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Abstract: Sulfonyl azides have been widely used as sulfonamido, diazo, and azido donors, as well as 

all-nitrogen 1,3-dipoles donors in synthetic chemistry. Here, the sulfonyl azides were used as efficient 

sulfonyl donors, which is very unusual. Trifluoromethanesulfonic acid-induced formation of the 

sulfonyl cation reactive species from sulfonyl azides was developed and used for the first time to 

couple various inactivated arenes to prepare sulfones at ambient temperature. 

Keywords: sulfonyl azides; S-N bond cleavage; arylsulfonyl compounds; cross-coupling; sulfonation; 

sulfones 

 

INTRODUCTION  

Sulfonyl azides are very important organic compounds that are widely used as sulfonamido group 

donors,1 diazo group donors,2 and all-nitrogen 1,3-dipoles donors in [3+2] cycloaddition reactions 

leading to 1,2,3-triazoles,3 as well as azide group sources4 in organic synthetic chemistry (Scheme 1). 
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However, there are few reports5 where the sulfonyl azides were sulfonyl donors in sulfonylation 

reactions via highly selective S-N bond cleavage reactions. In 2010, Lovely and co-workers5a found 

that a tosyl derivative was the only substitution product when they treated a methylimidazole derivative 

with nBuLi and TsN3 in one step of the total synthesis of Naamidine H natural product. Harsh 

conditions such as a strong base (nBuLi) and low temperatures (–78 °C) were used, and a large amount 

of starting material was recovered. The authors reported: “This was a somewhat surprising result since 

we and others have used this approach for the azidation of imidazole C2 position”.5a However, it is 

unfortunate that no systematic expansion of this strategy to other aromatic compounds has been 

reported (Eq. 1). Very recently, Lam et al.5b reported the generation of sulfonyl radicals from sulfonyl 

azides using visible light and a photoactive iridium complex in tetrahydrofuran (THF), which were 

used to promote sulfonylative and azido sulfonylative cyclizations of enynes to give several classes of 

highly functionalized oxacycles and azacycles. It is noteworthy that the alkyne moiety of the enyne 

reagents served as the acceptor of the sulfonyl radicals, whereas the arenes have not been explored in 

the conversion (Eq. 2). Thus, the development of a new, mild, and regiospecific S-N bond cleavage 

reaction of the sulfonyl azides for incorporating a sulfonyl group into simple arenes, which extends 

beyond traditional sulfonylation method, remains unexplored. Therefore, a trifluoromethanesulfonic 

acid (TfOH)-promoted Friedel–Crafts type sulfonylation reaction was performed here for rapid access 

to a series of sulfone derivatives, with inactivated arenes serving as the electrophilic receptor and the 

sulfonyl azides serving as the sulfonyl group donor, via a regiospecific S-N bond cleavage reaction at 

ambient temperature (AT) (Scheme 2). 

 

Scheme 1. Versatile building blocks of sulfonyl azides. 
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To date, various sulfonyl-containing organic/inorganic compounds including sulfonyl chlorides,6 

sulfonic acids,7 sulfonic anhydrides,8 sulphonate,9 sulfonamides,10 sulfohydrazide,11 

dimethylsulfoxide (DMSO),12 DABSO,13 K2S2O8,14 SO2
15, and SO3,16 deliver their sulfonyl moiety to 

an electrophilic receptor. They then produced sulfone derivatives in the presence of a metal-catalyst 

or under metal-free oxidation reactions.17 In addition, oxidation of the sulfides can also be used to 

derive sulfones.18 Despite these effective methods, the development of a new environmentally benign 

sulfonylation reagent under simple and mild reaction conditions remains a highly desirable, 

challenging goal. Sulfonyl azides 1 can react with a strong acid to produce hydrogen azide (HN3) and 

a reactive sulfonyl cation might be involved. Accordingly, the sulfonyl cation generated in situ may be 

quickly captured by an arene electrophilic receptor, which would produce an arylsulfonyl compound.  

RESULTS AND DISCUSSION 

From the synthesis of N-containing heterocycles in the presence of brønsted acid,19 the reaction 

conditions were optimized for the sulfonyl delivery reaction of 4-methylbenzenesulfonyl azide (1a) 

with benzene (2a). Treatment of starting materials 1a (1.0 equiv.) and 2a (1.2 equiv.) with 

trifluoromethanesulfonic acid (TfOH, 3 equiv) in dichloromethane (DCM, 0.5 mL) at ambient 

temperature produced the desired 1-methyl-4-(phenylsulfonyl)benzene (3a) as a white solid in a 92% 

yield after 3 h. The structure of 3a was identified with 1H NMR, 13C NMR, high-resolution mass 
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spectrometry (HRMS), and MS (Table 1, entry 1). However, a lower yield of 3a along with recovered 

1a was obtained if the amount of TfOH was decreased (Table 1, entries 2 and 3). Other brønsted acids 

including methanesulfonic acid (MSA), 4-methylbenzenesulfonic acid (TsOH), H2SO4, HNO3, and 

AcOH were ineffective for the reaction (Table 1, entries 4–8). Further investigation of this 

intermolecular cross-coupling reaction with different solvents indicated that 1,4-dioxane, THF, 

methanol, diethyl ether, and DMSO did not yield the desired compound 3a (Table 1, entries 9–13). 

