterification of substituents in the presence of $Zn(OAc)_2 \cdot 2H_2O$ and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in refluxing *n*-pentanol.

^{*} Corresponding author. E-mail address: ming_bai@sdu.edu.cn (M. Bai).

^{0143-7208/\$ –} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.dyepig.2013.01.016

Scheme 1. Synthesis of constitutional isomers of complexes 2a-2c.

Most importantly, the constitutional isomers with the C_{4h} and D_{2h} symmetry together with a mixture containing the C_{2v} and C_s isomers have been successfully separated by simple silica-gel column chromatography.

2. Experimental section

2.1. General remarks

n-Pentanol and dimethylformamide (DMF) were distilled from sodium and anhydrous MgSO₄, respectively. Column chromatog-raphy was carried out on a silica-gel column (Qingdao Haiyang, 200–300 mesh) with the indicated eluents. All of the other reagents and solvents were used as received.

¹H NMR spectra were recorded on a Bruker DPX 400 spectrometer (¹H: 400 MHz) in CDCl₃ solution unless otherwise stated. Spectra were referenced internally using the residual solvent resonances (δ = 7.26 for ¹H NMR) relative to SiMe₄ (δ = 0 ppm). ¹³C NMR spectra were referenced internally by using the solvent resonances (δ = 77.0 ppm for CDCl₃). Electronic absorption spectra were recorded on a Hitachi U-4100 spectrophotometer. MALDI-TOF mass spectra were taken on a Bruker BIFLEX III ultrahigh resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with R-cyano-4-hydroxycinnamic acid as a matrix.

2.2. Synthesis of 3-substituted-phthalonitriles (1a-1c)

A mixture of 3-nitrophthalonitrile (1.72 g, 0.01 mol), methyl hydroxybenzoate (0.01 mol), and potassium carbonate (13.90 g, 0.1 mol) in DMF (80 mL) was heated at 80 °C overnight. Then the reaction mixture was poured into ice water. After filtration, the solid product was purified by silica-gel chromatography using CH_2Cl_2 as eluent to give a white solid product.

2.2.1. 3-(2-Methoxycarbonylphenoxy)phthalonitrile (1a)

Yield: 80%, ¹H NMR (CDCl₃) δ 8.069(dd, 1H, *J* = 7.6 Hz, *J* = 1.6 Hz, ArH), 7.655(ddd, 1H, *J* = 7.6 Hz, *J* = 7.6 Hz, *J* = 1.6 Hz, ArH), 7.513(dd, 1H, *J* = 8.4 Hz, *J* = 8.2 Hz, ArH), 7.425(dd, 1H, *J* = 7.6 Hz, *J* = 7.6 Hz, ArH), 7.427(d, 1H, *J* = 7.6 Hz, ArH), 7.198(d, 1H, *J* = 8.4 Hz, ArH), 6.854(d, 1H, *J* = 8.4 Hz, ArH), 3.781(s, 3H, -COOCH₃). ¹³C NMR (CDCl₃) δ 164.67, 161.59, 152.57, 134.70, 134.35, 132.92, 126.92, 126.69, 124.09, 123.51, 119.22, 117.30, 115.32, 112.84, 105.53, 52.56.

2.2.2. 3-(3-Methoxycarbonylphenoxy)phthalonitrile (1b)

Yield: 76%. ¹H NMR (CDCl₃) δ 7.973(d, 1H, J = 7.6 Hz, ArH), 7.745(dd, 1H, J = 2.0 Hz, J = 1.6 Hz, ArH), 7.600(dd, 1H, J = 8.0 Hz, J = 8.0 Hz, ArH), 7.548(dd, 1H, J = 8.0 Hz, J = 8.0 Hz, ArH), 7.506(d, 1H, J = 7.6 Hz, ArH), 7.330(dd, 1H, J = 8.0 Hz, J = 2.4 Hz, ArH), 7.096(d, 1H, J = 8.8 Hz, ArH), 3.927(s, 6H, -COOCH₃). ¹³C NMR (CDCl₃) δ 165.67, 160.16, 154.04, 134.82, 132.73, 130.71, 127.65, 127.09, 124.74, 121.04, 121.00, 117.31, 115.02, 112.54, 106.46, 52.46.

