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ABSTRACT: An unprecedented synthetic approach involving
umpolung allylation/aza-Prins cyclization of N-2,2,2-trifluoroethy-
lisatin ketimines is described. The reactions proceed smoothly with
allyl bromide in the presence of 1,8-diazabicyclo[5.4.0]undec-7-
ene, H2O, and trimethylsilyl bromide; this one-pot protocol allows
access to six-membered spiro azacyclic oxindole derivatives in good
to excellent yields. Notably, while the general aza-Prins cyclization
involves amines and aldehydes, the present synthetic strategy
represents the first aza-Prins cyclization that utilizes the umpolung property of N-2,2,2-trifluoroethylisatin ketimines.

Spirooxindoles, which are prevalent in natural products,1 are
attractive target motifs owing to their diverse biological

activities.2 Among these molecules, spiro N-heterocyclic
oxindoles exhibit important pharmacological activities such as
IRAP inhibitory, SIRT1 inhibitory, antibreast cancer, antitumor,
and antimalarial activities (Figure 1).3 In addition, the
trifluoromethyl group has been known to improve the metabolic
stability, bioavailability, and lipophilicity of bioactive mole-
cules.4 Despite their importance, only a few synthetic methods
that use N-2,2,2-trifluoroethylisatin ketimines have been
developed for the construction of spiroN-heterocyclic oxindoles
featuring CF3 groups.

5

Zhao and co-workers have accomplished the [3 + 3]
cycloaddition of N-2,2,2-trifluoroethylisatin ketimines and
N,N′-dialkyloxyureas in the presence of NaH and PhI(OH)-
(OTs) for the synthesis of spiro-1,3,5-triazinan-2-one oxin-
doles.6 Azomethine ylides reacted with N,N′-dialkyloxy diaza-

allyl cations generated in situ in moderate yields. To the best of
our knowledge, this is the only reported example of [3 + 3]
cycloaddition of N-2,2,2-trifluoroethylisatin ketimines thus far.
Consequently, a practical and efficient synthetic methodology
for six-membered spiro azacyclic oxindole backbones remains.
The well-established aza-Prins cyclization7,8 is a stereo-

selective strategy for the synthesis of piperidines. Generally,
the aza-Prins cyclization involves the condensation of
homoallylic amines with aldehydes in the presence of a Lewis
acid to generate iminium ions, which cyclize spontaneously
through intramolecular nucleophilic attack from the olefin
(Scheme 1a). Inspired by the aza-Prins cyclization, we
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Figure 1. Representative examples of bioactive molecules containing
the spirooxindole motif

Scheme 1. Synthetic Strategies for Spirooxindole Derivatives:
(a) General Aza-Prins Reaction; (b) One-Pot Umpolung
Allylation/Aza-Prins Reaction
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envisioned thatN-2,2,2-trifluoroethylisatin ketimine is a suitable
substrate for the synthesis of six-membered spiro azacyclic
oxindoles via an umpolung allylation/aza-Prins reaction
(Scheme 1b). Unlike previous aza-Prins reactions, this synthetic
method would take advantage of the umpolung property of N-
2,2,2-trifluoroethylisatin ketimine.9 Thus, we decided to
investigate the umpolung allylation/aza-Prins reaction of N-
2,2,2-trifluoroethylisatin ketimines in a one-pot process for the
preparation of spiro[indoline-3,2′-piperidin]-2-ones. Herein, we
report the first efficient and facile synthetic methodology that
uses the umpolung allylation/aza-Prins reaction of N-2,2,2-
trifluoroethylisatin ketimines to produce useful spiro[indoline-
3,2′-piperidin]-2-ones and 5′,6′-dihydro-1′H-spiro[indoline-
3,2′-pyridin]-2-ones.
Initially, we used ketimine 1a6,10−14 as the standard substrate

to screen various sets of reaction conditions with allyl bromide
2a, and the results are summarized in Table 1. In the presence of
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 1.0 equiv), 1a and
2a (3.0 equiv) were reacted in CHCl3 at−10 °C for 30min; then
H2O (1.0 equiv) and trimethylsilyl bromide (TMSBr, 3.0 equiv)
were added, and the reaction continued at 40 °C for 10 min.
Gratifyingly, desired product 3awas isolated in 89% yield; it was
also obtained in 88%, 82%, and 92% yields when dichloro-
methane (DCM), CH3CN, and dichloroethane (DCE),
respectively, were used (entries 1 and 2). The structure of 3a

was confirmed by single-crystal X-ray diffraction analysis
(CCDC 2053124). When the temperature of the cyclization
step was lowered from 40 °C to room temperature or that of the
allylation step was raised from−10 to 0 °C, the reaction afforded
3a in very high yields (entries 3 and 4). In contrast, when the
reaction was attempted with an allylation step at room
temperature or without H2O in the cyclization step, lower
yields of 3a were observed (entries 5 and 6). Interestingly, 1.0
equiv of H2O critically affected the yield of the product.
Furthermore, when 2.0 equiv of 2a or TMSBr was utilized, 3a
was generated in yields of 88% and 70%, respectively (entries 7
and 8). Next, the use of various bases was examined; however, 3a
was not produced (entries 9 and 10). Additionally, various
reagents that trigger aza-Prins cyclization other than TMSBr
were investigated (entries 11−18). In the presence of BF3·OEt2,
3a was provided in yield of 75%, while no desired products were
formed in the presence of TMSI, TMSOAc, or InCl3. The
expected allylation/aza-Prins reaction occurred when TMSCl,

