

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 5934-5939

Design, synthesis, and biological evaluation of triazolopiperazine-based β-amino amides as potent, orally active dipeptidyl peptidase IV (DPP-4) inhibitors

Jennifer E. Kowalchick,^{a,*} Barbara Leiting,^b KellyAnn D. Pryor,^b Frank Marsilio,^b Joseph K. Wu,^b Huaibing He,^a Kathryn A. Lyons,^a George J. Eiermann,^c Aleksandr Petrov,^c Giovanna Scapin,^a Reshma A. Patel,^c Nancy A. Thornberry,^b Ann E. Weber^a and Dooseop Kim^a

^aDepartment of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA ^bDepartment of Metabolic Disorders, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA ^cDepartment of Pharmacology, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA

> Received 31 May 2007; revised 23 July 2007; accepted 24 July 2007 Available online 23 August 2007

Abstract—Various β -amino amides containing triazolopiperazine heterocycles have been prepared and evaluated as potent, selective, orally active dipeptidyl peptidase IV (DPP-4) inhibitors. These compounds display excellent oral bioavailability and good overall pharmacokinetic profiles in preclinical species. Moreover, in vivo efficacy in an oral glucose tolerance test in lean mice is demonstrated.

© 2007 Elsevier Ltd. All rights reserved.

In recent years, glucagon-like peptide 1 (GLP-1) therapy has emerged as an area of active investigation for the treatment of type 2 diabetes.¹ GLP-1 is an incretin hormone released in the gut upon food ingestion that regulates insulin in a glucose-dependent manner. Elevation of blood glucose levels causes GLP-1 to trigger insulin biosynthesis and secretion, inhibit glucagon release, slow gastric emptying, and induce pancreatic β -cell proliferation. The serine protease dipeptidyl peptidase IV (DPP-4) rapidly renders GLP-1 inactive through cleavage of its N-terminal two amino acids. Inhibition of DPP-4 prolongs the half life of GLP-1 and thus, leads to increased levels of active endogenous GLP-1. Accordingly, DPP-4 inhibition is a promising new treatment for type 2 diabetes.²

Compound 1, JANUVIA[™] (sitagliptin), was recently approved by the U.S. Food and Drug Administration

for the treatment of patients with type 2 diabetes. Because the fused heterocycle moiety of sitagliptin is recognized as a key pharmacophore that contributes to its good pharmacokinetic profile, potency, and selectivity,³ a new series of triazolopiperazines have been investigated. Moving the nitrogen from the 2-to the 3-position in the triazolopiperazine bicycle of sitagliptin brought about a new family of compounds. Herein, we focus on the evaluation of the following variations to this new triazolopiperazine structure: modification at the 2-position as well as the 8-position of the bicycle **2**.

The DPP-4 inhibitors in this report were prepared by standard peptide coupling of β -amino acids with fused

Keywords: Dipeptidyl peptidase IV; DPP-4; Dipeptidyl peptidase IV inhibitors; DPP-4 inhibitors; β -Amino amides; Triazolopiperazine; Triazolopiperazine-based β -amino amides; Type 2 diabetes.

^{*} Corresponding author. Tel.: +1 570 594 2569; e-mail: jennifer_kowalchick@yahoo.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.07.100

heterocycles as reported earlier.³ The synthesis of noncommercially available β -amino acid (13) has already been reported.³ Four different approaches to novel substituted triazolopiperazines are described in Scheme 1.