2.2.3. 3-[3,5-Bis(methoxycarbonyl)phenoxy] phthalonitrile (1c)

Yield: 75%. ¹H NMR (CDCl₃) δ 8.583(s, 1H, ArH), 7.940–7.944(m, 2H, ArH), 7.639(dd, 1H, J = 8.4 Hz, J = 8.2 Hz, ArH), 7.554(d, 1H, J = 8.0 Hz, ArH), 7.124(d, 1H, J = 8.4 Hz, ArH), 3.958(s, 6H, – COOCH₃). ¹³C NMR (CDCl₃) δ 165.10, 159.70, 154.57, 134.85, 133.36, 128.26, 128.02, 125.17, 121.42, 117.94, 114.94, 112.32, 107.38, 52.91.

2.3. Synthesis of phthalocyanines (2a-2c)

A mixture of phthalonitrile **1** (0.1 mmol), $Zn(OAc)_2 \cdot 2H_2O$ (110 mg, 0.05 mmol), and DBU (0.5 g) in *n*-pentanol (15 mL) was heated at 140 °C overnight under a slow stream of nitrogen. After cooling, the solvent was removed in vacuo. The residue was purified by silica-gel column chromatography using CH_2Cl_2 containing MeOH as eluent. Three fractions were collected.

2.3.1. Phthalocyanine **2a**

Mobile phase: CH₂Cl₂ containing MeOH from 0.3% to 1.5% (V/V). C_{4h} isomer: ¹H NMR (CDCl₃) δ 8.850(d, 4H, J = 7.6 Hz, PcH_{α}),

Table 1

1	Yields	of	isolated	isomers	and	mass	spectroso	copic	data	for	compound	2a-	-2c."

Compound	Isomer	Total yield (%)	Yield (%)	$M^{+}(m/z)$
2a	C _{4h}	23.2	6.0	1400.119
	$C_{2v} \& C_{s}$		15.6	1400.892
	D_{2h}		1.6	1400.992
2b	C_{4h}	74.3	13.8	1400.521
	C _{2v} & C _s		49.5	1400.454
	D_{2h}		10.9	1400.343
2c	C_{4h}	37.5	10.4	1858.491
	C _{2v} & C _s		22.4	1858.250
	D _{2h}		4.7	1858.263

 a Calculated values for $ZnC_{80}H_{72}N_8O_{12}$ $(\textbf{2a}~and~\textbf{2b})~[M^+]$ 1400.456; $ZnC_{104}H_{112}N_8O_{20}~(\textbf{2c})~[M^+]$ 1857.732.

Fig. 1. ¹H NMR spectra of C_{4h} (in CDCl₃), C₈ & C_{2v}, and D_{2h} isomers of compound **2c** (in CDCl₃ with a drop of pyridine[D₅]).

8.221(dd, 4H, J = 7.6 Hz, J = 1.6 Hz, ArH), 7.955(dd, 4H, J = 7.6 Hz, J = 7.6 Hz, PcH_β), 7.610(d, 4H, J = 7.6 Hz, PcH_β), 7.282(ddd, 4H, J = 8.0 Hz, J = 7.6 Hz, J = 6.2 Hz, J = 1.2 Hz, ArH), 7.193(d, 4H, J = 7.6 Hz, ArH), 7.178(d, 4H, J = 7.6 Hz, ArH), 4.301(t, 8H, J = 6.8 Hz, $-COOCH_2-$), 1.471–1.542(m, 8H, $-CH_2-$), 1.130–1.206(m, 8H, $-CH_2-$), 0.848–0.941(m, 8H, $-CH_2-$), 0.434(t, 12H, J = 7.2 Hz, $-CH_3$). D_{2h} isomer: ¹H NMR (CDCl₃ with a drop of pyridine[D₅]) δ 9.100(d, 4H, J = 6.8 Hz, PcH_α), 7.897(dd, 4H, J = 8.0 Hz, J = 7.6 Hz, PcH_β), 7.806(d, 4H, J = 7.6 Hz, ArH), 7.355(dd, 4H, J = 8.0 Hz, J = 5.2 Hz ArH), 7.333(d, 4H, J = 7.2 Hz, ArH), 7.141–7.160(m, 4H, ArH; 4H, J = 7.6 Hz, PCH_β), 3.813(t, 8H, J = 6.2 Hz, $-COOCH_2-$), 0.974(br s, 8H, $-CH_2-$), 0.739(br s, 8H, $-CH_2-$), 0.533(br s, 8H, $-CH_2-$), 0.197(br s, 12H, $-CH_3$).

