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Abstract
In this work, in the first stage, boehmite nanoparticles were easily fabricated via addition of NaOH solution to a solution 
of Al(NO3)3.9H2O at room temperature in water. Then, nickel–dithizone catalyst was supported on boehmite nanoparticles 
(Ni-dithizone@boehmite). Ni-dithizone@boehmite is a low-cost, nontoxic, and recoverable catalyst, which provides an 
environment friendly reaction conditions. In the second stage, catalytic activity of this catalyst was studied in the synthesis 
of polyhydroquinoline derivatives and selective oxidation of sulfides to sulfoxides. The reactions not require very high 
temperatures or inert atmosphere. The developed heterogeneous catalyst could be easily separated by centrifugation and 
recycled for several runs without leaching of Nickel from the surface of the catalyst or significant loss of its catalytic activity.
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Introduction

The heterogeneous metal catalysts supported on solid nano-
particles have acquired much interest due to their environ-
mentally friendly, recyclability and operational benefits in 
comparison with their homogeneous counterparts [1–5]. 
Boehmite (aluminum oxide hydroxide) is one of the useful 
nanomaterials for the preparation of metal-supported cata-
lysts, due to presence of high density of hydroxyl groups on 
its surface [6, 7]. Moreover, boehmite nanoparticles with 
high surface area and high stability compared to most nano-
particles make it as very appropriate support, which is appli-
cable in different organic reactions [8]. Boehmite has been 
used in catalysis, separation, ceramics, adsorption, abra-
sives, fibers, and biomedical applications [9–11]. Boehmite 
is also used as a starting material in the preparation of alu-
mina [9, 12]. Several methods such as sol–gel, hydrothermal, 
precipitation, and hydrolysis of aluminum have been used 
for the preparation of boehmite nanoparticles that most of 
them have focused on preparation conditions, morphology, 

and chemical or physical properties of boehmite [13–17]. 
Nevertheless, only a few application of the boehmite nano-
particles have been reported as support for the preparation 
of heterogeneous catalysts [18–23]. Therefore, herein we 
have used boehmite nanoparticles as support to fabricate 
nickel-supported catalyst (Ni-dithizone@boehmite), then its 
catalytic application was studied for synthesis of polyhyd-
roquinoline derivatives and selective oxidation of sulfides 
to sulfoxides.

The synthesis of sulfoxides is an important transforma-
tion in organic chemistry, because sulfoxides are useful in 
the synthesis of drugs, enzyme activation, natural products, 
germicides, and in medicinal chemistry [24–27]. For exam-
ple, allicin, sulindac, modafinil, garlicnin B-2, garlicnin L-1 
and omeprazole are several typical examples of the sulfox-
ide derivatives with pharmaceutical and biological activities 
[28, 29]. Among the various oxidants such as metal oxidants, 
organic oxidant, peroxides and halogens,  H2O2 was com-
monly used for this transformation as an inexpensive and 
environmentally benign oxidant [30–35]. Likewise, polyhy-
droquinoline derivatives have important biological activities 
such as calcium channel blockers and have been utilized for 
the treatment of cardiovascular diseases such as nicardipine, 
nifedipine, and amlodipine [36–39]. Therefore, the synthesis 
of polyhydroquinolines and sulfoxides has remarkable atten-
tion in organic chemistry.
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Experimental

Preparation of catalyst

Modified boehmite nanoparticles with (3-chloropropyl)-
trimethoxysilane (CPTMS@boehmite) was prepared 
according to recent reported method [10]. The above-
mentioned solid (1.0  g) was mixed with dithizone 
(2.0 mmol) and stirred at 90 °C in toluene for 48 h. The 
resulting solid (dithizone@boehmite) was separated using 
simple filtration, washed with ethanol and dried at room 
temperature. Finally, for the preparation of catalyst, the 
dithizone@boehmite (1.0 g) was dispersed in ethanol 
and mixed with 2.0 mmol of Ni(NO3)2.2H2O. Then, the 
obtained mixture was stirred at 80 °C for 20 h. The solid 
product (Ni-dithizone@boehmite) was obtained by simple 
filtration, washed with ethanol and dried at 50 °C.