Following the procedures analogous to those reported in the literature, the target triazolopiperazine heterocycles were each prepared in four to five steps.⁴⁻⁷ Aminopyrazine (3) was acylated with trifluoroacetic anhydride, cyclopropane carbonyl chloride, and benzoyl chloride to give acetamides 4, 8, and 10, respectively.⁴ The trifluoromethyl and benzyl acetamides were then treated with phosphorous pentachloride followed by hydroxylamine to afford their respective hydroxyimideamides, 5 and 11.⁵ Condensation in polyphosphoric acid (PPA) or superphosphoric acid at elevated temperatures followed by catalytic hydrogenation gave piperazine intermediates 6 and 12.⁶ The cyclopropyl acetamide 8 was subsequently treated with \hat{O} -mesitylenesulfonyl hydroxyl amine, giving the aminopyrazinium salt,⁷ which was then cyclized and reduced using the aforementioned method, to afford 9. Heterocycle 7 was prepared from aminopyrazine using procedures outlined in the literature.⁶

As shown in Scheme 2, coupling of β -amino acid 13 with the respective piperazines, followed by deprotection of the amine, provided the desired compounds 25–28 in Table 1.

With piperazine analogs, α -substitution on the piperazine heterocycle has been shown to increase DPP-4 potency.⁸ To boost the potency of compounds in the triazolopiperazine series of current focus, various substituents were added to the α -position of the fused bicycle. Several approaches to obtain α -substitution on the triazolopiperazine heterocycle are described in Scheme 3.

Boc-protection of amine **6** followed by alkylation at the α -position with the appropriate alkyl halides and subsequent deprotection gave **16**.⁹ Alkylation of **15** with benzyl chloromethyl ether, followed by debenzylation, conversion to the mesylate (**17**),¹⁰ and displacement with the desired heterocycle gave heteroaryl-substituted piperazines **18**. Reaction of **15** with cyclopropane carboxal-dehyde gave hydroxyl intermediate **19**. Deprotection of **19** gave **20**, whereas fluorination with diethylaminosulfur trifluoride (DAST)¹¹ followed by deprotection gave

Scheme 2. Reagents and conditions: (a) 13, HOBT, EDC, DMF, rt, 16 h; (b) satd HCl in CH₃OH, rt, 1 h.

22. Treatment of 19 with 1,1-thiocarbonyldiimidazole resulted in elimination, which, followed by reduction and deprotection, gave 21. Coupling of the triazolopiperazines 16, 18, 20–22 with β -amino acid 13, followed by separation of the diastereomers on OD chiralcel or AS and AD chiral pak columns, and deprotection provided desired compounds 29a–b, 30a–b, 31a–b, 32a–b, 33a–d, 34a–d, 35, 36, 37, and 37a–b. In general, the slower eluting diastereomers on the OD and AS chiral columns and the faster eluting diastereomers on the AD chiral column were the more potent diastereomers, and are listed in Table 2.

The compounds listed in Tables 1 and 2 underwent in vitro evaluation for inhibition of DPP-4.¹² To screen for off-target activity, the analogs were also tested against homologs of DPP-4 in the same gene family as well as other proline-specific enzymes. Homologs tested include DPP-8,¹³ DPP-9,¹⁴ and fibroblast activation protein (FAP).¹⁵ Other proline-specific enzymes that were tested include quiescent cell proline dipeptidase (QPP, also known as DPP-2),^{12,16} prolidase, and amino peptidase P (APP). None of the compounds in this report showed any significant inhibition against FAP, prolidase, and APP ($IC_{50}s > 50,000$ nM), thus those data are not reported. Previous DPP-8/9 selective inhibitor studies suggest that DPP-8 and/or DPP-9 inhibition is associated with profound toxicity in preclinical species.¹⁷ Furthermore, monkeys treated with a non-selective DPP-4, DPP-8, and DPP-9 inhibitor displayed

Scheme 1. Reagents and conditions: (a) $(CF_3CO)_2O$, Et_3N , CH_2Cl_2 , 0 °C-rt, 2h; (b) PCl₅, dichloroethane, reflux, 5 h; (c) 50% aq NH₂OH, THF, rt, 2 h; (d) polyphosphoric acid, 150 °C, 18 h; (e) H₂, 10% Pd/C, EtOH, rt, 18 h; (f) *N*,*N*-dimethylformamide dimethyl acetal, reflux, 2 h; (g) 50% aq NH₂OH, THF, reflux, 1.5 h; (h) cyclopropane carbonyl chloride, pyridine, chloroform, rt, 2 h; (i) *O*-mesitylenesulfonyl hydroxyl amine,⁶ CH₂ Cl₂, 0 °C-rt, 1.5 h; (j) benzoyl chloride, pyridine, 0 °C-rt, 18 h; (k) superphosphoric acid, 110 °C, 3 h.

