168. Synthesis of Ethyl *cis* 2-[(Diethoxyphosphoryl)methyl]-7-oxo-3-phenyl-6-phthalimido-1-azabicyclo[3.2.0]hept-3-ene-2-carboxylate and Methyl *cis*-2-Bromo-3-methyl-8-oxo-7-phthalimido-4-oxa-1-azabicyclo[4.2.0]octane-2-carboxylate

by Gholam H. Hakimelahi* and Ali A. Jarrahpour

Chemistry Department, Shiraz University, Shiraz, Iran

(2.V.89)

The synthesis of a Λ^1 -carbapenem and two β -lactams possessing a Br-atom at the N-substituting center not involved in the lactam ring and bearing the carboxyl group is described. The β -lactams having this kind of Br-substitution are more susceptible to nucleophilic attack than those having a conjugated double bond with the N-atom of the β -lactam ring. DBU is found to be an excellent reagent for the elimination of the silyloxy function. Moreover, a simple method for the addition of diethyl phosphite to an α,β -unsaturated double bond using a catalytic amount of NaH is described.

As part of a continuing program to prepare nonclassical β -lactam antibiotics, we synthesized β -lactams 9, 15, and 16. The method used to prepare the monocyclic precursors 4 derives from that developed by *Doyle et al.* [1] and by ourselves [2–6].

L-Serine (1a) and L-threonine (1b) were converted to their esters 2a and 2b, respectively (100%). Treatment of 2a,b with (*tert*-butyl)dimethylsilyl or trimethylsilyl chloride gave compounds 3a, 3b, and 3'a in excellent yield. Reactions of 3a,b with cinnamaldehyde

afforded the corresponding *Schiff* bases which, upon treatment with phthalimidoacetyl chloride and Et₃N, gave the stereoisomeric mixtures of the β -lactams **4a** (*ca.* 80%) and **4b** (70%), respectively. The desilylated β -lactam **4'a** was obtained similarly from **3'a** via reaction of its *Schiff* base with chloroacetyl chloride. All β -lactams obtained were *cis*-configurated, as determined by 'H-NMR (J(H-C(3), H-C(4)) = 5 Hz) of the derivatives in which the relevant protons did not overlap with other signals. The high yield of the *cis*-stereoisomers **4a,b** is consistent with the mechanism of cycloaddition proposed by *Doyle et al.* [7] [8] and supported by *Sullivan et al.* [9] where electron-rich *Schiff* bases give consistently high yield of *cis*- β -lactams.

Attempted conversion of the silvloxy derivative **4a** to **5a** using Et₃N failed. Successful elimination (98%) could be achieved when **4a** was treated with 1,5-diazabicy-clo[5.4.0]undec-5-ene (DBU) in anhydrous Et₂O at reflux temperature for 1 h. The desilvlated **4'a** was transformed to **5'a** by means of methanesulfonyl chloride/Et₃N in CH₂Cl₂ (90%). The β -lactams **5a** and **5'a** (\tilde{v}_{max} 1780 cm⁻¹) exhibit high reactivity toward nucleophilic attack.

The synthesis of several monocyclic analogues of β -lactam antibiotics in which the ring strain of fused β -lactam is replaced by electronic activation was reported [10–12]. However, for biological activity, the enamine moiety of **5a** and **5'a** should be prevented from being coplanar with the remaining of the β -lactam system. Since fused β -lactams meet this requirement, the preparation of compound **9** from **5a** was undertaken.

A solution of **5a** in THF was treated with 1.2 equiv. of diethyl phosphite in the presence of a catalytic amount of NaH [13] to give the adduct **7** (99%). Bromination of **7** with Br_2 in CCl₄/CHCl₃ 7:3 afforded a mixture of **8a** (75%) and **8b** (20%). Reaction of **8a** or **8b** with DBU in THF at 25° afforded the bicyclic β -lactam **9** (80%) characterized by its IR, NMR, and mass spectra and elemental analysis. No attempt was made to prepare the corresponding carboxylic acid because of the instability of **9**.

