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ABSTRACT: While phenols are frequent and convenient aryl 
sources in cross-coupling, typically as sulfonate esters, the di-
rect cross-Ullmann coupling of two different sulfonate esters 
is unknown. We report here a general solution to this chal-
lenge catalyzed by a combination of Ni and Pd with Zn reduct-
ant and LiBr as an additive. The reaction has broad scope, as 
demonstrated in 33 examples (65% ± 11% ave yield). Mecha-
nistic studies show that Pd strongly prefers the aryl triflate, the 
Ni catalyst has a small preference for the aryl tosylate, aryl 
transfer between catalysts is mediated by Zn, and Pd improves 
yields by consuming arylzinc intermediates. 

The development of palladium-catalyzed cross-coupling 
has led to biaryls becoming a cornerstone of pharmaceutical 
and medicinal chemistry. 1  The significance of biaryls has 
driven the development of new cross-coupling approaches in-
volving different transition-metal catalysts2 or even eschewing 
a metal catalyst.3 One major challenge for all cross-coupling 
approaches is the availability of starting materials.4 The low 
commercial availability of aryl nucleophiles has led to the de-
velopment of improved methods to access them5 as well as C-
H arylation methods 6  and cross-Ullmann methods 7 , 8  that 
avoid them.4 

A central challenge of cross-Ullmann reactions is achieving 
selectivity for the heterocoupling product over homocoupling 
products.7 We introduced a new, multimetallic approach 9 
based upon the different order of reactivity of palladium 
bisphosphine catalysts and nickel bipyridine catalysts with 
aryl halides and aryl triflates (Scheme 1A):  the nickel catalyst 
prefers the C-Cl/Br bonds while the palladium catalyst prefers 
C-OTf bond.10 While this strategy has proven general, it was 
not clear whether it could be extended beyond coupling aryl 
triflates with aryl halides. We were particularly interested in 
the cross-Ullmann coupling of phenol derivatives because of 
their importance in cross-coupling11 and the ubiquity of phe-
nols in nature.12  The most-used phenol derivatives in cross-
coupling are sulfonate esters, yet the cross-Ullmann coupling 
of two different aryl sulfonate esters is unknown.13,14,15,16 In ex-
citing, concurrent work, Zeng recently reported on the cross-

Ullmann coupling of different phenol derivatives using a dif-
ferent, directing-group-based approach.17 

Our multimetallic strategy would appear to be incompatible 
with this goal:  while the relative reactivity between aryl hal-
ides and aryl triflates can be manipulated for selective cou-
pling at either bond (Scheme 1A),10 the analogous inversion 
of selectivity between two different sulfonate esters has not 
been reported.18 Although there are relatively few studies on 
this topic, aryl tosylates are generally considered less reactive 
than aryl triflates.19,20 We report here a solution to this chal-
lenge via a nickel catalyst with unusual sulfonate selectivity18 
(Scheme 1B) as well as studies that shed light on the mecha-
nism of the reaction. 
Scheme 1. Cross-Ullmann Approaches to Biaryls Using 
Sulfonate Esters. 

 
Preliminary studies examined the coupling of p-anisyl tri-

flate (1a) with phenyl tosylate (2a) in the presence of nickel 
and palladium catalysts, salt additives, and reductants (Table 
1). The optimal conditions were with 1 mol% of each catalyst 
(1:1.2 metal/ligand ratio), Zn reductant, and LiBr at 40 °C 
overnight (Table 1, entry 1). Unless otherwise noted (foot-
note c in Table 1), low yields were accompanied by larger 
amounts of dimeric biaryls (biphenyl and bianisole). 

A. Previous Studies:  Differentiation Between Sulfonate Esters and Halides
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Salts were added to facilitate catalyst turnover9c (by activat-
ing the zinc surface and converting nickel triflate to nickel bro-
mide), to stabilize potential arylpalladium(II) intermedi-
ates,20 and to modulate transmetalation.21  A variety of bro-
mide salts were effective (Table 1, entries 5-9) but ZnBr2 was 
inhibitory9c (entry 10). However, Zn reductant was essential 
and could not be replaced with Mn (entry 4). 
Table 1. Sulfonate Cross-Ullmann Reaction Optimization.a 