$F \xrightarrow{F} NH_2 O \xrightarrow{N} N$							
Compound	R	DPP-4 IC ₅₀ , nM	QPP IC ₅₀ , nM	DPP-8 IC ₅₀ , nM	DPP-9 IC ₅₀ , nM		
25	CF ₃	59	54,000	62,000	>100,000		
26	Н	100	>100,000	>100,000	>100,000		
27	\leftarrow	71	>100,000	>100,000	>100,000		
28	-	68	4000	44,000	>100,000		

Table 1.	Inhibitory	properties o	f fused	heterocycle-derive	d DPP-4	inhibitors	with	varied	2-position	substituents
----------	------------	--------------	---------	--------------------	---------	------------	------	--------	------------	--------------

Scheme 3. Reagents and conditions: (a) (Boc)₂O, DIPEA, CH₂Cl₂, rt, 18 h; (b) TMEDA, *n*-BuLi, R–X, -78 °C–rt, 1.5 h; (c) satd HCl in CH₃OH, 1 h; (d) 13, HOAT, HATU, DIPEA, DMF, rt, 18 h, followed by chiral separation on Chiral OD, AD, or AS columns; (e) TMEDA, *n*-BuLi, benzyl chloromethyl ether, -78 °C–rt, 1.5 h; (f) H₂ (1 atm) 10% Pd/C, EtOH, rt, 29 h, followed by H₂ (42 psi) 12 h; (g) MsCl, Et₃N, CH₂Cl₂, 0 °C–rt, 4 h¹⁰; (h) heterocycle (imidazole, pyrazole, or 1,2,4-triazole) K₂CO₃, DMF, 50 °C or NaH (60%), DMF, rt, 0.6 h; (i) *sec*-BuLi, cyclopropane carboxaldehyde, -78 °C–rt, 1 h; (j) DAST, CH₂Cl₂, -78 °C–rt, 17 h; (k) 1,1-thiocarbonyldiimidazole, DMAP, CH₂Cl₂, reflux, 17 h; (l) H₂ (1 atm) 10% Pd/C, EtOH, rt, 18 h.

treatment-related dermatological toxicity.¹⁸ Also, earlier β -amino acid-derived DPP-4 inhibitors were associated with significant QPP off-target activity.¹⁹ Thus, activities against these three enzymes are reported in Tables 1 and 2.

In vitro inhibitory activity for the selected triazolopiperazine-based DPP-4 inhibitors is listed in Tables 1 and 2, while Table 3 exhibits the pharmacokinetic properties of selected compounds with high DPP-4 potency.

Variation of the substituent at the triazolopiperazine 2-position is reported in Table 1. Exchanging the 2-position nitrogen of compound **1** with its 3-position substituent produces a threefold decrease in DPP-4 potency, as seen in compound **25** (DPP-4 IC₅₀ = 59 nM vs 18 nM for compound **1**). However, isomer **25** exhibits 100% oral bioavailability and a half life of 3.6 h in the rat (Table 3).

In an attempt to increase DPP-4 potency, the 2-position substituent was both varied and deleted; however, no substituent produced potency greater than that observed by the 2-trifluoromethyl group. Deletion of the trifluoromethyl substituent in compound 25 resulted in a twofold decrease in the DPP-4 potency (26). Cyclopropyl and phenyl-substituted compounds 27 and 28 both displayed decreased DPP-4 potency and selectivity and, thus, offered no advantage over compound 25. Of those explored, the trifluoromethyl group was accepted as the optimal 2-position substituent, and this substituent was thus used in further SAR studies examining other modifications in the piperazine heterocycle.