Table 1. Survey of the reaction conditions.a 

 

Entry Acid (equiv) Solvent Time/h Yield of 3a/% Recovered 1a/% 

1 TfOH (3.0) DCM 3 92 0 

2 TfOH (2.0) DCM 3 79 16 

3 TfOH (1.0) DCM 5 50 47 

4 MSA (3.0) DCM 5 NR 80 

5 TsOH (3.0) DCM 5 NR 82 

6 H2SO4 (3.0) DCM 5 NR 72 

7 HNO3 (3.0) DCM 5 NR 74 

8 AcOH (3.0) DCM 5 NR 97 

9 TfOH (3.0) 1,4-Dioxane 5 NR 93 

10 TfOH (3.0) THF 5 NR 87 
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11 TfOH (3.0) Methanol 5 NR 96 

12 TfOH (3.0) Diethyl ether 5 NR 95 

13 TfOH (3.0) DMSO 5 8 85 

a Unless otherwise indicated, all reactions were carried out with 1a (1.0 mmol), 2a (1.2 equiv) in 

0.5 mL anhydrous solvents at ambient temperature. 

Under optimized conditions (Table 1, entry 1), the scope of this Friedel–Crafts type sulfonylation 

reaction was examined (Scheme 2). Various sulfonyl azides (1) with different aryl groups (R1) were 

investigated first. The starting materials 1a–c bearing the methyl group (-Me) at the ortho-, meta-, and 

para-positions, 1d with a methoxyl group (-OMe) at the para-position, and benzenesulfonyl azide (1e) 

smoothly reacted with benzene (2a), and yielded (84%–92%) the desired sulfones 2a–e at ambient 

temperatures. Naphthalene-2-sulfonyl azide (1f) under the same conditions coupled with 2a to achieve 

an excellent yield of 3f (97%). When para-chloro and para-trifluoromethyl-substituted 

benzenesulfonyl azides 1g and 1h were employed as substrates, the corresponding sulfonylated 

products 3g (90%) and 3h (97%) were obtained exclusively. Furthermore, the arylsulfonyl azides 1i 

and 1j with electron withdrawing groups, including -CO2Et or -NO2 groups at the para-position of the 

benzene ring, were used for the sulfonylation reaction, and yielded sulfonylated products 3i and 3j (83% 

and 94%, respectively) at 60 °C. This type of diaryl sulfone derivative generally cannot be synthesized 

with sulfonylation reagents and arenes bearing the EWG(s) on the aryl ring because of limitations of 

the Friedel–Crafts reaction. These results thus indicated the practicality and flexibility of the present 

strategy. 

Scheme 2. Extension of the reaction scope a 
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3a: 3 h, 92% 

 

3b: 3 h, 91% 

 

3c: 3 h, 92% 

 

3d: 3 h, 84% 

 

3e: 3 h, 86% 

 

3f: 3 h, 97% 

 

3g: 3 h, 90% 

 

3h: 24 h, 97% 

 

3i: 5 h, 83%b 

S
O O

O2N  

3j: 24 h, 94%b 

 

3k: 5 h, NRc 

 

3l: 5 h, 98%b 

S
O O

S

 

3m: 3 h, 89% 
 

3n: 5 h, 45%d 

 

3o: 3 h, 80% 

 

3p: 3 h, 67%e 

 

3q: 3 h, 78%f 

 

3r: 3 h, 59%g 

 

3s: 5 h, 75% 

 

3t: 5 h, 93% 

 

3u: 3 h, 95%h 

 

3v: 5 h, 91%i 

 

3w: 3 h, 58% 

 

3x: 3 h, 99% 

 

3y: 3 h, 81% 

 

3z: 3 h, 93% 
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a Unless otherwise indicated, all reactions were carried out with 1 (1.0 mmol), 2 (1.2 equiv), and 

TfOH (3.0 equiv) in anhydrous DCM (0.5 mL) at ambient temperature.  

b Reaction was performed at 60 °C.  

c 85% of 1k was recovered.  

d 2.4 equiv of 2a was used.  

e 30% of ortho-sulfonylated product 1-methoxy-2-tosylbenzene (3p’) was obtained.  

f 9% of ortho-sulfonylated product 1-methyl-2-tosylbenzene (3q’) was obtained.  

g 37% of α-sulfonylated product 1-tosylnaphthalene 3r’ was obtained.  

h 3.0 equiv of 1a was used. 

i 5.0 equiv of 1a was used. 