 
entry variations from above conditions  3a (%)b 

1 none 76 

2 without NiCl2(dme) and L1 <5c 

3 without PdCl2 and dppb 58 

4 Mn instead of Zn or without Zn <5c 

5 without LiBr 8c 

6 2.0 equiv instead of 4.0 equiv of LiBr 63 

7 NaBr instead of LiBr 72 

8 KBr instead of LiBr 73 

9 n-Bu4NBr instead of LiBr 54 

10 ZnBr2 instead of LiBr <5c 

11 L2 instead of L1 32 

12 L3 instead of L1 12 

13 L4 instead of L1 8c 

14 L5 instead of L1 65 

15 L6 instead of L1 62 

16 0.5 mol% [Ni]/[Pd], 0.6 mol% dppb/L1 73d 

17 Reaction setup on benchtop using standard 
glassware and Schlenk line 

73e 

aReactions on a 0.25 mmol scale in 1.0 mL of DMF. bGC 
yield vs dodecane. c>75% of both 1a and 2a remained. dReac-
tion on a 0.5 mmol scale in 1.0 mL DMF. eIsolated yield. 

While a variety of phosphines and bipyridines supported 
the coupling, the best yields were obtained with dppb and 
4,4´-diphenyl-2,2´-bipyridine (L1, dpbpy) (Table 1 and Ta-
ble S1 in Supporting Information). A variety of phosphines 
other than dppb resulted in moderate yields of 3a (29-61% 
yield, Table S1) due to decreased selectivity for cross-coupling 
over homocoupling; 1a and 2a were completely consumed. In 
contrast, results with nitrogen ligands had a strong depend-
ence on electronics (Table 1, entries 1, 11-15). The optimal 
ligand, L1, bears mildly electron-withdrawing groups. Reac-
tions with simple bpy (L5) or phen (L6) consumed both 
starting materials and formed cross-product 3a in 65 and 62% 

yield. Reactions with ligands that were more electron-rich 
(L2) and more sterically hindered (L4) provided lower yields 
of 3a due to slow conversion of both 1a and 2a. Reactions with 
a more electron-poor ligand (L3) resulted in primarily bian-
isole from homocoupling of 1a and slow consumption of 2a. 
The catalyst loading in some cases can be lowered to 0.5 
mol%, the lowest reported for Ni/Pd multimetallic cross-
Ullmann reactions (entry 16 and Scheme 2, 3d, 3p, 3w, 3af).9 

These conditions are compatible with a variety of func-
tional groups (Scheme 2), including ketones (3e and 3m), es-
ters (3f and 3g), dimethylaniline (3i), trifluoromethoxy (3i), 
alkyl chloride (3j), aryl chloride (3k), Boc-protected alkyl 
amine (3l) and arylboronic acid pinacol ester (3m). More ste-
rically hindered pairings could also be coupled, using slightly 
modified conditions: a higher reaction temperature (60 °C) 
and an additional 0.5 equiv of aryl tosylate (3n-t). Scaling the 
synthesis of 3w ten-fold (from 0.5 mmol to 5.0 mmol) pro-
vided a similar yield of product (73% yield at 0.5 mmol vs 68% 
yield at 5.0 mmol). 

The ability to cross-couple two phenol derivatives can pro-
vide extra flexibility in synthesis because phenols are more 
abundant than arylmetal reagents and in some cases phenols 
are the most convenient arene source (see Supporting Infor-
mation Table S2).4,22 For example, we coupled a variety of aryl 
triflates and tosylates derived from natural products (3w, 3x, 
3y, 3ab, 3ac, 3ad, 3ae, 3af, 3ag), drug intermediates (3u, 3v, 
3z, 3aa, 3ad, 3af, 3ag), or precursors to common materials 
(3aa, 3ab, 3ae). 

Another feature of this biaryl synthesis is that a pair of phe-
nols can be coupled in two different ways, providing another 
approach to improve yields. More electron-rich aryl triflates 
provided higher yields (3a vs 3b, 72% vs 62% yield), but there 
was no trend with aryl tosylate electronics (Tables S7-S9 in 
Supporting Information). 

Mechanistically, we focused on three questions:  1) deter-
mining the reactivity preference of each catalyst for the sub-
strates,18,19,20 2) the mechanism of aryl transfer between cata-
lysts, and 3) the role of Pd in the reaction given that nickel 
alone also forms product (Table 1, entries 1-3). The collected 
data are consistent with the Pd catalyst reacting preferentially 
with the aryl triflate and the Ni catalyst reacting with both sub-
strates, but slightly preferring the aryl tosylate. The evidence 
shows that Zn mediates the aryl transfer between Ni and Pd. 
Finally, Pd improves yields by helping to balance the rate of 
consumption of aryl zinc reagents with the rate of their for-
mation. 