Table	2
-------	---

Chemical shifts of protons on phthalocyanines 2a-2c rings.^a

Compound	Isomer	Hα	$H_{\beta 1}$	$H_{\beta 2}$
2a	C_{4h} $C_{2v} \& C_{s}$ D_{2h}	$\begin{array}{c} 8.850 \ (4) \\ 9.351 \ (1.42) \ [C_s] \\ 9.151 \ (0.58) \ [C_{2v}] \\ 8.883 \ (0.58) \ [C_{2v}] \\ 8.678 \ (0.71) \ \& 8.652 \\ (0.71) \ [C_s] \\ 9.110 \ (4) \end{array}$	7.955 (4) $8.091[C_s]$ 7.891[C_{2v}] 7.955[C_{2v}] 7.756[C_s] 7.897 (4)	7.610 (4) 7.661[C_s] 7.178[C_{2v}] 7.606[C_{2v}] 7.076[C_s] 7.151 (4)
2b	C_{4h} $C_{2v} \& C_{s}$ D_{2h}	$\begin{array}{l} 8.769 \ (4) \\ 8.982 \ (2) \ [C_{2v} \& C_s] \\ 8.604 \ (0.73) \ [C_{2v}] \\ 8.579 \ (0.73) \ [C_s] \\ 8.105 \ (0.54) \ [C_s] \\ 8.972 \ (4) \end{array}$	7.923 (4) 7.847 (4)	7.637 (4)
2c	C _{4h} C _{2v} & C _s D _{2h}	$\begin{array}{l} 8.523 (4) \\ 8.974 (2) [C_{2v} \& C_{s}] \\ 8.654 (0.65) [C_{2v}] \\ 8.570 (1.35) [C_{s}] \\ 9.136 (4) \end{array}$	7.843 (4) 7.855 (4)	7.635 (4) 7.181 (4)

^a The integration values given in parentheses. The assignment of the isomers mixture given in bracket.

2.3.2. Phthalocyanine 2b

Mobile phase: CH₂Cl₂ containing MeOH from 0.1% to 0.5% (V/V). C_{4h} isomer: ¹H NMR (CDCl₃ with a drop of pyridine[D₅]) δ 8.769(d, 4H, J = 7.6 Hz, PcH_α), 8.211(br s, 4H, ArH), 7.923(dd, 4H, J = 7.6 Hz, J = 7.6 Hz, PcH_β), 7.799(d, 4H, J = 7.6 Hz, ArH), 7.637(d, 4H, J = 7.6 Hz, PcH_β), 7.524–7.550(ddd, 4H, J = 8.0 Hz, J = 2.6 Hz, J = 2.4 Hz, ArH), 7.412(dd, 4H, J = 8.0 Hz, J = 8.0 Hz, ArH), 4.261(t, 8H, J = 6.8 Hz, COOCH₂–), 1.654–1.724(m, 8H, –CH₂–), 1.226–1.372(m, 16H, – CH₂–), 0.807(t, 12H, J = 7.2 Hz, –CH₃). D_{2h} isomer: ¹H NMR (CDCl₃ with a drop of pyridine[D₅]) δ 8.972(br s, 4H, PcH_α), 8.039(s, 4H, ArH), 7.847(dd, 4H, J = 7.6 Hz, ArH), 7.327(dd, 4H, J = 8.0 Hz, J = 7.6 Hz, ArH), 7.169(br s, 4H, PcH_β), 4.329(t, 8H, J = 6.6 Hz, – COOCH₂–), 1.726–1.795(m, 8H, –CH₂–), 1.279–1.441(m, 16H, – CH₂–), 0.848(t, 12H, J = 7.2 Hz, –CH₃).

2.3.3. Phthalocyanine 2c

Mobile phase: CH₂Cl₂ containing MeOH from 0.1% to 0.5% (V/V). C_{4h} isomer: ¹H NMR (CDCl₃ with a drop of pyridine[D₅]) δ 8.523(d,

Fig. 2. Definition of "free H_{α} " and "shelding H_{α} ".

Fig. 3. ¹H NMR spectrum (δ 6.9–9.5 ppm) of $C_s \& C_{2v}$ mixture of compound **2a** in CDCl₃ with a drop of pyridine[D₅].