General procedure for the synthesis 
of polyhydroquinoline derivatives

A mixture of aldehyde (1.0 mmol), dimedone (1.0 mmol), 
ethyl acetoacetate (1.0  mmol), ammonium acetate 
(1.3 mmol) and Ni-dithizone@boehmite (20.0 mg) was 
stirred in PEG at 80 °C and the progress of the reaction 
was monitored by TLC in n-hexane:acetone solution (vol-
ume ratio, 8:2). After completion of the reaction, catalyst 
was separated by simple filtration and washed with ethyl 
acetate. Products were extracted with water and ethyl ace-
tate. Then, the organic layers were dried over anhydrous 
 Na2SO4 (1.5 g) and then, solvent was evaporated to obtain 
pure products. All products were recrystallized in ethanol.

Scheme 1  Synthesis of Ni-
dithizone@boehmite

Fig. 1  SEM image of Ni-dithizone@boehmite Fig. 2  XRD pattern of Ni-dithizone@boehmite
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General procedure for the oxidation of sulfides 
to sulfoxides

0.008 g of Ni-dithizone@boehmite was added to a solu-
tion of sulfide (1.0 mmol) and 0.4 mL of  H2O2 (33%). The 
obtained mixture was stirred under solvent-free conditions 

at room temperature for the specified times (Table 4) and 
the progress of the reactions was monitored by TLC in 
n-hexane:acetone solution (volume ratio, 8:2). After com-
pletion of the reaction, the catalyst was separated by simple 
filtration. The products were extracted with water and ethyl 
acetate, and dried over anhydrous  Na2SO4. Then, the solvent 

Fig. 3  TGA/DTA diagrams of 
Ni-dithizone@boehmite

Scheme 2  Synthesis of poly-
hydroquinoline derivatives in 
the presence of Ni-dithizone@
boehmite

Table 1  Optimization 
conditions in condensation of 
benzaldehyde with dimedon, 
ethyl acetoacetate, and 
ammonium acetate for synthesis 
of polyhydroquinolines

a Isolated yield

Entry Catalyst (mg) Solvent Temperature (ºC) Time (min) Yield (%)a

1 10 PEG 80 40 53
2 15 PEG 80 40 69
3 20 PEG 80 30 95
4 25 PEG 80 25 96
5 20 H2O 80 30 20
6 20 EtOH Reflux 30 73
7 20 Ethyl acetate Reflux 30 48
8 20 CH3CN Reflux 30 62
9 20 PEG 60 60 31
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Table 2  Synthesis of polyhydroquinoline derivatives in the presence of Ni-dithizone@boehmite in PEG at 80°C

Entry Aryl halide Phenylating reagent Time (min) Yield (%)a TOF  (h−1) Melting point (ºC) Reported 
M.P. [Refer-
ences]

1 30 95 231 217–219 216–218 [41]

2 130 96 54 175–178 176–178 [41]

3 280 96 25 234–237 235–238 [42]

4 240 94 28 251–253 252–253 [43]

5 45 93 151 230–233 230–232 [41]
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Table 2  (continued)

Entry Aryl halide Phenylating reagent Time (min) Yield (%)a TOF  (h−1) Melting point (ºC) Reported 
M.P. [Refer-
ences]

6 50 97 142 203–204 200–202 [41]

7 250 90 26 255–257 254–256 [41]

8 190 95 37 245–247 248–250 [44]

9 60 97 118 303–305 305–307 [44]

10 65 90 101 184–187 185–186 [43]
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was evaporated and pure products were obtained in high to 
excellent yields.

Results and discussion

Boehmite nanoparticles were prepared and its surface was 
modified by CPTMS according to the reported procedure 
[10]. To synthesis of dithizone@boehmite, dithizone was 
immobilized on boehmite nanoparticles. Then, dithizone@

Table 2  (continued)

Entry Aryl halide Phenylating reagent Time (min) Yield (%)a TOF  (h−1) Melting point (ºC) Reported 
M.P. [Refer-
ences]

11 180 89 36 237–239 238–240 [44]

12 240 87 26 239–242 241–244 [45]

13 260 89 25 201–204 203–205 [42]

14 200 95 34 176–178 173–175 [41]

15 160 94 43 226–228 228–230 [41]

a Isolated yield
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boehmite was used as efficient and insoluble support for 
nickel(II) (Scheme 1). Further this catalyst (Ni-dithizone@
boehmite) was characterized by thermogravimetric analy-
sis (TGA), scanning electron microscopy (SEM), X-ray dif-
fraction (XRD), atomic absorption spectroscopy (AAS), and 
inductively coupled plasma (ICP-OES) techniques.