Aiming to boost DPP-4 potency in the series, various substituents were added to the α -position of the fused bicycle. In Table 2, simple addition of an *R*-methyl group to the α -position of the triazolopiperazine (confirmed by X-ray analysis) increased DPP-4 potency twofold (DPP-4 IC₅₀ = 25 nM) in comparison to 25. This compound (29b) displayed outstanding oral bioavailability and a lengthened half life in rat, dog, and rhesus monkey models (Table 3). Notably, the half life of 29b in the dog model was an exceptional 26 h.

Table 2. Inhibitory properties of fused heterocycle-derived DPP-4 inhibitors with varied 8-position substituents

Compound	R	DPP-4 IC ₅₀ (nM)	QPP IC50 (nM)	DPP-8 IC ₅₀ (nM)	DPP-9 IC ₅₀ (nM)
25	Н	59	54,000	62,000	>100,000
29a	$CH_3(S)$	274	72,000	>100,000	>100,000
29b	$CH_3(R)$	25	25,000	>100,000	>100,000
30b ^a	F	4	60,000	25,000	27,000
31b ^a	CF ₃	4	15,000	16,000	27,000
32b ^a	\int	7	7400	71,000	54,000
2.8.0	HO \bigtriangleup	10	22 000	06.000	. 100.000
33b ^{a,e}		12	33,000	86,000	>100,000
33u /	T	14	18,000	>100,000	>100,000
34c ^{a,d} 34d ^{a,d}	F	18 11	5767 4100	>100,000 >100,000	77,000 63,000
35 ^b	N N	2	26,000	>100,000	27,000
36 ^b	NNN N	4	9600	>100,000	>100,000
37 ^b		5	49,000	>100,000	>100,000
37a ^a		2	22,000	>100,000	>100,000

^a Tentatively assigned *R*-stereochemistry.

^b Mixture of diastereomers.

^c Single diastereomer, configuration at OH unknown.

^d Single diastereomer, configuration at F unknown.

Compound **29b** also displayed selectivity over QPP, DPP-8, and DPP-9. Compound **29a**, the S-diastereomer of **29b**, was significantly less active (DPP-4 $IC_{50} = 274 \text{ nM}$) than the *R*-diastereomer. This 10-fold decrease in potency was observed in all other less potent diastereomers, which were assumed to be the S-diastereomers (not included in Table 2). The biological results of **29b** suggested that α -substitution could be used for enhancement of both DPP-4 potency as well as pharmacokinetic properties.

Following the lead of α -methyl-substituted triazolopiperazine compound **29b**, a number of other analogs containing α -substitution were evaluated. Among these compounds were the benzyl, cyclopropyl, and heteroaryl-substituted triazolopiperazines shown in Table 2. Benzyl substitution, as seen in compounds **30b** and **31b**, greatly enhanced DPP-4 potency (DPP-4 $IC_{50} = 4 \text{ nM}$) when compared to compound **29b**; conversely, oral bioavailability (**30b**) suffered (%*F* = 32). Cyclopropyl substitution at the triazolopiperazine α -position was evaluated next. As compared to lead compound **29b**, potent diastereomers of the series cause a definite boost in DPP-4 potency and retain selectivity against DPP-8 and DPP-9. Upon further evaluation in pharmacokinetic studies, **33b** and **33d** did not show improvement relative to **29b**. Further efforts to improve pharmacokinetics then focused on heteroaryl incorporation

Compound	Species	Clp (mL/min/kg)	$t_{1/2}$ (h)	$AUC_{norm}~(\mu M~h~kg~mg^{-1})$	F (%)
1	Rat	60	1.7	0.523	76
	Dog	6.0	4.9	8.3	100
	Monkey	28	3.7	1.0	68
25	Rat	60	3.6	1.143	100
29b	Rat	68	4.0	0.432	74
	Dog	1.0	26	30.240	67
	Monkey	16	7.7	1.640	65
30b	Rat	76	2.7	0.146	32
33b	Rat	91	5.1	0.199	51
33d	Rat	97	3.9	0.271	63
35	Rat	97	9.0	0.027	7.1
36	Rat	142	2.3	0.151	62
37	Rat	129	2.8	0.035	13