4H, J = 6.8 Hz, PcH_{α}), 8.286(s, 4H, ArH), 8.097(s, 8H, ArH), 7.843(dd, 4H, J = 7.6 Hz, J = 7.2 Hz, PcH_{β}), 7.635(d, 4H, J = 7.6 Hz, PcH_{β}), 4.168(t, 16H, J = 6.6 Hz, COOCH₂-), 1.622-1.673(m, 16H, -CH₂-), 1.278-1.286(br m, 32H, -CH₂-), 0.812(t, 24H, J = 6.8 Hz, -CH₃). D_{2h} isomer: ¹H NMR (CDCl₃ with a drop of pyridine[D₅]) δ 9.136(br s, 4H, PcH_{α}), 8.417(s, 4H, ArH), 8.191(s, 8H, ArH), 7.855(br s, 4H, PcH_{β}), 7.181(br s, 4H, PcH_{β}), 4.311(t, 16H, J = 5.8 Hz, COOCH₂-), 1.719-1.753(m, 16H, -CH₂-), 1.263-1.407(m, 32H, -CH₂-), 0.815(t, 24H, J = 7.2 Hz, -CH₃).

3. Results and discussion

As shown in Scheme 1, 3-substitued phthalonitriles (1a-1c) was afforded by treating 3-nitrophthalonitrile with methyl hydroxvbenzoate (methyl 2-hydroxybenzoate, methyl 3hydroxybenzoate, and methyl 3,5-dihydroxybenzoate) and K₂CO₃ in DMF. Cyclisation of **1a–1c** followed by transesterification in the presence of DBU and $Zn(OAc)_2 \cdot 2H_2O$ in refluxing *n*-pentanol led to the formation of 1(4),8(11),15(18),22(25)-tetrakis[(pentyloxycarbonyl)phenoxy]phthalocyaninato zinc(II) complexes 2a-2c as a mixture of four constitutional isomers [7a]. The C_{4h} and D_{2h} isomers of all the three phthalocyanine compounds could be separated by simple silica-gel column chromatography in the first and third fraction respectively, while the C_{2v} and C_s isomers were collected as a mixture in the second fraction. As summarized in Table 1, the phthalocyanine **2b** was obtained with the highest yield among the series of three compounds due to the relatively less steric hindrance arising from only one alkyloxycarbonyl group attached at the *meta*-position of the phenoxyl moieties in comparison with the same alkyloxycarbonyl group attached at the ortho-position for 2a and two alkyloxycarbonyl groups for 2c. Due to the same reason, the distribution of the constitutional isomers obtained from 2b shows the most consistency (C_{4h} : C_{2v} & C_s : D_{2h} = 1:3.6:0.8) with the statistical expected yields ($C_{4h}:C_{2v} \& C_s:D_{2h} = 1:6:1$).

The phthalocyanine compounds including the mixed isomers with C_{2v} and C_s symmetry have been characterized by MALDI-TOF mass and electronic absorption spectroscopy in addition to elemental analysis. The MALDI-TOF mass spectra of these compounds clearly showed intense signals of molecular ions (M)⁺ (Table 1). The isotopic pattern closely resembled the simulated one as exemplified by the spectrum of C_{4h} isomer of **2a**, Fig. S1 (Supplementary material).

¹H NMR and 2D COSY spectra of all the single isomers were recorded in $CDCl_3$ with a drop of pyridine[D₅] except the one with

 C_{4h} symmetry for **2c** only in CDCl₃. The nature of the C_{4h} and D_{2h} isomers of 2a-2c can be easily distinguished by their NMR spectra, Fig. 1 and S2-11 (Supplementary material) and Table 2. Fig. 1 displays the ¹H NMR spectra of the single C_{4h} and D_{2h} as well as the mixed C_{2v} and C_s isomers of compound **2c**. The spectrum of C_{4h} isomer shows a doublet at 8.523 ppm, an overlapping doublet of doublets at 7.843 ppm, and a doublet at 7.635 ppm, which are assigned to the three protons of H_{α} , H_{β_1} , and H_{β_2} at the phthalocyanine ring, respectively. Compared with the chemical shift of protons in the spectrum of C_{4h} isomer, the peak of H_{α} (free H_{α}) for D_{2h} isomer shifts to low field at 9.153 ppm owing to no shielding effect of substituent arising from the benzene ring of opposite side (Fig. 2), while the peak of $H_{\beta 2}$ for D_{2h} shifts to high field at 7.201 ppm because it suffers bigger shielding from the pentyloxycarbonylphenoxy group of adjacent position, which is excluded to closer position of $H_{\beta 2}$ by the other pentyloxycarbonylphenoxy group at a face-to-face position. Meanwhile, the interaction of two substituents in the D_{2h} isomer also make the chemical shifts of phenoxy protons (H₁, H₂) and aliphatic protons (H₃ to H₇) move to high field to some extent in comparison with those peaks related to the C_{4h} isomer.