The extension of the reaction scope revealed that compound 1k was not a viable substrate for the 

reaction for sulfone 3k formation, even at 60 °C. In contrast, starting material 1l with a weak basic 

amide group on the benzene yielded the sulfonylated product 3l (98%) at 60 °C. These observations 

indicated that it was largely caused by a salt-forming reaction of alkaline pyridine (1k) with the strong 

acid TfOH. Moreover, thiophene-2-sulfonyl azide (1m) also reacted smoothly with 2a to give the 

desired product 3m in an 89% yield. Benzene-1,2-disulfonyl diazide (1n) could also be subjected to 

the sulfonylation reaction to give the desired product 3n in a 45% yield, regardless of steric hindrance. 

The source of the sulfonyl moiety was not limited to an arylsulfonyl group. n-Butyl-substituted 

sulfonyl azide 1o could also be applied as a sulfonyl donor, and the sulfonylation reaction between 1o 

and 2a proceeded smoothly at ambient temperature to produce target compound 3o in a 80% isolated 

yield. 

Various arenes were tried for reaction with 1a. Beyond benzene (2a) used for 3a–o, other substituted 

benzenes, including anisole (2b), toluene (2c), naphthalene (2d), 1,2-dichlorobenzene (2e), and 

bromobenzene (2f) were viable substrates. However, in the cases of 2b–d, they produced not only 

para-sulfonylated products 3p–t (37%–93%), but also an ortho-substituted isomer 3p–r. In addition, 
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biphenyl (2g) and triphenylmethane (2h) worked as well; the corresponding di- and trisulfonylated 

products 3p and 3q were isolated in 95% and 91% yields, respectively. 5-tosylindolin-2-one (3w) was 

obtained in a 58% yield when 1a reacted with benzoheterocyclic compound indolin-2-one (2i). In 

conjunction with the product 3l, this selectable bond-formation reaction demonstrated the practicality 

and flexibility of the protocol. The sulfonylation strategy could occur not only in an intermolecular 

reaction, but also in an intramolecular reaction. The sulfonylation of [1,1’-biphenyl]-2-sulfonyl azide 

(1x) was also feasible, resulting in an almost quantitative yield of 3x (99%) via an intramolecular 

annulation reaction. Starting material m-xylene also proceed well with 1a. The cross-coupling reaction 

occurred specifically at the para-position of the methyl of m-xylene, gave the desired product 3z in 

93% yield after 3 h under optimized conditions. We also reacted some heterocycles starting materials 

with 1a, including indole, benzo[d]oxazole, 1H-benzo[d]imidazole, and benzofuran. They did not 

afford the desired products 3. Some unidentified complex mixture was observed in the case of indole 

and benzofuran. Some starting materials was recovered in the case of benzo[d]oxazole and 1H-

benzo[d]imidazole. 

The sulfonyl group is an important moiety that frequently appears in biological molecules, 

pharmaceuticals, pesticides, and polymers. They distinctly enhance certain features, such as 

benzobicylon, thiamphemcol, and HDACI.20 It can also serve as a protecting group for functional 

groups,21 or a “baton” that adds to and then leaves from an intermediate in organic synthetic reactions.5a, 

22 These benefits contribute to the diversity of their synthetic methods. With this strategy, the reaction 

of 1g with chlorobenzene could be easily performed at ambient temperature affording 3y in 81% yield 

after 3 h. This valuable molecule (3y) now is a commercial reagent and could be used for the synthesis 

of poly(oxy-1,4-phenylenesulfonyl-1,4-phenylene),23 Acedapsone,24 Dapsone,14 and other useful 

valuable derivatives14 via a simple derivatization reaction (Scheme 3). Acedapsone and Dapsone are 

antibiotics commonly used in combination with rifampicin and clofazimine for the treatment of leprosy, 

acne,25 dermatitis herpetiformis, and various other skin conditions.26 To further demonstrate the 
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practicality of the reaction, a large-scale synthesis was examined. For example, the reactions of 1a (1.2 

g, 6 mmol) with 2a (7.2 mmol) were conducted. It gave 3a (1.342 g) in 97% yield after 18 h. 

Scheme 3. Representative sulfonyl-containing molecules. 

 

From the experimental results and proposed mechanisms reported elsewhere,10a, 27 a probable 

pathway for the Friedel–Crafts-type cross-coupling of inactivated arenes and sulfonyl azides to prepare 

diaryl sulfone derivatives is given in Scheme 4. Initially, the acylation donor sulfonyl azides 1 reacted 

with TfOH to produce hydrogen azide (HN3) and the sulfonyl cation A with TfO– anion as the 

counterion. This is a potential agent for the Friedel–Crafts sulfonylation. Subsequently, the arene was 

activated by the electrophilic sulfonyl cation A to form the desired sulfonylation product 2 by 

deprotonation.28b,29  

Scheme 4. Proposed mechanism. 