Table 3. Pharmacokinetic properties of fused heterocycle-derived DPP-4 inhibitors

at the α -position of the bicycle. Diastereomeric separation could only be achieved for the 1-methyl-1H-1,2,4triazole analog (**37**), so biological data is reported for the (*R*) and (*S*) diastereomeric mixtures of the heterocyclic analogs. These compounds displayed increased DPP-4 potencies of 5- to 10-fold over lead compound **29b** and good selectivity over other proline-specific enzymes. Further in vivo testing of **35** and **37** revealed an overall decrease in oral bioavailability (%*F* = 7.1 and 13, respectively), as well as diminished oral exposure in **35**, **36**, and **37** (po AUC_{norm} = 0.027, 0.151, and 0.035, respectively).

Of the compounds examined, compound **29b** displayed the best overall profile with regard to in vitro potency, selectivity, and pharmacokinetics, and thus, was selected for further biological evaluation in vivo. The ability of compound **29b** to reduce glucose levels in lean mice was assessed in an oral glucose tolerance test (OGTT).^{3a} Single oral doses of **29b** administered 60 min prior to dextrose challenge reduced the blood glucose excursion in a dose-dependent manner from 0.1 mg/kg (14% inhibition) to 3.0 mg/kg (44% inhibition). Dose-dependent inhibition of glucose excursion appeared maximal at 1.0 mpk (39% inhibition) (Fig. 1).

X-ray crystal structure determination of compound 29b (the more potent diastereomer) in complex with the DPP-4 enzyme demonstrates that the absolute stereochemistry at the triazolopiperazine α -position is (R) (Fig. 2).²⁰ In a similar manner to that shown in the crystal structure of sitagliptin, the S1 hydrophobic pocket in the DPP-4 enzyme is fully occupied by compound 29b's 2,4,5-trifluorophenyl moiety. Also, the (R)- β -amino group interacts with glutamate residues Glu205 and Glu206 through four hydrogen bonding interactions.^{3a} The carboxylic oxygen and the hydroxyl of Tyr547 are bridged by a water molecule, and several other water-mediated interactions are also present between the nitrogen atoms of the triazolopiperazine and protein atoms. The triazolopiperazine is stacked against the side chain of Phe357.

The enhanced potency of **29b** (DPP-4 IC₅₀ = 25 nM) in comparison to **25** (DPP-4 IC₅₀ = 59 nM) corresponds to the (*R*)- α -methyl group of the triazolopiperazine

occupying a relatively open area of the DPP-4 binding site, and thus, providing further surface complementarity to the Phe375 side chain. Since having an (S)-methyl group at the α -position would cause a clash with Phe357, a 10-fold decrease in potency is observed with its diastereomer, **29a** (DPP-4 IC₅₀ = 274 nM).

Through variation of the heterocyclic moiety found in sitagliptin by exchanging the 2-position nitrogen with the 3-position substituent, a novel series of potent triazolopiperazine-based DPP-4 inhibitors have been discovered. These triazolopiperazine analogs are potent, selective DPP-4 inhibitors, and exhibit an excellent oral bioavailability and good overall pharmacokinetic profile, as demonstrated by isomer 25. Introduction of alkyl, heteroaryl, and benzyl substitution at the α -position resulted in a pronounced boost in DPP-4 potency. Compound 29b, the (R)-diastereomer, exhibited greater DPP-4 potency than its (S) counterpart. Due to its increased DPP-4 potency over compound 25, good selectivity over other proline-specific enzymes, and both a long half life and excellent oral bioavailability in all preclinical species tested, compound **29b** was selected for further in vivo development. An OGTT revealed that when administered to lean mice, compound 29b showed a dose-dependent inhibition of glucose excursion maximal at 1 mg/kg. As in sitagliptin, the fused heterocycle moiety of this series played a positive key role in

Figure 1. The effect of compound **29b** on glucose levels following an oral glucose tolerance test in lean mice. Single oral doses of **29b** administered 60 min prior to dextrose challenge, reduced the blood glucose excursion in a dose-dependent manner from 0.1 mg/kg (14% inhibition) to 3.0 mg/kg (44% inhibition).