An alternative scheme for the synthesis of Δ^1 -carbapenem 9 consists in the transformation $4a \rightarrow 10 \rightarrow 11 \rightarrow 9$. Thus, 10 was obtained from β -lactam 4a and Br₂ in CCl₄/ CHCl₃ 7:3 and reacted with DBU as above to give β -lactam 11 (78%). This indicates that the elimination of the silyloxy function in 10 is much faster than the cyclization to 12. However, reaction of 11 with diethyl phosphite using a catalytic amount of NaH yielded Δ^1 -carbapenem 9 (83%). Therefore, 8b might be considered as an intermediate in the transformation of 8a \rightarrow 9. It should be noted that the bromination of 4a in MeOH gave 13 which in turn was converted to 14 (85%) in the presence of DBU in THF at 25°. Furthermore, treatment of 5a with Br₂/MeOH afforded 15 (56%).

The IR-absorption wavenumber of the carbonyl group of a β -lactam can be considered as a measure of its reactivity towards nucleophilic attack [14]; therefore, a higher wavenumber might indicate the potential for higher biological activity.

However, β -lactam 15 (\tilde{v}_{max} 1766 cm⁻¹) possessing a Br-atom at the side chain was found to be more susceptible to nucleophilic attack than its precursor 5a (\tilde{v}_{max} 1780 cm⁻¹) having a double bond adjacent to the β -lactam ring. Therefore, it was decided to prepare 16 in which the double bond of the O-2-isooxacephems that is responsible for the electronic activation of the β -lactam ring is replaced by a leaving group at C(4). This might result in a new type of ring *analogue* of cephalosporin possessing interesting antibacterial activity. Ozonolysis of **4b** using standard conditions followed by NaBH₄ reduction at -15° gave alcohol **5b** (83%). Treatment of **5b** with DBU in refluxing Et₂O afforded **6b** (96%) as an (E/Z) mixture which was reacted with Br₂ in CHCl₃ to **16** (\tilde{v}_{max} 1779 cm⁻¹; 40% yield). It should be noted that bromination of **6b** in MeOH had destroyed the β -lactam function, presumably by MeOH-induced ring opening.

This work was supported by the Shiraz University Research Council. We are grateful to Radja Chemical and Pharmaceutical Company for financial support.

Experimental Part

General. Reagent-grade solvents were distilled first and then stored over molecular sieves (type 4 Å). Serine, threonine, and other chemicals were purchased from *Fluka*. Column chromatography: short columns of silica gel 60 (Merck; 230–400 mesh) were packed in glass colums (\emptyset 3 or 4 cm) using 30 g of silica gel per g of crude mixture. TLC: Merck silica gel 60 F 254 anal. sheets. M.p.: Büchi 510; uncorrected. IR spectra: Beckman IR 8 spectrophotometer. ¹H-NMR spectra: Hitachi R-248 spectrometer.

L-Serine Ethyl Ester (2a) and L-Threonine Methyl Ester (2b). Representative procedure: L-Serine (1a; 0.02 mol) was suspended in abs. EtOH (300 ml) and HCl gas bubbled in at 25° without cooling for 15 min. The soln. was refluxed for 5 h, the solvent then evaporated, and EtOH/Et₂O 2:8 (100 ml) added. The white precipitate was filtered off and washed with Et₂O (200 ml): 2a · HCl (quant.). The suspension of 2a · HCl (0.01 mol) in Et₂O (300 ml) was saturated with NH₃ at 20° (20 min). Filtration and evaporation gave 2a (100%) as an oily product. IR (neat): 3343–3410 (NH₂, OH), 1745 (ester). ¹H-NMR (CDCl₃): 1.19 (*t*, CH₃); 3.10 (br., NH₂); 3.81–4.33 (*m*, CH₂OHCHCOOCH₃).

Similarly, **2b** was prepared quantitatively from **1b** (MeOH instead of EtOH). IR (neat): 3340-3410 (NH₂, OH), 1745 (ester). ¹H-NMR (CDCl₃): 1.35 (*d*, CH₃); 3.12 (br., NH₂); 3.75 (*s*, CH₃O); 3.80-4.00 (*m*, CHOHCHCOO).