 

■ CONCLUSION 

In summary, a trifluoromethanesulfonic acid (TfOH)-promoted regiospecific N-S bond cleavage 

reaction of sulfonyl azides was developed. It coupled with various inactivated arenes and led to a series 

of sulfones in good to excellent yields at ambient temperature via Friedel–Crafts type cross-coupling 

reactions. The procedure was very different from previous aromatic sulfonation reactions performed 

with sulfonyl chlorides, sulfonic acids, sulphonate, and sulfohydrazide. Here, the cross-coupling 

method proceeded with readily available sulfonyl azides, without high temperature, additives, metal 

catalysts, and or complex execution. More importantly, the sulfonyl azides served as a donor of 

sulfonyl groups, rather than a sulfonamido group donor, a diazo group donor, an all-nitrogen 1,3-

dipoles donor, and an azide group source. This will largely broaden application ranges. Furthermore, 
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the synthetic potential of the products makes this novel intramolecular cyclization very attractive. 

Application of this Friedel–Crafts sulfonylation to other systems, especially other heterocycles, is 

currently under investigation. 

■ EXPERIMENTAL SECTION 

General Remarks. All reactions were carried out at 25 oC, unless otherwise indicated. All other 

reagents were purchased from commercial sources and used without further treatment, unless 

otherwise indicated. Starting materials 1 was synthesized following the known literatures.30 Petroleum 

ether (PE) used here refers to the 60-90 oC boiling point fraction of petroleum. Ethyl acetate is 

abbreviated as EA. 1H and 13C{1H} NMR spectra were recorded on a Bruker Avance/600 (1H: 600 

MHz, 13C{1H}: 150 MHz at 25 ºC) or Bruker Avance/400 (1H: 400 MHz, 13C{1H}: 100 MHz at 25 ºC) 

with tetramethylsilane as the internal standard. Data are represented as follows: chemical shift, 

integration, multiplicity (br = broad, s = singlet, d = doublet, dd = double doublet, t = triplet, q = quartet, 

and m = multiplet), and coupling constants in Hertz (Hz). All high-resolution mass spectra (HRMS) 

were measured on a mass spectrometer by using electrospray ionization orthogonal acceleration time-

of-flight (ESI-oa-TOF), and the purity of all samples used for HRMS (>95%) was confirmed by 1H 

and 13C{1H} NMR spectroscopic analysis. Melting points were measured on a melting point apparatus 

equipped with a thermometer and were uncorrected. All reactions were monitored by thin-layer 

chromatography (TLC) with GF254 silica gel-coated plates, and in general, it was designated as the 

end of the reaction when the starting material 1 was consumed 1 h later. Flash chromatography was 

carried out on SiO2 (silica gel 200−300 mesh). 

The general procedure for the synthesis of 3 (3a as example): In a round-bottomed flask (25 mL) 

equipped with a magnetic stirrer, a solution of CH2Cl2 (0.5 mL) and benzenesulfonyl azide (1a) (183 

mg, 1.0 mmol) was prepared. Benzene (2a) (0.107 mL, 1.2 mmol) was added to the solution and the 

reaction mixture was stirred magnetically. Then TfOH (0.25 mL, 3.0 mmol) was added. The mixture 

was well-stirred for 3 h at ambient temperature. After complete conversion, as indicated by thin-layer 
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chromatography, the reaction was quenched by water and extracted with dichloromethane (3 × 5 mL). 

The combined filtrate was washed with saturated brine (2 × 5 mL), and dried over anhydrous Mg2SO4. 

The residue was purified by column chromatography on a silica gel with ethyl acetate: petroleum ether 

(2:45) to provide the desired product 3a as a white solid (213 mg, 92%). 

1-Methyl-4-(phenylsulfonyl)benzene (3a).31 The product was isolated by flash chromatography 

(eluent: EA/PE = 1/22) as a white solid (214 mg, 92%): mp: 123-124 oC; 1H NMR (600 MHz, CDCl3) 

δ 7.93 (d, J = 7.8 Hz, 2H), 7.83 (d, J = 7.2 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H), 

7.30 (d, J = 7.8 Hz, 2H), 2.40 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 144.1, 142.0, 138.7, 133.0, 129.9, 

129.2, 127.7, 127.5, 21.6. HRMS (ESI), m/z calcd. for C13H13O2S ([M+H]+) 233.0631, found: 

233.0630. 

1-Methyl-3-(phenylsulfonyl)benzene (3b).31 The product was isolated by flash chromatography 

(eluent: EA/PE = 1/22) as a white solid (212 mg, 91%): mp: 119-120 oC; 1H NMR (600 MHz, CDCl3) 

δ 7.94 (d, J = 7.2 Hz, 2H), 7.75 (d, J = 7.8 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.50 (t, J = 7.5 Hz, 2H), 

7.38 (dd, J = 18.0, 7.8, 2H), 2.40 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 141.8, 141.4, 139.5, 134.0, 

133.1, 129.2, 129.1, 127.9, 127.6, 124.8, 21.3. HRMS (ESI), m/z calcd. for C13H12NaO2S ([M+Na]+) 

255.0450, found: 255.0450. 