Catalyst characterizations

SEM image of Ni-dithizone@boehmite is shown in Fig. 1. 
The particles size of this catalyst was studied by SEM 
technique that it was found to be between 40 and 60 nm. 
Also, the amount of Nickel on boehmite nanoparticles 
was measured using inductively coupled plasma (ICP) 
that was 0.41 × 10−3 mol g−1, which this result has good 
agreement with atomic absorption spectroscopy (AAS) 
(0.39 × 10−3 mol g−1).

The XRD pattern of Ni-dithizone@boehmite is shown 
in Fig.  2. As shown in Fig.  2, the boehmite phase was 
confirmed from the XRD pattern by the peak positions, 
which are in close agreement with standard XRD pattern 
of boehmite nanoparticles [12, 40] and all the peaks can be 

confirmed the crystallization of boehmite in orthorhombic 
unit cells [3, 40].

TGA/DTA diagrams of Ni-dithizone@boehmite are 
shown in Fig. 3. The mass loss about 10% before 250 °C 
is related to the evaporation of water and adsorbed solvents 
[41]. Also, the high decreasing of weight is related to immo-
bilize organic layers that are decomposed upon heating from 
250 °C to 500 °C (about 15%). Final weight loss (about 5%) 
which appeared above 500 °C may be related to transforma-
tion of thermal crystal phase of boehmite nanoparticles.

Application of Ni‑dithizone@boehmite 
for the synthesis of polyhydroquinolines

The catalytic activity of Ni-dithizone@boehmite was stud-
ied in synthesis of polyhydroquinoline derivatives. Poly-
hydroquinolines were synthesized in the presence of Ni-
dithizone@boehmite based on concise route outlined in 
Scheme 2.

To optimize the reaction conditions for the synthesis of 
polyhydroquinolines, condensation of benzaldehyde with 
dimedone, ethyl acetoacetate, and ammonium acetate was 
selected as model reaction. Several parameters such as 
amount of Ni-dithizone@boehmite, effect of solvent and 
temperature were examined in the selected model reac-
tion. Results of these studies are summarized in Table 1. As 
shown in Table 1, the best result was obtained in the pres-
ence of 20 mg (0.82 mol %) of Ni-dithizone@boehmite in 
PEG at 80 °C (Table 1, entry 3).

After optimizing of reaction conditions, the condensation 
of different aldehydes with ethyl acetoacetate, dimedone, 
and ammonium acetate was then tested to confirm the gen-
erality of this method and obtained results are summarized 
in Table 2. Polyhydroquinoline derivatives were obtained 
in high yields in the presence of Ni-dithizone@boehmite 
with high TOF numbers. As shown in Table 2, a variety 
of benzaldehydes bearing electron-donating and electron-
withdrawing substituents (Such as OH,  CH3,  OCH3, OEt, 
halides, and  NO2) was successfully employed for the syn-
thesis of polyhydroquinolines. Also, terephthalaldehyde was 
investigated and it was afforded the desired product in good 
yield (Table 2, entry 9).

Application of Ni‑dithizone@boehmite 
for the oxidation of sulfides

Also, catalytic activity of Ni-dithizone@boehmite was 
studied in the selective oxidation of sulfides to sulfoxides. 
Sulfoxides were synthesized through oxidation of sulfides 
in the presence of Ni-dithizone@boehmite based on con-
cise route outlined in Scheme 3. Oxidation of methyl phenyl 
sulfide using hydrogen peroxide was selected as model reac-
tion for optimize reaction conditions. Obtained results of 

Scheme 3  Oxidation of sulfides to sulfoxides in the presence of Ni-
dithizone@boehmite

Table 3  Optimization of reaction conditions for the oxidation of 
methyl phenyl sulfides in the presence of Ni-dithizone@boehmite at 
room temperature

a Isolated yield

Entry Catalyst (mg) Solvent Time (min) Yield (%)a

1 3 Solvent free 100 61
2 5 Solvent free 100 73
3 8 Solvent free 80 96
4 10 Solvent free 70 96
5 8 CH3CN 80 33
6 8 Ethyl acetate 80 46
7 8 Ethanol 80 28
8 8 H2O 80 52