Interestingly, although C_{2v} and C_s isomers cannot be separated by column chromatography, their ratio in the product can be estimated

Fig. 4. Electronic absorption spectra of C_{4h} (full) and D_{2h} (dotted) isomers of compound **2a** in THF. Spectra were normalized to the same absorption at Q-band.

Table 3 Electronic absorption data for isolated C_{4h} and D_{2h} isomers of compounds **2a**-**2c** in THE.

Compound	Isomer	λ_{max}/nm		
2a	C _{4h}	341	620	687
	D _{2h}	365	625	697
2b	C _{4h}	343	616	683
	D _{2h}	366	623	693
2c	C _{4h}	348	615	681
	D _{2h}	366	621	691

through NMR spectroscopic data based on the integration of peaks especially from the H_{α} signals of phthalocyanine with the help of 2D COSY spectra. It can be seen that there exist two free H_{α} and two shielding H'_{α} in both the C_{2v} and C_s isomers. As a typical example, the ¹H NMR spectrum of mixed C_{2v} and C_s isomers of **2a** is displayed in Fig. 3, and the data are summarized in Table 2. The signals at 9.151 and 8.883 ppm are assigned to the free H_a and shielding H'_a of the C_{2y} isomer, respectively, while the peaks at 9.351 and 8.678 ppm attributed to the free H_{α} and shielding H'_{α} of the C_s isomer. Accordingly, the ratio of integration of the α protons (1:2.44) corresponds to the distribution of C_{2v} and C_s isomers in this mixture, which is almost in consistent with the statistical expected yield (1:2). For the compounds **2b** and **2c**, the signals of the free H_{α} for the C_{2v} and C_{s} isomers are overlapped, but the shielding H'_{α} can be used to reveal their distribution in the mixture (1:1.74 for 2b, 1:2.08 for 2c, Table 2 and Fig. 1 and Figs. S14-16 (Supplementary material).

The electronic absorption spectra of the C_{4h} and D_{2h} isomers of **2a**–**2c** have been recorded in THF. As can be seen in Fig. 4, S17, and S18 (Supplementary material), Table 3, both isomers of these compounds show typical electronic absorption spectra of the phthalocyaninato metal complexes [1a]. The absorption spectra of C_{4h} isomers show a Soret band at 341–348 nm, an intense and sharp Q band at 681–687 nm, and a vibronic band at 615–620 nm, while the spectra of D_{2h} isomers exhibit a 10 nm red-shift in the Q-band and 5–7 nm in the vibronic band probably due to the non-planarity of the macrocycle in these sterically stressed isomers [10c].

4. Conclusions

We have prepared a series of 1(4),8(11),15(18),22(25)-tetrakis [(pentyloxycarbonyl)phenoxy]phthalocyaninato zinc(II) complexes as a mixture of four constitutional isomers. Their C_{4h} and D_{2h} isomers have been successfully separated using simple column chromatography on silica gel and are spectroscopically characterized. The yields in combination with the NMR spectroscopic results reveal that the distribution of the four isomers in the final product for **2a**–**2c** does not strictly follow that expected according to statistical calculation with the ratio of $C_{4h}:C_{2v}:C_s:D_{2h} = 1:2:4:1$, indicating the effect of the steric hindrance of substituents on the formation of various constitutional isomers.

Acknowledgements

Financial support from the Natural Science Foundation of China (Grant No. 21001069) and the Independent Innovation Foundation of Shandong University, IIFSDU.

Appendix A. Supplementary data

Supplementary data related to this article can be found in the online version at http://dx.doi.org/10.1016/j.dyepig.2013.01.016.

