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Abstract The enantioselective Michael addition reaction of α-aryl-
substituted lactams with electron-deficient olefins was efficiently cata-
lyzed using chiral quaternary ammonium salts derived from cinchona
alkaloids. This method was highly useful for the construction of an all-
carbon-substituted quaternary carbon stereogenic center at the α-posi-
tion of lactams in good to high yields and with good enantiomeric ex-
cess and could be applied to the short synthesis of (+)-mesembrine.

Key words asymmetric organocatalysis, lactams, Michael addition,
cinchona alkaloids, mesembrine

All-carbon-substituted quaternary carbon stereogenic
centers are common structural units found in numerous bi-
ologically active natural products, and hence considerable
attention has been focused on the development of efficient
methodologies to construct these molecules.1 Among these,
recent advances in organocatalytic asymmetric synthesis
offer a highly useful and environment-friendly strategy.2
Most typically, the organocatalytic asymmetric Michael ad-
dition reaction has been accepted as a reliable and conve-
nient method, probably due to the versatility of designing
Michael donors and acceptors as well as the pool of avail-
able chiral organocatalysts.2,3

In contrast to the several reports that are available on
the use of normal aldehydes or ketones as Michael do-
nors,2,3 to the best of our knowledge, very little attention
has been paid to the use of α-substituted lactams or lac-
tones, except for benzene-fused homologues such as oxin-
doles.2b,4,5 Presumably, this might be due to the weak acidi-
ty of α-protons in connection with severe steric congestion

at the reaction center. Despite this fairly limited accessibili-
ty, we expected that the asymmetric Michael addition reac-
tion of α-substituted lactams would provide an expeditious
strategy for the construction of a potentially important
framework of biologically interesting natural products in
which an all-carbon-substituted quaternary carbon stereo-
genic center is a part of the stereoarray.1

However, our preliminary experiments showed that
commonly used primary, secondary, and tertiary chiral
amines were all unsatisfactory as organocatalysts for the
present purpose.6 This can be understood by considering
that they are not reactive enough to invoke enamine activa-
tion7 or to act as Lewis bases to abstract an α-methine pro-
ton of lactams.8 Therefore, we turned our attention to the
use of chiral phase-transfer catalysts derived from cinchona
alkaloids as relatively strong organobases.9 Herein, we re-
port a novel strategy using quaternary ammonium salts A
to H to achieve the required asymmetric Michael addition
reaction of α-aryl-substituted lactams (Figure 1).10

Figure 1  Cinchona alkaloid derivatives as catalyst
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To establish the optimal conditions, we first examined
the asymmetric Michael addition reaction of N-Boc-2-phe-
nyl-γ-butyrolactam (1a) with methyl vinyl ketone (2a) in
the presence of catalysts A–H under various conditions. The
results are summarized in Table 1.11

We found that a series of cinchonidine-type salts A–D
could smoothly promote the desired reaction, but the enan-
tioselectivity was not so high (Table 1, entries 1–4). When a
series of cinchonine-type salts E–H was used, the enantio-
selectivity improved considerably to form the Michael ad-
duct 3a, albeit with an opposite configuration (Table 1, en-
tries 5–8). In particular, favorable results could be attained
with the use of catalyst H, which contains the 9-hydroxy
protecting group with a sterically bulky 1-adamantoyl
group and a 4-methoxybenzyl group at the quinuclidine ni-
trogen center (Table 1, entry 8).12 After we screened various
inorganic base additives and reaction conditions, the best
results in terms of yield and enantioselectivity were ob-
tained with Ag2O (30 mol%) in combination with EtOH (30

mol%) in toluene under lower temperatures (Table 1, entry
10 vs. entries 9, 11, and 12).13 In addition, we found that
Cs2CO3 and K2CO3 gave results comparable to those with in-
organic bases (Table 1, entries 15 and 16). The use of CH2Cl2
or THF as a solvent or CsOH·H2O as a base gave rather poor
results, probably due to a background reaction (Table 1, en-
tries 13, 14, and 17).

With our optimized reaction conditions in hand, we
then explored the general scope of the reaction, and the re-
sults are summarized in Scheme 1.11  All reactions were
performed in toluene containing 30 mol% EtOH in the pres-
ence of 30 mol% of the respective catalyst H and Ag2O.
Among several Michael acceptors, methyl vinyl ketone (2a)
and ethyl vinyl ketone (2b) reacted smoothly with lactam 1
to give the desired products in good to high yields (up to
96%) and with good enantioselectivity (up to 86% ee), while
methyl acrylate (2c) and acrylonitrile (2d) showed lower
reactivity in the present Michael addition system (3c and
3d).14 Lactam substrates containing an electron-donating