 O^{3} -[(tert-Butyl)dimethylsilyl]-L-serine Ethyl Ester (3a), O^{3} -(Trimethylsilyl)-L-serine Ethyl Ester (3'a), and O^{3} -[(tert-Butyl)dimethylsilyl]-L-threonine Methyl Ester (3b). Representative procedure: To L-serine ethyl ester (2a; 0.01 mol) in dry DMF (45 ml) was added imidazole (0.03 mol) and (t-Bu)Me₂SiCl (0.02 mol). The soln. was stirred at 25° for 24 h and then partitioned between Et₂O (300 ml) and H₂O (300 ml). The org. layer was further washed with H₂O (4 × 200 ml), dried (Na₂SO₄), filtered, and evaporated. The crude product was chromatographed on silica gel. Elution with CHCl₃ afforded 3a (98%). IR (neat): 3300 (NH₂), 1750 (ester), 1250 (ether). ¹H-NMR (CCl₄): 0.05 (s, (CH₃)₂Si); 0.91 (s, (CH₃)₃C); 1.19 (t, CH₃); 3.21–4.31 (m, OCH₂CH(NH₂)COOCH₂).

Compound 3'a was prepared from 2a and Me₃SiCl in the presence of Et₃N in CH₂Cl₂. After 2 h, the solvent was evaporated and 3'a used without purification for the subsequent reaction.

Like **3a** from **2a**, **3b** was prepared from **2b**. IR (neat): 3300 (NH₂), 1752 (ester), 1245 (ether). ¹H-NMR (CCl₄): 0.05 (*s*, (CH₃)₂Si); 0.90 (*s*, (CH₃)₃C); 1.40 (*d*, CH₃); 3.10–4.40 (*m*, OCHCH(NH₂)COO); 3.85 (*s*, CH₃O).

Ethyl cis-α-{*[(* tert-*Butyl)dimethylsilyloxy]methyl}-2-oxo-3-phthalimido-4-styrylazetidine-1-acetate (4a), <i>Ethyl* cis-3-*Chloro*-α-(*hydroxymethyl*)-2-oxo-4-styrylazetidine-1-acetate (4'a), and Methyl cis-α-{1-[(tert-*Butyl)dimethylsilyloxy]ethyl*}-2-oxo-3-phthalimido-4-styrylazetidine-1-acetate (4'a), and Methyl cis-α-{1-[(tert-*Butyl)dimethylsilyloxy]ethyl*}-2-oxo-3-phthalimido-4-styrylazetidine-1-acetate (4b). To 3a (1.23 g, 5 mmol) in dry CH₂Cl₂ (100 ml) was added cinnamaldehyde (0.68 g, 5.15 mmol). The soln. was heated and CH₂Cl₂ distilled off slowely with constant addition of more dry CH₂Cl₂. After 3 h, the soln. was cooled and Et₃N (1.01 g, 10 mmol) added. A soln. of phthalimidoacetyl chloride (1.12 g, 5 mmol) in dry CH₂Cl₂ (5 ml) was added dropwise over 30 min at -5° , then stirred for 3 h, and washed with H₂O (2 × 50 ml). The org. layer was dried (Na₂SO₄), filtered, and evaporated. Recrystallization from Et₂O/hexane afforded 4a (80%). M.p. 107–108°. IR (CH₂Cl₂): 1770 (β-lactam), 1750 (ester), 1715 (phthalimido). ¹H-NMR (CDCl₃): 0.11 (4s, (CH₃)₂Si); 1.00 (2s, (CH₃)₃C); 1.41 (2t, CH₃); 4.25 (2q, CH₂OCO); 4.65–5.27 (*m*, OCH₂CHCO, H–C(4)); 5.73 (*d*, *J* = 5, H–C(3)); 6.53 (*m*, CH=CH); 7.30 (*s*, PhC = C); 7.85 (*m*, Ph). Anal. calc. for C₃₀H₃₆N₂O₆ (520.35): C 69.23, H 6.92, N 5.38; found: C 69.17, H 7.00, N 5.30.

4'a: Oil. IR (CH₂Cl₂): 3350–3400 (OH), 1761 (β-lactam), 1740 (ester). ¹H-NMR (CDCl₃): 1.22 (t, CH₃); 3.81–3.39 (m, CH₂(OH)CHCOOCH₂); 4.75 (m, H–C(4)); 5.15 (d, J = 5, H–C(3)); 6.20–6.81 (m, CH=CH); 7.40 (br. d, Ph).

4b: M.p. 100–102°. IR (CH₂Cl₂): 1765 (β -lactam), 1479 (ester), 1715 (phthalimido). ¹H-NMR (CDCl₃): 0.12 (4s, (CH₃)₂Si); 0.89 (2s, (CH₃)₃C); 1.21, 1.52 (2d, CH₃); 3.91 (2s, CH₃O); 4.5–4.89 (*m*, OCHCHCO, H–C(4)); 5.72 (*d*, *J* = 5, H–C(3)); 6.57 (*m*, CH=CH); 7.28 (*s*, PhC=C); 7.88 (*m*, Ph).