1-Methyl-2-(phenylsulfonyl)benzene (3c).31 The product was isolated by flash chromatography 

(eluent: EA/PE = 1/22) as a white solid (214 mg, 92%): mp: 79-81 oC; 1H NMR (600 MHz, CDCl3) δ 

8.22 (d, J = 7.8 Hz, 1H), 7.87 (d, J = 7.8 Hz, 2H), 7.57 (t, J = 6.9 Hz, 1H), 7.49 (dd, J = 16.8, 8.4 Hz, 

3H), 7.40 (t, J = 7.5 Hz, 1H), 7.23 (d, J = 7.2 Hz, 1H), 2.44 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 

141.3, 138.8, 138.0, 133.6, 133.0, 132.7, 129.4, 129.0, 127.7, 126.5, 20.2. HRMS (ESI), m/z calcd. for 

C13H12NaO2S ([M+Na]+) 255.0450, found: 255.0449. 

1-Methoxy-4-(phenylsulfonyl)benzene (3d).31 The product was isolated by flash chromatography 

(eluent: EA/PE = 1/22) as a white solid (209 mg, 84%); mp: 91-93 oC; 1H NMR (600 MHz, CDCl3) δ 

7.91 (d, J = 7.2 Hz, 2H), 7.88 (d, J = 7.8 Hz, 2H), 7.53 (t, J = 6.9 Hz, 1H), 7.48 (t, J = 7.2 Hz, 2H), 
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6.96 (d, J = 8.4 Hz, 2H), 3.84 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 163.4, 142.4, 133.1, 132.8, 129.9, 

129.2, 127.3, 114.5, 55.6. HRMS (ESI), m/z calcd. for C13H13O3S ([M+H]+) 249.0580, found: 

249.0580. 

Sulfonyldibenzene (3e).31 The product was isolated by flash chromatography (eluent: EA/PE = 1/22) 

as a white solid (187 mg, 86%): mp: 119-121 oC; 1H NMR (600 MHz, CDCl3) δ 7.95 (d, J = 7.8 Hz, 

4H), 7.56 (t, J = 7.2 Hz, 2H), 7.50 (t, J = 7.5 Hz, 4H). 13C NMR (150 MHz, CDCl3) δ 141.6, 133.2, 

129.3, 127.7. HRMS (ESI), m/z calcd. for C12H10NaO2S ([M+Na]+) 241.0294, found: 241.0294. 

2-(Phenylsulfonyl)naphthalene (3f).31 The product was isolated by flash chromatography (eluent: 

EA/PE = 1/22) as a yellow solid (260 mg, 97%): mp: 120-122 oC; 1H NMR (400 MHz, CDCl3) δ 8.58 

(s, 1H), 7.99 (t, J = 7.8 Hz, 3H), 7.93 (d, J = 8.8 Hz, 1H), 7.86 (t, J = 8.2 Hz, 2H), 7.67-7.58 (m, 2H), 

7.56 (t, J = 7.2 Hz, 1H), 7.50 (t, J = 7.4 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 141.7, 138.4, 135.0, 

133.2, 132.2, 129.6, 129.4, 129.3, 129.1, 129.09, 127.9, 127.7, 127.6, 122.7. HRMS (ESI), m/z calcd. 

for C16H13O2S ([M+H]+) 269.0631, found: 269.0631. 

1-Chloro-4-(phenylsulfonyl)benzene (3g).32 The product was isolated by flash chromatography 

(eluent: EA/PE = 1/22) as a white solid (227 mg, 90%): mp: 93-94 oC; 1H NMR (600 MHz, CDCl3) δ 

7.93 (d, J = 7.8 Hz, 2H), 7.88 (d, J = 7.8 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.52 (t, J = 7.5 Hz, 2H), 

7.47 (d, J = 8.4 Hz, 2H). 13C NMR (150 MHz, CDCl3) δ 141.2, 140.1, 139.9, 133.4, 129.6, 129.4, 

129.1, 127.6. HRMS (ESI), m/z calcd. for C12H9ClNaO2S ([M+Na]+) 274.9904, found: 274.9908. 

1-(Phenylsulfonyl)-4-(trifluoromethyl)benzene (3h).31 The product was isolated by flash 

chromatography (eluent: EA/PE = 1/22) as a brown solid (277 mg, 97%): mp: 87-88 oC; 1H NMR (400 

MHz, CDCl3) δ 8.07 (d, J = 8.4 Hz, 2H), 7.96 (d, J = 7.2 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.61 (t, J 

= 7.4 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 145.3, 140.6, 134.9 (d, J = 32.9 

Hz), 133.8, 129.6, 128.2, 127.9, 126.5 (q, J = 3.7 Hz), 123.11 (d, J = 271.4 Hz). 19F NMR (565 MHz, 

CDCl3) δ -63.2. HRMS (ESI), m/z calcd. for C13H9F3NaO2S ([M+Na]+) 309.0168, found: 309.0168. 

Ethyl 4-(phenylsulfonyl)benzoate (3i).34 The product was isolated by flash chromatography (eluent: 
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EA/PE = 1/22) as a yellow oil (242 mg, 83%); 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 8.4 Hz, 2H), 

8.00 (d, J = 8.8 Hz, 2H), 7.94 (d, J = 7.6 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 

4.38 (dd, J = 14.0 Hz,7.2 Hz, 2H), 1.37 (t, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 165.0, 

145.4, 140.9, 134.7, 133.6, 130.4, 129.5, 127.8, 127.7, 61.7, 14.2. HRMS (ESI), m/z calcd. for 

C15H14NaO4S ([M+Na]+) 313.0505, found: 313.0499. 