Table 1. Optimization of Reaction Conditionsa,e

entry variation from standard conditions 3ab (%)

1 CHCl3, DCM, or CH3CN/-10 °C/40 °C 89, 88, 82
2 −10 °C/40 °C 92
3c −10 °C 92
4 none 92
5c rt 80
6 without H2O/−10 °C/40 °C, 48 h 59
7d DCM/2.0 equiv TMSBr, 40 °C, 18 h 70
8 2.0 equiv 2a 88
9 tBuOK trace

10 Cs2CO3 no reaction
11 BF3

.OEt2 75
12 TMSI, TMSOAc, or InCl3 N.D.
13 TMSCl 11/7 (3a′)
14 TMSOTf 36/11 (3a″)
15 TESOTf 15/31 (3a″)
16 TiCl4 14/32 (3a′)
17 FeCl3 5/4 (3a′)
18 Cu(OTf)2 0/4 (3a″)

aReaction conditions: 1a (0.1 mmol), 2a (3.0 equiv), and DBU (1.0
equiv) in DCE (1.0 M), 0 °C, 30 min; then H2O (1.0 equiv), TMSBr
(3.0 equiv), rt, 10 min. bIsolated yield. cTemperature of the allylation
step. dTemperature and time of the cyclization step. eThe ellipsoids
are drawn at the 50% probability level.

Scheme 2. Substrate Scope of Ketiminesa

aReaction conditions: 1a (0.1 mmol), 2a (3.0 equiv), and DBU (1.0
equiv) in DCE (1.0 M), 0 °C, 30 min; then H2O (1.0 equiv), TMSBr
(3.0 equiv), rt, 10 min. b30 min for the cyclization step. c−10 °C, 30
min for the allylation step and 40 °C, 12 h for the cyclization step.
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TiCl4, or FeCl3 was used, affordingmixtures of 3a and 3a′, which
were separated completely, in combined yields of 18%, 46%, and

9%, respectively. Similarly, when 3.0 equiv of TMSOTf or
triethylsilyl triflate (TESOTf) was used, mixtures of 3a and 3a″,
which were isolated by column chromatography, were obtained
in combined yields of 47% and 46%, respectively. Finally, the
reaction was attempted using Cu(OTf)2, and a trace amount of
3a″ was observed.
With the optimal reaction conditions in hand, we explored the

ketimine substrate scope, and the results are shown in Scheme 2.
The reactions with N-protected ketimines featuring a benzyl,
allyl, or trityl group gave excellent yields of 99%, 98%, and 99%,
respectively (3aa−3ac). Unprotected ketimine 1ad6,10,12

reacted smoothly to generate 3ad in a yield of 51%, while a
mixture of 3ae and 3ad was obtained from N-tert-butyldime-
thylsilyl (TBS)-protected ketimine 1ae12 in a combined yield of
61%. 5-Halogen-substituted ketimines produced the corre-
sponding products 3b, 3c, 3d, and 3e in 91%, 73%, 83%, and
77% yields, respectively. Similarly, the expected products 3f, 3g,
and 3h were furnished in good yields of 86%, 89%, and 82%,
respectively, from 6-bromo-, 6-chloro-, and 7-fluoro-N-2,2,2-
trifluoroethylisatin ketimines. The reactions of 5-methyl and 5-
trifluoromethoxy ketimines 1i6,10−13 and 1j12 gave products 3i
and 3j in 98% and 80% yields, respectively. In the case of N-
2,2,2-trifluoroethylisatin ketimines with a methoxy group at the
C5 or C6 position, the targeted products 3k and 3l were
produced in good yields of 76% and 66%, respectively. The

Scheme 3. Substrate Scope of Dihydro-1′H-spiro[indoline-3,2′-pyridin]-2-one Synthesisa

aReaction conditions: 1a (0.1 mmol), 2a (1.5 equiv), and DBU (1.0 equiv) in DCE (1.0 M), 0 °C, 30 min; then H2O (1.0 equiv), TMSBr (3.0
equiv), 100 °C, 1 h. bCH3CN was used instead of DCE. c2a (3.0 equiv) was used; 12 h for the cyclization step. dAllyl tosylate was used instead of
allyl bromide; rt for the cyclization step. ert for the cyclization step.