A combination of studies on each catalyst separately were 
contrasted with the combined system to shed light on the 
mechanism (Figure 1). In particular, time-course studies on 
the coupling of p-anisyl triflate (1a) with phenyl tosylate (2a) 
were conducted under standard conditions (A, Figure 1-I), 
nickel-only conditions (B, Figure 1-II), and palladium-only 
conditions (C and D). We visualized the total concentration 
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of Ph-M and Ar-M (M = NiX,23 PdX, ZnX; Ar = p-anisyl) by 
quenching reaction aliquots with iodine.24 
Scheme 2. Substrate Scope for the Cross-Coupling of Aryl Triflates with Aryl Tosylates.a,b 

 
aReactions on a 0.50 mmol scale in 2.0 mL of DMF. bIsolated yield of purified material. cResults at 0.5 mol% catalyst loading (as in 

Table 1, entry 16). dReaction was run at 35 °C. e1.5 Equiv aryl tosylate was used. fReaction was run at 60 °C. gReaction was run on 5 mmol 
scale. hReaction run with 2 equiv ArOTs at 0.25 mmol scale. iResults at 5 mol% catalyst loading (5 mol% Ni + Pd, 6 mol% 4,4´-dimethoxy-
2,2´-bipyridine + dppb). 

 
The data in Figure 1 shows strong evidence for a low, steady-

state concentration of PhZnX (Z-1) under standard reaction 
conditions (Figure 1-I, Condition A). This phenylzinc species 
is derived from phenyl tosylate (2a) and visualized as 8 after 
iodination. Together with experiments using either catalyst 

alone (Conditions B, C, and D), we can confirm that some of 
8 in Condition A is derived from a phenylzinc intermediate, 
that nickel has a slight selectivity for 2a, and that palladium is 
selective for 1a.
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Figure 1. Assessment of organometallic reagents present in cross-Ullman couplings. (I) Concentrations of 8 and 9 in Condition A 
vs time. (II) Concentrations of 8 and 9 in Condition B vs time. Concentrations of 8 and 9 were determined by GC analysis vs an internal 
standard after iodination of aliquots of the reaction mixtures. See Supporting Information Tables S10-S16 for further details, including 
data on Conditions C and D. 

 
Our reasoning: 
1) The reaction catalyzed by nickel catalyst alone (Condi-

tion B, Figure 1-II; Tables S12-S13) forms a concentration of 
8 (24.4 mM at 420 min) that far exceeds the concentration of 
nickel catalyst (grey line, 2.5 mM, [8]/[Ni] = 9.8), confirming 
that nickel to zinc transmetalation is possible14 and preferred 
over biaryl formation.7,8,25 

2) The nickel catalyst alone (Condition B) consumes 1a 
and 2a at almost the same rate, with a slight preference for to-
sylate 2a (Table S12, consumption of 2a/1a ~1.1 between 6% 
and 52% conversion). This is consistent with the stoichio-
metric reaction of (L1)Ni0(cod), where tosylate 2a reacted 
3.2 times faster than triflate 1a,26 but contrary to most other 
reports where triflates are much more reactive than tosyl-
ates.18,19,20 This result further suggests that other steps in the 
catalytic cycle besides oxidative addition play a role in the se-
lectivity for cross-product 3a over dimeric biaryls. 

3) In contrast, palladium(0) does not react with phenyl to-
sylate (2a) and instead oxidatively adds to p-anisyl triflate 
(1a) to form 9 after iodination (Conditions C and D, Tables 
S14-S16). We do not think that p-anisylzinc is formed under 
these conditions because [9]/[Pd] is between 0.15 and 1.01. 
The arylpalladium species is unreactive with itself, zinc, or 
zinc salts because no biaryls (3a, 4, 5) are formed. 