References

[1]	(a) Lever ABP, Leznoff CC. Phthalocyanine: properties and applications, vols.
	1–4. New York: VCH; 1989;
	(b) McKeown NB. Phthalocyanines materials: synthesis, structure and func-
	tion. New York: Cambridge University Press; 1998;
	(c) Kadish KM, Smith KM, Guilard R. The porphyrin handbook, vols. 1–20. San
	Diego: CA: Academic Press; 2000;
	(d) Berezin BD. Coordination compounds of porphyrins and phthalocyanines.
	New York: Wiley & Sons; 1981;
	(e) Jiang J. Functional phthalocyanine molecular materials. Berlin: Springer;
	2010.
101	(a) Li L Tang O Li L Lly W/ Yang Y Chusi Z at al Organia thin film transistory

[a) Li L, Tang Q, Li H, Hu W, Yang X, Shuai Z, et al. Organic thin-film transistors of phthalocyanines. Pure Appl Chem 2008;80:2231–40;
(b) Tang ML, Oh JH, Reichardt AD, Bao Z. Chlorination: a general route toward electron transport in organic semiconductors. J Am Chem Soc 2009;131: 3733–40;

(c) Kan J, Chen Y, Qi D, Liu Y, Jiang J. High-performance air-stable ambipolar organic field-effect transistor based on tris(phthalocyaninato) europium(III). Adv Mater 2012;24:1755–8.

[3] (a) Chen Y, Su W, Bai M, Jiang J, Li XY, Liu Y, et al. High performance organic field-effect transistors based on amphiphilic tris(phthalocyaninato) rare earth triple-decker complexes. J Am Chem Soc 2005;127:15700–1;

(b) Senge MO, Fazekas M, Notaras EGA, Blau WJ, Zawadzka M, Locos OB, et al. Nonlinear optical properties of porphyrins. Adv Mater 2007;19:2737–74;
(c) Dini D, Meneghetti M, Calvete MJF, Arndt T, Liddiard C, Hanack M. Tetrabrominated lead naphthalocyanine for optical power limiting. Chem Eur J 2010;16:1212–20;

(d) Dasari RR, Sartin MM, Cozzuol M, Barlow S, Perry JW, Marder SR. Synthesis and linear and nonlinear absorption properties of dendronised ruthenium (II) phthalocyanine and naphthalocyanine. Chem Commun 2011;47:4547–9; (e) Wang H, Kobayashi N, Jiang J. New sandwich-type phthalocyaninato– metal quintuple-decker complexes. Chem Eur J 2012;18:1047–9;

(f) Ayhan MM, Singh A, Hirel C, Gürek AG, Ahsen V, Jeanneau E, et al. ABAB homoleptic bis(phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability. J Am Chem Soc 2012; 134:3655–8.

- [4] (a) Bohrer FI, Colesniuc CN, Park J, Ruidiaz ME, Schuller IK, Kummel AC, et al. Comparative gas sensing in cobalt, nickel, copper, zinc, and metal-free phthalocyanine chemiresistors. J Am Chem Soc 2009;131:478–85;
 (b) Ishii K, Kubo K, Sakurada T, Komori K, Sakai Y. Phthalocyanine-based fluorescence probes for detecting ascorbic acid: phthalocyaninatosilicon covalently linked to TEMPO radicals. Chem Commun 2011;47:4932–4;
 (c) Bilgiçli AT, Günsel A, Kandaz M, Özkaya AR. Highly selective thioalcohol modified phthalocyanine sensors for Ag(I) and Pd(II) based on target induced J- and H- type aggregations: synthesis, electrochemistry and peripheral metal ion binding studies. Dalton Trans 2012;41:7047–56.
- [5] (a) Kloz M, Pillai S, Kodis G, Gust D, Moore TA, Moore AL, et al. Carotenoid photoprotection in artificial photosynthetic antennas. J Am Chem Soc 2011; 133:7007–15;

(b) Lin Y, Li Y, Zhan X. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 2012;41:4245–72;
(c) Zhou Y, Taima T, Miyadera T, Yamanari T, Kitamura M, Nakatsu K, et al.

Phase separation of co-evaporated ZnPC:C₆₀ blend film for highly efficient organic photovoltaics. Appl Phys Lett 2012;100(233302):1–5.