Methyl cis. α - {1-[(tert-Butyl)dimethylsilyloxyethyl]-4-(hydroxymethyl)-2-oxo-3-phthalimidoazetidine-1-acetate (5b). Ozone was bubbled through a soln. of 4b (3 mmol) in EtOH (100 ml) at -75° for 1 h. Excess ozone was removed with N₂, and NaBH₄ (9 mmol) was added. After 1 h, 100 ml of pH 4.5 buffer was added. Evaporation of solvent and extraction with AcOEt afforded, after drying (MgSO₄) and evaporation, crude 5b. Chromatography on silica gel using CHCl₃/AcOEt 1:1 gave pure 5b (83%) as a foam. IR (CH₂Cl₂): 3400 (OH), 1760 (β -lactam), 1735 (ester), 1715 (phthalimido), 1230 (ether). ¹H-NMR (CDCl₃): 0.11 (4s, (CH₃)₂Si); 1.00 (br. s, (CH₃)₃C); 1.41 (m, CH₃); 4.00 (2s, CH₃O); 4.29-5.30 (m, OCHCHCO, CH₂(OH)CHCHN); 7.79 (m, Ph).

Ethyl cis- α -Methylidene-2-oxo-3-phthalimido-4-styrylazetidine-1-acetate (**5a**), Ethyl cis-3-Chloro- α -methylidene-2-oxo-4-styrylazetidine-1-acetate (**5'a**), and Methyl cis- α -Ethylidene-4-(hydroxymethyl)-2-oxo-3-phthalimidoazetidine-1-acetate (**6b**). DBU (1.53 g, 10 mmol) was added to **4a** (2.59 g, 5 mmol) in Et₂O. The mixture was heated at reflux temp. for 1 h and then evaporated. Chromatography of the residue on silica gel with CH₂Cl₂ gave **5a** (98%). M.p. 170–171°. IR (CH₂Cl₂): 1780 (β -lactam), 1730 (ester), 1720 (phthalimido), 1630 (C=C). ¹H-NMR (CDCl₃): 1.20 (t, J = 6, 12, CH₃); 4.15 (q, J = 6, 12, 18, CH₂O); 5.21 (m, H–C(4)); 5.60 (d, J = 5, H–C(3)); 6.00–6.70 (m, C=CH₂, CH=CH); 7.10 (s, PhC=C); 7.69 (m, Ph). Anal. calc. for C₂₄H₂₀N₂O₅ (416.22): C 69.23, H 4.81, N 6.73; found: C 69.12, H 4.71, N 6.93.

In the same manner, **6b** was prepared (96%) from **5b**. M.p. 120–125°. IR (CH₂Cl₂): 3600–3100 (OH), 1780 (β -lactam), 1760 (ester), 1710 (phthalimido), 1620 (C=C). ¹H-NMR (CDCl₃): 1.89 (d, J = 7, CH₃); 3.89 (s, CH₃O); 3.92–4.26 (br., CH₂OH); 4.69 (m, H–C(4)); 5.78 (d, J = 5, H–C(3)); 5.91 (q, J = 7, 14, 21, CH); 7.23–7.80 (m, Ph). Anal. calc. for C₁₇H₁₆N₂O₆ (344.23): C 59.30, H 4.65, N 8.14; found: C 59.45, H 4.55, N 8.33.

Compound 5'a was prepared (90%) by treatment of 4'a (1 mmol) with CH₃SO₂Cl/Et₃N (1:2 mmol) in CH₂Cl₂ at -5° for 1 h. M.p. 70–72°. IR (CH₂Cl₂): 1780 (β -lactam), 1735 (ester), 1633 (C=C). ¹H-NMR (CDCl₃): 1.30 (t, $J = 6, 12, CH_3$); 2.98 (d, J = 5, H-C(3)); 4.17 (q, $J = 6, 12, 18, CH_2$ O); 5.22 (dd, J = 5, 10, H-C(4)); 5.90–6.80 (m, C=CH₂, CH=CH); 7.25 (br. s, Ph).