4) In Condition A (Figure 1-I; Tables S10-S11), the com-
bined concentration of 8 (5.1 mM) and 9 (2.6 mM) at 300 
min indicates a total concentration of arylmetal species (7.7 
mM) that exceeds the combined concentration of nickel and 
palladium catalysts (denoted with green line, 5.0 mM). This 
confirms that phenylzinc is formed in productive reactions 
and suggests that both aryl and vinyl transfer in related multi-
metallic reactions is zinc-mediated.9 

Based upon this data and literature reports, we propose a 
mechanism for the nickel and palladium-catalyzed cross-
Ullmann reaction of aryl triflate with aryl tosylate in Scheme 
3.27 The palladium catalyst (P-1) participates in an oxidative 
addition with the aryl triflate to form an arylpalladium(II) 
species20 (P-2) that is unreactive with itself or zinc. The nickel 
catalyst reacts preferentially with aryl tosylate, presumably to 
form arylnickel (N-2), followed by transmetalation with zinc 
salts to form arylzinc Z-1 (Figure 1-II).14 The arylzinc is pre-
sent in a low, steady concentration when both catalysts are pre-
sent (Figures 1-I and 1-II) due to the efficient consumption 
of Z-1 by P-2 to form diarylpalladium (P-3).21,28 Reductive 
elimination from P-3 forms cross-biaryl product 3a and re-
generates palladium(0).29 The nickel salt N-3 formed after ar-
ylzinc (Z-1) formation is reduced by zinc powder to regener-
ate low-valent nickel (N-1) with the assistance of LiBr.9c 
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While Ni is able to form and consume arylzinc reagents, Pd 
improves yields by ensuring full consumption of organozinc 
reagents. Without Pd present, significant amounts of arylzinc 
reagents remain (Condition B, 10% yield 8, 6% yield 9), di-
minishing the yield of product 3a (58% for B, 74% for A). 
Scheme 3. Proposed Ni/Zn/Pd Mechanism for Cross-
Ullmann Reaction of Aryl Triflates with Aryl Tosylates.a 

 
a Halide exchange is likely dynamic, X = Br, OTs, or OTf. Ar = 

p-anisyl. For nickel oxidation state, n = 2 or 3. 

In closing, we have found that the nickel and palladium sys-
tem we first reported for the cross-coupling of aryl triflates 
with aryl bromides is capable of selectively cross-coupling aryl 
triflates with aryl tosylates.30 This is the first cross-Ullmann re-
action of two different sulfonate esters and suggests that meth-
ods to couple other “alike” electrophiles can be achieved. In 
this case, the nickel catalyst displays anomalous selectivity for 
the aryl tosylate over the aryl triflate. The reaction is general 
and will be especially useful in cases where phenols are the 
most convenient starting materials. 
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M. Modern Transition-Metal-Catalyzed Carbon−Halogen Bond Formation. Chem. Rev. 2016, 116, 8003−8104. 
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(24) Krasovskiy, A.; Knochel, P. Convenient Titration Method for Organometallic Zinc, Magnesium, and Lanthanide Reagents. Synthesis 2006, 890−891. 
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(cod) could alter the outcome of the reaction and we cannot rule out nickel(I) intermediates. See reference 19 and Fang, S.; Wang, M.; Liu, J.; Li, B.; Liu, J. 
Theoretical Study on the Reaction Mechanism of “Ligandless” Ni-Catalyzed Hydrodesulfurization of Aryl Sulfide. RSC Adv. 2017, 7, 51475−51484. 
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this alternative mechanism at this time. See:  Zhu, B.; Yan, L. K.; Yao, L. S.; Ren, H.; Li, R. H.; Guan, W.; Su, Z. M. Orthogonal Reactivity of Ni(I)/Pd(0) Dual 
Catalysts for Ullmann C-C Cross-Coupling: Theoretical Insight. Chem. Commun. 2018, 54, 7959-7962. 

(28) (a) Wendt, O. F. Transmetallation Reactions Involving Group 10 Metals. Curr. Org. Chem. 2007, 11, 1417−1433; (b) Jin, L. Q.; Lei, A. W. Insights into 
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Hartwig, J. F. Electronic Effects on Reductive Elimination to Form Carbon-Carbon and Carbon-Heteroatom Bonds from Palladium(II) Complexes. Inorg. 
Chem. 2007, 46, 1936−1947. 

(30) The only other aryl sulfonate esters that showed promise were phenyl p-anisolesulfonate, phenyl 4′-methoxy-1,1′-biphenyl-4-sulfonate, and phenyl or 
p-anisyl imidazolesulfonate. See Supporting Information Tables S3-S6. 
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