[6] (a) Hu BY, Yuan YJ, Xiao J, Guo CC, Liu Q, Tan Z, et al. Rational oxidation of cyclohexane to cyclohexanol, cyclohexanone and adipic acid with air over metalloporphyrin and cobalt salt. J Porphyrins Phthalocyanines 2008;12: 27–34;

(b) Kudrik EV, Afanasiev P, Bouchu D, Millet JMM, Sorokin AB. Diiron N-bridged species bearing phthalocyanine ligand catalyzes oxidation of methane, propane and benzene under mild conditions. J Porphyrins Phthalocyanines 2008;12: 1078–89;

(c) Alvarez LX, Kudrik EV, Sorokin AB. Novel reactivity of N-bridged diiron phthalocyanine in the activation of C–H bonds: hydroacylation of olefins as an example of the efficient formation of C-C bonds. Chem Eur J 2011;17:9298–301; (d) Zhang Y, Riduan SN. Functional porous organic polymers for heterogeneous catalysis. Chem Soc Rev 2012;41:2083–94;

(e) Honda T, Kojima T, Fukuzumi S. Proton-coupled electron-transfer reduction of dioxygen catalyzed by a saddle-distorted cobalt phthalocyanine. J Am Chem Soc 2012;134:4196–206;

(f) Li Y, Wu S, Su B. Proton-coupled O₂ reduction reaction catalyzed by cobalt phthalocyanine at liquid/liquid interfaces. Chem Eur J 2012;18:7372–6.

[7] (a) Bai M, Lo PC, Ye J, Wu C, Fong WP, Ng DKP. Facile synthesis of pegylated zinc(II) phthalocyanines via transesterification and their in vitro photodynamic activities. Org Biomol Chem 2011;9:7028–32;

(b) Brasch M, de la Escosura A, Ma Y, Uetrecht C, Heck AJR, Torres T, et al. Encapsulation of phthalocyanine supramolecular stacks into virus-like particles. J Am Chem Soc 2011;133:6878–81;

(c) Lau JTF, Lo PC, Fong WP, Ng DKP. A zinc(II) phthalocyanine conjugated with an oxaliplatin derivative for dual chemo- and photodynamic therapy. J Med Chem 2012;55:5446–54 [and references cited in];

(d) Obaid G, Chambrier I, Cook MJ, Russell DA. Targeting the oncofetal Thomsen–Friedenreich disaccharide using jacalin-PEG phthalocyanine gold

nanoparticles for photodynamic cancer therapy. Angew Chem Int Ed 2012;51: 6158–62.

- [8] Mack J, Kobayashi N. Low symmetry phthalocyanines and their analogues. Chem Rev 2011;111:281–321.
- [9] (a) Hanack M, Schmid G, Sommerauer M. Chromatographic separation of the four possible structural isomers of a tetrasubstituted phthalocyanine: tetrakis(2-ethylhexyloxy)phthalocyaninatonickel(II). Angew Chem Int Ed 1993;32: 1422–4;

(b) Sommerauer M, Rager C, Hanack M. Separation of 2(3),9(10),16(17),23(24)tetrasubstituted phthalocyanines with newly developed HPLC phases. J Am Chem Soc 1996;118:10085–93;

(c) Rager C, Schmid G, Hanack M. Influence of substituents, reaction conditions and central metals on the isomer distributions of 1(4)-tetrasubstituted phthalocvanines. Chem Eur I 1999:5:280–8:

(d) Sakamoto K, Kato T, Cook MJ. Position isomer separation of non-peripheral substituted zinc dibenzo-di(3,4-pyrido)porphyrazines. J Porphyrins Phthalocyanines 2001;5:742–50;

(e) Durmus M, Yesilot S, Ahsen V. Separation and mesogenic properties of tetraalkoxy- substituted phthalocyanines isomers. New J Chem 2006;30: 675–8.

[10] (a) Liu W, Lee CH, Chan HS, Mak TCW, Ng DKP. Synthesis, spectroscopic properties, and structure of [tetrakis(2,4-dimethyl-3-pentyloxy)phthalocyaninato]metal complexes. Eur J Inorg Chem 2004:286–92;

(b) Dong S, Tian H, Huang L, Zhang J, Yan D, Geng Y, et al. Non-peripheral tetrahexyl-substituted vanadyl phthalocyanines with intermolecular cofacial $\pi-\pi$ stacking for solution-processed organic field-effect transistors. Adv Mater 2011;23:2850–4;

(c) Novakova V, Roh J, Gela P, Kuneš J, Zimcik P. Azaphthalocyanines with fused triazolo rings: formation of sterically stressed constitutional isomers. Chem Commun 2012;48:4326–8.