Ethyl cis- α -[(*Diethoxyphosphoryl*)*methyl*]-2-oxo-3-phthalimido-4-styrylazetidine-1-acetate (7). To a soln. of **5a** (4.16 g, 0.01 mol) and diethyl phosphite (1.40 g, 0.012 mol) in THF (80 ml), NaH (cat. amount) was added at 0°. After stirring for 5 min and evaporation, the residue was dissolved in Et₂O, washed with H₂O, and dried (Na₂SO₄). Evaporation gave 7 (quant.) as an oil. Purification by column chromatography (silica gel, AcOEt) gave 7 (99%) as a foam. IR (CH₂Cl₂): 1763 (β -lactam), 1745 (ester), 1715 (phthalimido). ¹H-NMR (CDCl₃): 1.35 (br. *t*, 3 CH₃); 2.11–2.80 (*m*, CH₂P); 4.00–4.60 (*m*, 3 CH₂O, CHCO); 4.85 (*m*, H–C(4)); 5.59 (br. *d*, J = 5, H–C(3)); 6.29–6.79 (*m*, CH=CH); 7.21 (*s*, PhC=C); 7.71 (br. *s*, Ph). Anal. calc. for C₂₈H₃₁N₂O₈P (554.62): C 60.65, H 5.59, N 5.05; found: C 60.38, H 5.60, N 5.15.

Ethyl cis-4-(1,2-Dibromo-2-phenylethyl)- α -[(diethoxyphosphoryl)methyl]-2-oxo-3-phthalimidoazetidine-1acetate (8a), Ethyl cis-4-(2-Bromostyryl)- α -[(diethoxyphosphoryl)methyl]-2-oxo-3-phthalimidoazetidine-1-acetate (8b), and Ethyl cis- α -[(tert-Butyl)dimethylsilyloxy]methyl]-4-(1,2-dibromo-2-phenylethyl)-2-oxo-3-phthalimidoazetidine-1-acetate (10). To a soln. of 7 (5 mmol) in CCl₄/CHCl₃ 7:3 (50 ml), Br₂ (7 mmol) was added dropwise with stirring at 25°. After 10 min, the soln. was evaporated and the residue purified by prep. TLC using Et₂O/MeOH 9:1 8a (75%) and 8b (20%) as foams.

8a: R_f (Et₂O/MeOH 9:1) 0.39. IR (CH₂Cl₂): 1765 (β-lactam), 1745 (ester), 1720 (phthalimido). ¹H-NMR (CDCl₃): 1.10–1.61 (*m*, 3 CH₃); 2.21–3.00 (*m*, CH₂P), 3.90–4.90 (*m*, 3 CH₂O, CHCO, CHBrCHBrCHN); 5.59 (*d*, J = 5, H–C(3)); 7.10–7.91 (*m*, 2 Ph). Anal calc. for C₂₈H₃₁Br₂N₂O₈P (714.21): C 47.06, H 4.34, Br 22.41, N 3.92; found: C 47.01, H 4.25, Br 22.63, N 3.81.

8b: R_f (Et₂O/MeOH 9:1) 0.48. IR (CH₂Cl₂): 1770 (β -lactam), 1750 (ester), 1715 (phthalimido). ¹H-NMR (CDCl₃): 1.11–1.65 (*m*, 3 CH₃); 2.40–3.20 (*m*, CH₂P); 3.95–4.66 (*m*, 3 CH₂O); 4.76 (2*s*, CHCO); 5.50 (*dd*, J = 5, 7.5, 12.5, H–C(4)); 5.85 (*d*, J = 5, H–C(3)); 6.25 (br. *s*, CBr=CH); 7.12–7.85 (*m*, 2 Ph). Anal. calc. for C₂₈H₃₀BrN₂O₈P (633.13): C 53.08, H 4.74, Br 12.64, N 4.42; found: C 53.10, H 4.70, Br 12.60, N 4.33.

Like **8a,b** from **7**, **10** was prepared (95%) from **4a**. IR: similar to the one of **8a**. ¹H-NMR (CDCl₃): 0.10 (4s, (CH₃)₂Si); 0.90 (2s, (CH₃)₃C); 1.11–1.51 (t, CH₃); 3.99–4.99 (m, OCH₂CHCOOCH₂, CHBrCHBrCHN); 5.51 (d, J = 5, H–C(3)); 7.20–7.82 (m, 2 Ph). Anal. calc. for C₃₀H₃₆Br₂N₂O₆Si (708.34): C 50.85, H 5.08, Br 22.60, N 3.95; found: C 50.97, H 5.12, Br 22.72, N 4.01.