1-Nitro-4-(phenylsulfonyl)benzene (3j).32 The product was isolated by flash chromatography 

(eluent: EA/PE = 1/22) as a yellow solid (247 mg, 94%): mp: 141-142 oC; 1H NMR (600 MHz, CDCl3) 

δ 8.34 (d, J = 8.4 Hz, 2H), 8.13 (d, J = 8.4 Hz, 2H), 7.97 (d, J = 7.2 Hz, 2H), 7.64 (t, J = 7.2 Hz, 1H), 

7.56 (t, J = 7.5 Hz, 2H). 13C NMR (150 MHz, CDCl3) δ 150.3, 147.4, 140.0, 134.1, 129.7, 129.0, 128.0, 

124.5. HRMS (ESI), m/z calcd. for C12H9NNaO4S ([M+Na]+) 286.0144, found: 286.0142. 

N-(4-(phenylsulfonyl)phenyl)acetamide (3l).31 The product was isolated by flash chromatography 

(eluent: EA/PE = 1/22) as a white solid (270 mg, 98%): mp: 180-182 oC; 1H NMR (600 MHz, CDCl3) 

δ 7.90 (d, J = 6.6 Hz, 2H), 7.84 (d, J = 7.2 Hz, 2H), 7.81 (s, 1H), 7.65 (d, J = 7.8 Hz, 2H), 7.55 (t, J = 

7.2 Hz, 1H), 7.49 (t, J = 6.9 Hz, 2H), 2.17 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 168.9, 142.6, 141.7, 

135.9, 133.2, 129.3, 129.0, 127.4, 119.6, 24.7. HRMS (ESI), m/z calcd. for C14H13NNaO3S ([M+Na]+) 

298.0508, found: 298.0510. 

2-(Phenylsulfonyl)thiophene (3m).32 The product was isolated by flash chromatography (eluent: 

EA/PE = 1/22) as a white solid (200 mg, 89%): mp: 116-118 oC; 1H NMR (600 MHz, CDCl3) δ 7.99 

(d, J = 7.2 Hz, 2H), 7.70 (dd, J = 3.6 Hz, 1H), 7.64 (dd, J = 4.8 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.52 

(t, J = 7.5 Hz, 2H), 7.08 (dd, J = 4.8, 4.2 Hz, 1H). 13C NMR (150 MHz, CDCl3) δ 143.1, 142.1, 133.9, 

133.4, 133.3, 129.3, 127.8, 127.3. HRMS (ESI), m/z calcd. for C10H9O2S2 ([M+H]+) 225.0038, found: 

225.0037. 

1,2-Bis(phenylsulfonyl)benzene (3n).37 The product was isolated by flash chromatography (eluent: 

EA/PE = 1/22) as a yellow solid (161 mg, 45%): mp: 109-110 oC; 1H NMR (600 MHz, CDCl3) δ 8.49 

(t, J = 3.9 Hz, 2H), 7.97 (d, J = 7.8 Hz, 4H), 7.84 (t, J = 3.9 Hz, 2H), 7.58 (t, J = 7.2 Hz, 2H), 7.51 (t, 
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J = 7.5 Hz, 4H). 13C NMR (150 MHz, CDCl3) δ 141.5, 140.3, 133.9, 133.3, 128.7, 128.0. HRMS (ESI), 

m/z calcd. for C18H14NaO4S2 ([M+Na]+) 381.0226, found: 381.0235. 

(Butylsulfonyl)benzene (3o).38 The product was isolated by flash chromatography (eluent: EA/PE 

= 1/22) as a yellow oil (159 mg, 80%); 1H NMR (600 MHz, CDCl3) δ 7.91 (d, J = 7.8 Hz, 2H), 7.65 

(t, J = 7.2 Hz, 1H), 7.57 (t, J = 7.8 Hz, 2H), 3.08 (t, J = 7.8 Hz, 2H), 1.73-1.65 (m, 2H), 1.39 (m, 2H), 

0.89 (t, J = 7.5 Hz, 3H). 13C NMR (150 MHz, CDCl3) δ 139.2, 133.6, 129.2, 128.0, 56.1, 24.6, 21.5, 

13.5. HRMS (ESI), m/z calcd. for C10H14NaO2S ([M+Na]+) 221.0607, found: 221.0606. 

1-Methoxy-4-tosylbenzene (3p).34 The product was isolated by flash chromatography (eluent: 

EA/PE = 1/22) as a white solid (176 mg, 67%): mp: 157-158 oC; 1H NMR (600 MHz, CDCl3) δ 7.86 

(d, J = 7.8 Hz, 2H), 7.79 (d, J = 7.2 Hz, 2H), 7.27 (d, J = 7.8 Hz, 2H), 6.95 (d, J = 7.2 Hz, 2H), 3.83 

(s, 3H), 2.38 (s, 3H).13C NMR (150 MHz, CDCl3) δ 163.1, 156.3, 143.7, 133.8, 129.8, 129.7, 127.4, 

114.4, 55.6, 21.5. HRMS (ESI), m/z calcd. for C14H14NaO3S ([M+Na]+) 285.0556, found: 285.0563. 