Table 1  Catalytic Asymmetric Michael Addition Reactions: Optimizationa

Entry Catalyst Base Conditions Yield (%)b ee (%)c

 1 A Ag2O MeOH (30 mol%), toluene, r.t., 2.5 h 92  12

 2 B Ag2O MeOH (30 mol%), toluene, r.t., 16 h 94  29

 3 C Ag2O MeOH (30 mol%), toluene, r.t., 42 h 81  40

 4 D Ag2O MeOH (30 mol%), toluene, r.t., 8.5 h 62  32

 5 E Ag2O EtOH (30 mol%), toluene, r.t., 25 h 86 –11

 6 F Ag2O EtOH (30 mol%), toluene, r.t., 48 h 85 –40

 7 G Ag2O MeOH (30 mol%), toluene, r.t., 7 h 95 –60

 8 H Ag2O MeOH (30 mol%), toluene, r.t., 8 h 80 –68

 9 H Ag2O MeOH (30 mol%), toluene, –15 °C, 15 h 83 –83

10 H Ag2O EtOH (30 mol%), toluene, –15 °C, 28 h 92 –85

11 H Ag2O i-PrOH (30 mol%), toluene, –15 °C, 10 h 95 –77

12 H Ag2O n-BuOH (30 mol%), toluene, –15 °C, 78 h 97 –84

13 H Ag2O EtOH (30 mol%), CH2Cl2, –15 °C, 8 h 72 –60

14 H Ag2O EtOH (30 mol%), THF, –15 °C, 8 h 33d –51

15 H Cs2CO3 EtOH (30 mol%), toluene, –15 °C, 30 h 97 –78

16 H K2CO3 EtOH (30 mol%), toluene, –15 °C, 28 h 76 –80

17 H CsOH·H2O EtOH (30 mol%), toluene, –50 °C, 12 h 97 –33
a Reactions performed using 1.5 equiv of methyl vinyl ketone (2a) at a concentration of 0.17 M under the conditions listed. See the Supporting Information for 
detailed experimental procedures.
b Isolated yield.
c Determined by chiral HPLC analysis.
d Unidentified polar substances were formed.
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group on the aromatic ring were found to be suitable sub-
strates compared with those having an electron-withdraw-
ing group (compare 3e–h with 3i and 3j). Unfortunately,
2-phenyl-substituted δ-valerolactam reacted only very
slowly under these conditions, and the product 3k was ob-
tained in only 9% yield with 26% ee (–15 °C, 100 h). This can
be ascribed to the severely decreased acidity of an α-
methine proton of this substrate.15 Finally, the absolute
configurations of the newly formed Michael adducts were
deduced by analogy to 3g after its conversion into (+)-
mesembrine (6, vide infra).

Upon evaluation of this synthetic methodology, we de-
cided to pursue the synthesis of (+)-mesembrine (6). Due to
its interesting biological activity and its unique structure of
a hexahydroindole skeleton bearing a sterically congested
aryl-substituted quaternary carbon center, this alkaloid has
attracted considerable attention from synthetic chemists
over the past several decades.16 Our new short synthesis of
6 was developed as shown in Scheme 2.

First, a two-step strategy based on intramolecular aldol
condensation of the Michael adduct 3g by treatment with
2.0 equivalents of KOt-Bu in THF at room temperature fol-
lowed by exposure to a catalytic amount of PTSA in reflux-
ing toluene gave bicyclic cyclohexenone 4 in around 50%
yield, which was increased to >99% enantiomeric excess by
recrystallization from hexane–Et2O. Boc-deprotection of 4
in (CF3)2CHOH under microwave irradiation conditions17

followed by N-methylation gave 516d in 86% yield.

Scheme 2  Reagents and conditions: (i) KOt-Bu, THF, r.t., 30 min; (ii) cat. 
PTSA·H2O, MS 4 Å, toluene, Δ, 11 h; (iii) (CF3)2CHOH, MW, 150 °C, 40 
min; (iv) MeI, NaH, THF, r.t.; (v) Li/liq NH3, t-BuOH, THF, –78 °C, 30 min.

Finally, Birch reduction using Li/liq. NH3 in THF–t-BuOH
according to Zhang’s method16d led to (+)-mesembrine (6)
in 77% yield with 99% enantiomeric excess. This sample
gave IR, 1H NMR, and 13C NMR data identical to the respec-
tive literature values.16 On the other hand, the optical rota-
tion was [α]D

19 +42.2 (c 0.15, MeOH), which is consistent
with the literature value, [α]D

20 +43 (c 0.8, MeOH), reported

Scheme 1  Catalytic asymmetric Michael addition reactions: Generality. 
Reactions performed using 1.5 equiv of Michael acceptor 2 at a concen-
tration of 0.17 M under the conditions listed. Isolated yields are shown. 
The absolute configuration of the products was surmised in analogy 
with 3g. The ee was determined by chiral HPLC analysis. See the Sup-
porting Information for detailed experimental procedures. a Unreacted 
starting material was recovered.
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for (+)-mesembrine.16j Therefore, it can be concluded that
the initial step for the Michael addition reaction on a lactam
framework should preferably form the adduct 3g with an R
configuration.

Based on these experimental findings, we could pro-
pose a crucial structure in the transition state to explain the
observed asymmetric induction (Figure 2). The contact ion
pair between the negatively charged enolate of the nucleo-
phile and the ammonium cation of the catalyst makes the
donor molecule well-defined within the catalyst major
groove. The presence of a sterically crowding adamantoyl
substituent effectively blocks the approach of the incoming
electrophile to the enolate from the bottom Re-face, thus
making the Si-face attack more favorable.

Figure 2  Plausible transition-state model

In summary, we have developed a highly enantioselec-
tive method for the asymmetric Michael addition reaction
of α-aryl-substituted lactams with electron-deficient ole-
fins catalyzed by chiral quaternary ammonium salts de-
rived from readily available cinchona alkaloids. This meth-
od proved to be particularly useful for the construction of
an all-carbon-substituted quaternary carbon stereogenic
center at the α-position of lactams and highlighted its utili-
ty in a highly concise route to the asymmetric synthesis of
(+)-mesembrine (6). Further studies on the application of
this method to natural product synthesis are now in prog-
ress in our laboratory
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