[11] (a) Leznoff CC, Hu M, McArthur CR, Qin Y, van Lier JE. The syntheses of 2,9,16-23- and 1,8,15,22-tetrahydroxyphthalocyanines. Can J Chem 1994;72: 1990-8;

(b) Leznoff CC, Hu M, Nolan KJM. The synthesis of phthalocyanines at room temperature. Chem Commun 1996:1245–6;

(c) Kasuga K, Kawashima M, Asano K, Sugimori T, Abe K, Kikkawa T, et al. Preparation of one structural isomer of tetra-substituted phthalocyanine, 1,8,15,22-tetra(3'-pentoxy)phthalocyanine, and a crystal structure of its nickel(II) complex. Chem Lett 1996;25:867–8;

(d) Kasuga K, Asano K, Lin L, Sugimori T, Handa M, Abe K, et al. Preparation and some properties of one structural isomer of tetra-substituted phthalocyanine; 1,8,15,22-tetrakis(pentan-3'-yloxy)phthalocyanine and its metal(II) complexes. Bull Chem Soc Jpn 1997;70:1859–65; (e) Rager C, Schmid G, Hanack M. Influence of substituents, reaction conditions and central metals on the isomer distributions of 1(4)-tetrasubstituted phthalocyanines. Chem Eur J 1999;5:280–8;

(f) Li XY, Ng DKP. Self-assembly of meso-pyridylporphyrins and zinc phthalocyanines through axial coordination. Eur J Inorg Chem 2000:1845–8; (g) Bian Y, Wang R, Jiang J, Lee CH, Wang J, Ng DKP. Synthesis, spectroscopic

(g) Bian Y, Wang R, Jiang J, Lee CH, Wang J, Ng DKP. Synthesis, spectroscopic characterisation and structure of the first chiral heteroleptito bis(ph-thalocyaninato) rare earth complexes. Chem Commun 2003;10:1194–5;

(h) Bian Y, Li L, Dou J, Cheng DYY, Li R, Ma C, et al. Synthesis, structure, spectroscopic properties, and electrochemistry of (1,8,15,22-tetrasubstituted phthalocyaninato)lead complexes. Inorg Chem 2004;43:7539–44;

(i) Bian Y, Li L, Wang D, Choi CF, Cheng DYY, Zhu P, et al. Synthetic, structural, spectroscopic, and electrochemical studies of heteroleptic tris(ph-thalocyaninato) rare earth complexes. Eur J Inorg Chem 2005:2612–8;

(j) Wang R, Li R, Bian Y, Choi CF, Ng DKP, Dou J, et al. Studies of "pinwheellike" bis[1,8,15,22-tetrakis(3-pentyloxy)-phthalocyaninato] rare earth(III) double-decker complexes. Chem Eur J 2005;11:7351–7;

(k) Wang R, Li Y, Li R, Cheng DYY, Zhu P, Ng DKP, et al. Heteroleptic rare earth double-decker complexes with naphthalocyaninato and phthalocyaninato ligands. General synthesis, spectroscopic, and electrochemical characteristics. Inorg Chem 2005;44:2114-20;

(I) Wang R, Li R, Li Y, Zhang X, Zhu P, Lo PC, et al. Controlling the nature of mixed (phthalocyaninato)(porphyrinato) rare earth(III) double-decker complexes: the effects of nonperipheral alkoxy substitution of the phthalocyanine ligand. Chem Eur J 2006;12:1475–85;

(m) Liu Q, Liu H, Bian Y, Wang X, Chen Y, Jiang J, et al. Two-dimensional "nano-ring and nano-crystal" morphologies in Langmuir monolayer of phthalocyaninato nickel complexes. J Colloid Interface Sci 2006;300: 298–303;

(n) Zhou Y, Zhang Y, Wang H, Jiang J, Bian Y, Muranaka A, et al. Mixed (phthalocyaninato)(porphyrinato) rare earth double-decker complexes with C₄ chirality: synthesis, resolution, and absolute configuration assignment. Inorg Chem 2009;48:8925–33;

(o) Dong S, Zhang X, Zhou Y, Jiang J, Bian Y. Perylene diimide-appended mixed (phthalocyaninato)(porphyrinato) europium(III) double-decker complex: synthesis, spectroscopy and electrochemical properties. Dyes Pigm 2011;91:99–104.

[12] (a) Hu M, Brasseur N, Yildiz SZ, van Lier JE, Leznoff CC. Hydroxyphthalocyanines as potential photodynamic agents for cancer therapy. J Med Chem 1998:41:1789–802:

(b) Li H, Nguyen N, Fronczek FR, Vicente MGH. Syntheses and properties of octa-, tetra- and di-hydroxy-substituted phthalocyanines. Tetrahedron 2009; 65:3357–63.