Scheme 4. Proposed Reaction Mechanism
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reaction with 5-electron-withdrawing group substituted keti-
mines 1m,10−12 1p, and 1q led to the formation of the desired
products 3m, 3p, and 3q in 63%, 57%, and 83% yields,
respectively. With disubstituted ketimines 1n12 and 1o,12 the
corresponding products 3n and 3owere synthesized in excellent
yields of 85% and 94%, respectively.
Next, encouraged by these results, we focused our attention

on the scope of the allyl bromides as coupling partners (Scheme
3). When the reaction of methyl-substituted allyl bromide 2b
was conducted, a mixture of at least four compounds was
detected. It was attributed to the formation of a mixture of
diastereomers due to a quaternary center at the C4 and C2
positions of the piperidine backbone and to a trace amount of
tetrahydropyridine triggered by DBU. To avoid the difficult
separation of the mixture and complicacy, reaction temperatures
ranging from 60 to 100 °C were examined for the aza-Prins
cyclization step. At 100 °C, spiro N-heterocyclic oxindoles 4b
and 4b′, which were isolated using column chromatography,
with carbon−carbon double bonds in the six-membered rings
were generated in yields of 56% and 26%, respectively. Using the
optimal reaction conditions, the reaction of ketimine 1a with 2a
was attempted, affording 4a and 3a in yields of 12%, and 69%,
respectively. Cyclopentyl-substituted allyl tosylate 2c15 was
converted to the products 4c and 4c′ in 14% and 15% yields,
respectively. The expected products 4d and 4d′were obtained in
a combined yield of 93% from phenyl-substituted allyl bromide.
In contrast to the alkyl groups, the phenyl group enhanced the
reaction, and this was attributed to the construction of a fully
conjugated styrene moiety in the structure of the product. When
1a was treated with 2e16,17 or 2f,16−19 mixtures of regioisomers
4e and 4e′ and regioisomers 4f and 4f′were formed in combined
yields of 92% and 81%, respectively. p-Chlorophenyl- and p-
fluorophenyl-substituted allyl bromides 2g16−19 and 2h17−19

were tolerated, and they yielded the adducts 4g and 4g′ and
adducts 4h and 4h′ in combined yields of 89% and 82%,
respectively. In the case of polyaromatic substituted allyl
bromide 2i,16,19 the corresponding products 4i and 4i′ were
prepared in yields of 64% and 15%, respectively. The reaction
with 2j20 led to give the products 4j and 4j′ in a combined yield
of 53%. Allyl bromides with a variety of substituents at the C1
position could not be converted to the anticipated products
owing to steric hindrance.
Based on the experimental results, a possible reaction

mechanism, depicted in Scheme 4, was proposed for the
synthesis of 3a from ketimine 1a via umpolung allylation/aza-
Prins cyclization. Hydrogen on the carbon atom adjacent to the
CF3 group in ketimine 1a is abstracted by DBU to generate an 2-
azaallyl anion, which reacts with allyl bromide (Scheme 4a).
Interestingly, the 2-azaallyl anion furnishes intermediates I and
I′ in a ratio of 1:0.2, according to 1H NMR spectroscopy. This
result showed well-known umpolung reactivity9a,b,21 of ketimine
1a, which acts as a nucleophile through the imine carbon on
either the Re- or Si-face. In addition, some 2-azaallyl anions
spontaneously undergo aza-Cope rearrangement to produce I′
or allylation occurs at the nucleophilic carbon adjacent to the
CF3 group. Finally, the intermediates I and I′ transform into the
desired products II and II′ through aza-Prins cyclization in the
presence of H2O and TMSBr. Remarkably, water does not react
with intermediates I and I′ as a nucleophile; thus, we assume that
water either solubilizes the iminium bromide generated from
DBU to prevent whatever hampers the reaction22 or activates
TMSBr to accelerate aza-Prins cyclization.23 Furthermore,
preliminary studies have shown that chiral phosphine ligands,

such as (R)-BINAP, affect the desymmetrization of 1a with
promising levels of enantioselectivity (Scheme 4b, 19%
enantiomeric excess (ee)). This result suggests that umpolung
allylation/aza-Prins cyclization is amenable to an asymmetric
catalysis system, and this research is underway.
In conclusion, we have demonstrated the first umpolung

allylation/aza-Prins cyclization of N-2,2,2-trifluoroethylisatin
ketimines for the syntheses of spiro[indoline-3,2′-piperidin]-2-
ones and 5′,6′-dihydro-1′H-spiro[indoline-3,2′-pyridin]-2-ones
in a one-pot process. The six-membered spiro azacyclic oxindole
framework, which is found often in natural products and
pharmaceuticals, is considered as an important structure that
requires facile synthetic routes toward the development of new
drug candidates because of the bioactivity of compounds
possessing this motif. The developed protocol, which grants
access to this crucial scaffold, features a single-step process with
broad functional group tolerance under transition-metal free
conditions. Moreover, a new [3 + 3] cycloaddition strategy
involving aza-Prins cyclization and utilizing the umpolung
reactivity of ketimines was established, enabling the con-
struction of six-membered spiro azacyclic oxindoles. This aza-
Prins cyclization differs clearly from the general version, which
involves an amine, aldehyde, and acid. Further investigations for
controlling the enantioselectivity are ongoing.
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