 Journal of the Iranian Chemical Society

1 3

Table 4  Selective oxidation of sulfides to sulfoxides in the presence of Ni-dithizone@boehmite

a Isolated yield

Entry Sulfide Product Time (min) Yield (%)a TOF  (h−1) Melting point (ºC) Reported 
M.P. [Ref-
erences]

1 80 96 218 30–32 30–32 [26]

2 15 97 1175 Oil Oil [46]

3 15 95 1151 Oil Oil [34]

4 5 97 3527 Oil Oil [34]

5 360 80 40 Oil Oil [46]

6 40 88 400 Oil Oil [47]

7 120 90 136 84–87 85–89 [34]

8 20 93 845 Oil Oil [46]

9 75 90 218 60–64 61–64 [26]

10 20 95 863 Oil Oil [46]
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Fig. 4  Recycling of Ni-dithizone@boehmite in oxidation of tetahy-
drothiophen

Table 5  Comparison of Ni-dithizone@boehmite in the oxidation of 
methyl phenyl sulfide with previously reported catalysts

Entry Catalyst Time (min) Yielda (%) [References]

1 DSA@MNPs 360 98 [34]
2 Polymer-anchored 

Cu(II)
180 90 [48]

3 Cu-SPATB/Fe3O4 95 98 [49]
4 Cd-salen-MCM-41 150 98 [50]
5 TsOH 240 88 [51]
6 Ni-salen-MCM-41 156 95 [50]
7 VO2F (dmpz)2 300 95 [52]
8 Ni-dithizone@boe-

hmite
80 96 [this work]
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optimization conditions in model reaction are summarized in 
Table 3. As shown in Table 3, the best results were obtained 
in the presence of 0.008 g (0.33 mol%) of catalyst at room 
temperature under solvent-free conditions using 0.4 mL of 
 H2O2.

In obtained optimum conditions, the various aliphatic 
and aromatic sulfides were successfully converted to their 
corresponding sulfoxides in the presence of Ni-dithizone@
boehmite and all products were obtained in good yields 
without any byproduct from over oxidation such as sulfone. 
The result of these studies is shown in Table 4. To show the 
chemoselectivity of present methodology, sulfides including 
other functional groups such as olefin or hydroxyl groups 
were subjected to sulfoxidation reaction, that these func-
tional groups remained intact during the oxidation condi-
tions (Table 4, entries 2, 6 and 8).

Reusability of the catalyst

Recovering and recycling are major advantages of het-
erogeneous catalysts compared to homogeneous catalysts. 
Therefore, the reusability of Ni-dithizone@boehmite was 
confirmed in the oxidation of tetrahydrothiophen (Fig. 4). 
After completion of each reaction, the catalyst was recovered 
by centrifugation, washed with ethyl acetate and reused up 
to eight times without any significant loss of its catalytic 
activity. The average isolated yield for eight runs was 93.5%, 
which clearly indicate the practical reusability of Ni-dithi-
zone@boehmite.

Comparison of the catalyst with previously reported 
catalysts

To show the activity and accessibility of Ni-dithizone@
boehmite in comparison with previously reported cata-
lysts, the results for the oxidation of methyl phenyl sulfide 
in the presence of Ni-dithizone@boehmite have been 
compared with previous catalysts and the results are sum-
marized in Table 5. As shown in Table 5, Ni-dithizone@
boehmite is more effective catalyst in selected reaction, 
which product was obtained in higher yields at shorter 
reaction time.

Conclusion

Ni-dithizone@boehmite was synthesized by a simple pro-
cedure as an efficient and reusable heterogeneous catalyst 
and characterized by SEM, XRD, TGA, AAS and ICP 
techniques. This catalyst was successfully applied for the 
synthesis of polyhydroquinoline derivatives and selective 
oxidation of sulfides to sulfoxides. Also Ni-dithizone@

boehmite can be recovered and recycled over than eight 
times without any significant loss of its catalytic activity.

Acknowledgements Authors thank Ilam University and Iran National 
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project.
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