Ethyl cis-2-[(*Diethoxyphosphoryl*)*methyl*]-7-oxo-3-phenyl-6-phthalimido-1-azabicyclo[3.2.0]hept-3-ene-2carboxylate (9) and Ethyl cis-4-(2-Bromostyryl)- α -methylidene-2-oxo-3-phthalimidoazetidine-1-acetate (11). Representative procedure: DBU (3.06 g, 20 mmol) was added to **8a** (6.34 g, 10 mmol) in THF. The mixture was stirred at 25° for 2 h. The soln. was poured into AcOEt (200 ml) and washed with H₂O (2 × 50 ml). The org. layer was dried (Na₂SO₄) and evaporated to leave a syrup. Chromatography on silica gel with AcOEt/CHCl₃ 1:1 afforded 9 (80%) as a foam. IR (CH₂Cl₂): 1786 (β-lactam), 1730 (ester), 1710 (phthalimido), 1650 (C=C). ¹H-NMR (CDCl₃): 1.00–1.50 (m, 3 CH₃); 1.99–2.81 (m, CH₂P); 3.80–4.24 (m, 3 CH₂O); 5.00 (dd, J = 5, 6, 11, H-C(4)); 5.51 (d, J = 5, H-C(3)); 6.62 (d, J = 6, CH=C); 7.01–7.81 (m, 2 Ph). Anal. calc. for C₂₈H₂₉N₂O₈P (552.16): C 60.87, H 5.25, N 5.07; found: C 60.77, H 5.36, N 5.00.

Similarly, 9 was also prepared (80%) from 8b (1 equiv. of DBU instead of 2 equiv.).

Like 9 from 8a, 11 was prepared (78%) from 10. M.p. 156 (dec.). IR (CH₂Cl₂): 1780 (β -lactam), 1745 (ester), 1715 (phthalimido), 1620 (C=C). ¹H-NMR (CDCl₃): 1.11–1.57 (*t*, CH₃); 4.00–4.49 (*q*, CH₂O); 5.10 (*dd*, J = 5, 7, 12, H-C(4)); 5.56 (*d*, J = 5, H-C(3)); 5.80–6.41 (*m*, CH₂=C, CBr=CH); 7.12–7.98 (*m*, 2 Ph). Anal. calc. for C₂₄H₁₉BrN₂O₅ (495.26): C 58.18, H 3.84, Br 16.16, N 5.65; found: C 58.25, H 3.83, Br 16.29, N 5.55.

By procedure identical to that for $5a \rightarrow 7$, 11 was also transformed to 9 (83%).

Ethyl cis- α -(Hydroxymethyl)4-(2-methoxystyryl)-2-oxo-3-phthalimidoazetidine-1-acetate (13) and Ethyl cis-9-Oxo-5-phenyl-8-phthalimido-4-oxa-1-azabicyclo[5.2.0]non-5-ene-2-carboxylate (14). To a soln. of 4a (2.60 g, 5 mmol) in MeOH (50 ml), Br₂ (8 mmol) was added dropwise with stirring at 25°. After 5 min, the soln. was evaporated and the residue purified by prep. TLC using Et₂O/MeOH 8:2: 13 (85%) as a foam. IR (CH₂Cl₂): 3360 (OH), 1765 (β -lactam), 1740 (ester), 1715 (phthalimido). ¹H-NMR (CDCl₃): 1.10–1.50 (br. t, CH₃); 3.33 (s, CH₃O); 3.80–4.51 (m, CH₂(OH)CHCOOCH₂); 4.90 (br. m, H–C(4)); 5.89 (d, J = 5, H–C(3)); 6.48 (d, J = 7, C=CH); 7.21–7.81 (m, 2 Ph). Anal. calc. for C₂₅H₂₄N₂O₇(464.15): C 64.65, H 5.17, N 6.03; found: C 64.56, H 5.29, N 5.98.

Like 9 from 8a, 14 was prepared (85%) from 13. M.p. 188°. IR (CH₂Cl₂): 1767 (β -lactam), 1750 (ester), 1720 (phthalimido), 1115 (ether). ¹H-NMR (CDCl₃): 1.1–1.50 (br. *t*, CH₃); 3.81–4.83 (*m*, OCH₂CHCOOCH₂, H–C(4), H–C(3)); 5.82 (br. *d*, C=CH); 7.35 (*s*, PhC=C); 7.81 (*m*, Ph). Anal. calc. for C₂₄H₂₀N₂O₆ (432.14): C 66.66, H 4.63, N 6.48; found: C 66.71, H 4.55, N 6.50.