1-Methoxy-2-tosylbenzene (3p’).39 The product was isolated by flash chromatography (eluent: 

EA/PE = 1/22) as a white solid (79 mg, 30%): mp: 105-107 oC; 1H NMR (600 MHz, CDCl3) δ 8.14 

(d, J = 7.8 Hz, 1H), 7.85 (d, J = 7.8 Hz, 2H), 7.52 (t, J = 7.8 Hz, 1H), 7.27 (d, J = 7.8 Hz, 2H), 7.09 (t, 

J = 7.5 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 3.77 (s, 3H), 2.41 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 

157.0, 143.7, 138.6, 135.3, 129.8, 129.3, 129.1, 128.5, 120.5, 112.4, 55.8, 21.6. HRMS (ESI), m/z 

calcd. for C14H14NaO3S ([M+Na]+) 285.0556, found: 285.0562. 

4,4’-Sulfonylbis(methylbenzene) (3q).33 The product was isolated by flash chromatography (eluent: 

EA/PE = 1/22) as a white solid (192 mg, 78%): mp: 157-158 oC; 1H NMR (600 MHz, CDCl3) δ 7.81 

(d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 2.38 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 143.9, 139.1, 

129.9, 127.7, 21.5. HRMS (ESI), m/z calcd. for C14H14NaO2S ([M+Na]+) 269.0607, found: 269.0615. 

1-Methyl-2-tosylbenzene (3q’).34 The product was isolated by flash chromatography (eluent: 

EA/PE = 1/22) as a white oil (22 mg, 9%); 1H NMR (600 MHz, CDCl3) δ 8.19 (d, J = 7.8 Hz, 1H), 

7.74 (d, J = 7.8 Hz, 2H), 7.46 (t, J = 7.2 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.29 (d, J = 7.8 Hz, 2H), 
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7.22 (d, J = 7.2 Hz, 1H), 2.44 (s, 3H), 2.40 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 143.95, 139.20, 

138.33, 137.89, 133.44, 132.62, 129.65, 129.29, 127.77, 126.42, 21.58, 20.20. HRMS (ESI), m/z 

calcd. for C14H14NaO2S ([M+Na]+) 269.0607, found: 269.0613. 

Mixture of 2-Tosylnaphthalene (3r) and 1-Tosylnaphthalene (3r’).35 The product was isolated by 

flash chromatography (eluent: EA/PE = 1/22) as a pink solid (272 mg, 96%); 1H NMR (600 MHz, 

CDCl3) δ 8.64 (d, J = 8.4 Hz, 1H), 8.56 (s, 1H), 8.49 (d, J = 7.2 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.97 

(d, J = 7.8 Hz, 1H), 7.83-7.98 (m, 7H), 7.66-7.57 (m, 3H), 7.53 (t, J = 7.2 Hz, 1H), 7.29 (d, J = 7.2 Hz, 

2H), 7.25 (s, 1H), 2.38 (s, 3H), 2.36 (s, 2H). 13C NMR (100 MHz, CDCl3) δ 144.2, 144.0, 138.9, 138.7, 

136.2, 135.0, 134.2, 129.9, 129.8, 129.6, 129.4, 129.0, 129.0, 128.8, 128.5, 128.3, 127.9, 127.8, 127.6, 

127.5, 126.8, 124.4, 124.4, 122.7, 21.5. HRMS (ESI), m/z calcd. for C17H14NaO2S ([M+Na]+) 

305.0607, found: 305.0604. 

1,2-Dichloro-4-tosylbenzene (3s).36 The product was isolated by flash chromatography (eluent: 

EA/PE = 1/22) as a white solid (224 mg, 75%): mp: 252-255 oC; 1H NMR (600 MHz, CDCl3) δ 8.00 

(s, 1H), 7.81 (d, J = 7.2 Hz, 2H), 7.74 (d, J = 7.8 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.33 (d, J = 7.2 Hz, 

2H), 2.42 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 144.9, 141.9, 138.0, 137.7, 133.9, 131.3, 130.2, 

129.4, 127.8, 126.5, 21.6. HRMS (ESI), m/z calcd. for C13H10Cl2NaO2S ([M+Na]+) 322.9671, found: 

322.9676. 

1-Bromo-4-tosylbenzene (3t).33 The product was isolated by flash chromatography (eluent: EA/PE 

= 1/22) as a white solid (288 mg, 93%): mp: 135-136 oC; 1H NMR (600 MHz, CDCl3) δ 7.79 (dd, J = 

12.9, 8.1 Hz, 4H), 7.62 (d, J = 7.8 Hz, 2H), 7.30 (d, J = 7.8 Hz, 2H), 2.40 (s, 3H). 13C NMR (150 MHz, 

CDCl3) δ 144.5, 141.1, 138.2, 132.5, 130.0, 129.0, 128.2, 127.7, 21.6. HRMS (ESI), m/z calcd. for 

C13H11BrNaO2S ([M+Na]+) 332.9555, found: 332.9551. 

4,4'-Ditosyl-1,1'-biphenyl (3u). The product was isolated by flash chromatography (eluent: EA/PE 

= 1/5) as a yellow solid (439 mg, 95%): mp: >300 oC; 1H NMR (600 MHz, CDCl3) δ 8.00 (d, J = 8.4 

Hz, 2H), 7.85 (d, J = 7.8 Hz, 2H), 7.64 (d, J = 7.8 Hz, 2H), 7.32 (d, J = 7.8 Hz, 2H), 2.40 (s, 3H). 13C 
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NMR (150 MHz, CDCl3) δ 144.5, 143.9, 141.9, 138.4, 130.1, 128.3, 128.2, 127.8, 21.6. HRMS (ESI), 

m/z calcd. for C26H23O4S2 ([M+H]+) 463.1032, found: 463.1041. 

Tris(4-tosylphenyl)methane (3v). The product was isolated by flash chromatography (eluent: 

EA/PE = 1/2) as a yellow solid (643 mg, 91%): mp: 75-77 oC; 1H NMR (600 MHz, CDCl3) δ 7.81 (dd, 

J = 12.9, 8.1 Hz, 12H), 7.30 (d, J = 7.2 Hz, 6H), 7.10 (d, J = 7.2 Hz, 6H), 5.57 (s, 1H), 2.40 (s, 9H). 

13C NMR (150 MHz, CDCl3) δ 146.6, 144.5, 141.2, 138.3, 130.1, 130.0, 128.0, 127.8, 56.1, 21.6. 

HRMS (ESI), m/z calcd. for C40H34NaO6S3 ([M+Na]+) 729.1410, found: 729.1416. 

5-Tosylindolin-2-one (3w). The product was isolated by flash chromatography (eluent: EA/PE = 

1/22) as a yellow solid (167 mg, 58%): mp: 250-253 oC; 1H NMR (400 MHz, DMSO) δ 10.81 (s, 1H), 

7.78 (d, J = 8.4 Hz, 3H), 7.71 (s, 1H), 7.40 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 8.0 Hz, 1H), 3.56 (s, 2H), 

2.36 (s, 3H). 13C NMR (100 MHz, DMSO) δ 176.4, 148.5, 143.8, 139.2, 133.6, 130.0, 128.1, 127.3, 

127.0, 123.3, 109.3, 35.5, 20.9. HRMS (ESI), m/z calcd. for C15H13NNaO3S ([M+Na]+) 310.0508, 

found: 310.0521. 

Dibenzo[b,d]thiophene 5,5-dioxide (3x).40 The product was isolated by flash chromatography 

(eluent: EA/PE = 1/22) as a yellow solid (214 mg, 99%): mp: 182-183 oC; 1H NMR (400 MHz, CDCl3) 

δ 7.82 (dd, J = 11.6, 7.6 Hz, 2H), 7.65 (td, J = 7.6, 1.1 Hz, 1H), 7.54 (td, J = 7.6, 0.8 Hz, 1H). 13C 

NMR (100 MHz, CDCl3) δ 137.8, 133.9, 131.6, 130.4, 122.2, 121.6. HRMS (ESI), m/z calcd. for 

C12H9O2S ([M+H]+) 217.0318, found: 217.0325. 

4,4’-Sulfonylbis(chlorobenzene) (3y).41 The product was isolated by flash chromatography (eluent: 

EA/PE = 1/22) as a white solid (232 mg, 81%): mp: 143-146 oC; 1H NMR (600 MHz, CDCl3) δ 7.86 

(d, J = 8.4 Hz, 4H), 7.49 (d, J = 8.4 Hz, 4H). 13C NMR (100 MHz, CDCl3) δ 140.2, 139.8, 129.8, 129.1. 

HRMS (ESI), m/z calcd. for C12H8Cl2NaO2S ([M+Na]+) 308.9514, found: 308.9511. 

1,3-Dimethyl-5-tosylbenzene (3z).42 The product was isolated by flash chromatography (eluent: 

EA/PE = 1/22) as a yellow oil (242 mg, 93%); 1H NMR (600 MHz, CDCl3) δ 8.07 (d, J = 8.4 Hz, 1H), 

7.72 (d, J = 7.8 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 7.8 Hz, 1H), 7.02 (s, 1H), 2.39 (s, 6H), 
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2.35 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 144.2, 143.7, 138.7, 137.7, 136.2, 133.3, 129.5, 129.5, 

127.6, 127.0, 21.5, 21.3, 20.1. HRMS (ESI), m/z calcd. for C15H17O2S ([M+H]+) 260.0944, found: 

260.0956. 
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