Ethyl cis- α -Bromo- α -(methoxymethyl)-4-(2-methoxystyryl)-2-oxo-3-phthalimidoazetidine-1-acetate (15) and Methyl cis-2-Bromo-3-methyl-8-oxo-7-phthalimido-4-oxa-1-azabicyclo[4.2.0]octane-2-carboxylate (16). Like 13 from 4a, 15 (oil) was prepared (56%) from 5a and purified by prep. TLC using Et₂O. IR (CH₂Cl₂): 1766 (β -lactam), 1740 (ester), 1715 (phthalimido), 1110 (ether). ¹H-NMR (CDCl₃): 1.12–1.65 (2t, CH₃); 3.61 (4s, 2 CH₃O); 3.80-4.72 (*m*, OCH₂CBrCOOCH₂); 4.86 (*m*, H–C(4)); 5.61 (2d, J = 5, H–C(3)); 6.90 (br., C=CH); 7.25 (br. *s*, PhC = C); 7.81 (br. *m*, Ph). Anal. calc. for C₂₆H₂₅BrN₂O₇ (557.41): C 56.01, H 4.49, Br 14.36, N 5.02; found: C 56.20, H 4.48, Br 14.41, N 5.11.

Like 13 from 4a (CHCl₃ instead of MeOH), 16 was prepared (40%) from 6b and purified by prep. TLC (Et₂O). M.p. 156–160° (dec.). IR (CH₂Cl₂): 1779 (β -lactam), 1735 (ester), 1715 (phthalimido), 1115 (ether). ¹H-NMR (CDCl₃): 1.56 (d, CH₃); 3.60 (s, CH₃O); 3.70–4.30 (m, CHOCH₂CHN); 5.43 (d, J = 5, H–C(3)); 7.79 (br. d, Ph). Anal. calc. for C₁₇H₁₅BrN₂O₆ (423.32): C 48.23, H 3.55, Br 18.91, N 6.62; found: C 48.18, H 3.47, Br 19.03, N 6.61.

REFERENCES

- [1] T.W. Doyle, B. Belleau, B.Y. Luh, T.T. Conway, M. Menard, J.L. Douglas, D.T.W. Chu, G. Lim, L.R. Morris, P. Rivest, M. Casey, Can. J. Chem. 1977, 55, 484.
- [2] G. H. Hakimelahi, G. Just, Can. J. Chem. 1979, 57, 1932.
- [3] G.H. Hakimelahi, G. Just, Helv. Chim. Acta 1982, 65, 1359.
- [4] G. H. Hakimelahi, G. Just, A. Ugolini, Helv. Chim. Acta 1982, 65, 1368.
- [5] G.H. Hakimelahi, Helv. Chim. Acta 1984, 67, 902.
- [6] G. H. Hakimelahi, Helv. Chim. Acta 1982, 65, 1378.
- [7] T.W. Doyle, B. Belleau, B.Y. Luh, C.F. Ferrari, M. P. Cunningham, Can. J. Chem. 1977, 55, 468.
- [8] T. W. Doyle, B. Yuluh, D. T. Wuchu, B. Belleau, Can. J. Chem. 1977, 55, 2719.
- [9] D.F. Sullivan, D.I. Scopes, A.F. Kluge, J.A. Edward, J. Org. Chem. 1976, 41, 1112.
- [10] G. Lowe, D. D. Ridley, J. Chem. Soc., Perkin Trans. 1973, 2024.
- [11] G. Lowe, H.W. Yeung, J. Chem. Soc., Perkin Trans. 1973, 2907.
- [12] G.Just, T.J. Liak, Can. J. Chem. 1978, 56, 211.
- [13] G.H. Hakimelahi, G. Just, Synth. Commun. 1980, 10, 429.
- [14] R. B. Morin, B. G. Jackson, R. A. Mueller, E. R. Lavagnino, W. B. Scanlon, S. L. Andrews, J. Am. Chem. Soc. 1969, 91, 1401; L.J. Bellamy, 'The Infrared Spectra of Complex Molecules', 2nd edn., Wiley, New York, 1958.