Figure 2. The binding of compound 29b to the DPP-4 enzyme. Red dotted lines portray the interactions with 29b with DPP-4. For clarity purposes, the extensive hydrogen bonding network between water molecules, compound 29b, and protein atoms has been omitted.

DPP-4 potency, selectivity, and pharmacokinetics; however, due to unacceptable muscarinic receptor binding activities (M₂ $K_i = 0.470 \mu$ M: and M₄ $K_i = 0.800 \mu$ M), further development of compound **29b** was discontinued.

References and notes

- For recent GLP-1 references, see: (a) Holst, J. J. Curr. Opin. Endocrin. Diabetes 2005, 12, 56; (b) Knudsen, L. B. J. Med. Chem. 2004, 47, 4128; (c) Vahl, T. P.; D'Alessio, D. A. Expert Opin. Invest. Drugs 2004, 13, 177.
- For recent reviews see (a) Weber, A. E. J. Med. Chem. 2004, 47, 4135; (b) von Geldern, T. W.; Trevillyan, J. M. Drug Dev. Res. 2006, 67, 627; (c) Augustyns, K.; der Veken, P. V.; Haemers, A. Expert Opin. Ther. Patents 2005, 15, 1387.
- (a) Kim, D.; Wang, L.; Beconi, M.; Eiermann, G. J.; Fisher, M. H.; He, H.; Hickey, G. J.; Kowalchick, J. E.; Leiting, B.; Lyons, K.; Marsilio, F.; McCann, M. E.; Patel, R. A.; Petrov, A.; Scapin, G.; Patel, S. B.; Sinha Roy, R.; Wu, J. K.; Wyvratt, M. J.; Zhang, B. B.; Zhu, L.; Thornberry, N. A.; Weber, A. E. J. Med. Chem. 2005, 48, 141; (b) U.S. Patent 6,699,871 B2, 2004.
- 4. Sambaiah, T.; Reddy, K. K. Indian J. Chem., Sect. B 1992, 31b, 444.
- 5. Fink, D.; Kurys, B. Tetrahedron Lett. 1996, 37, 995.

- Polanc, S.; Vercek, B.; Stanovnik, B.; Tisler, M. Tetrahedron Lett. 1973, 14, 1677.
- Tamura, Y.; Minamikawa, J.; Sumoto, K.; Fujii, S.; Ikeda, M. J. Org. Chem. 1973, 38, 1239.
- Brockunier, L.; He, J.; Colwell, L. F., Jr.; Habulihaz, B.; He, H.; Leiting, B.; Lyons, K. A.; Marsilio, F.; Patel, R.; Teffera, Y.; Wu, J. K.; Thornberry, N. A.; Weber, A. E.; Parmee, E. R. *Bioorg. Med. Chem. Lett.* 2004, 14, 4763.
- 9. Cappola, G. M. J. Heterocycl. Chem. 1991, 28, 1769.
- Liu, L. T.; Lin, Y.; Wang, C. J.; Lin, M.; Yen, S.; Chen, H. Bioorg. Med. Chem. Lett. 1996, 6, 1335.
- (a) Fernández, R.; Matheu, M. I.; Echarri, R.; Castillón, S. *Tetrahedron* **1998**, *54*, 3523; (b) Demange, L.; Méndez, A.; Dugave, C. *Tetrahedron Lett.* **1998**, *39*, 1169.
- For assay conditions, see: Leiting, B.; Pryor, K. D.; Wu, J. K.; Marsilio, F.; Patel, R. A.; Craik, C. S.; Ellman, J. A.; Cummings, R. T.; Thornberry, N. A. *Biochem. J.* 2003, 371, 525.
- Abbot, C. A.; Yu, D. M.; Woollatt, E.; Sutherland, G. R.; McCaughan, G. W.; Gorrell, M. D. *Eur. J. Biochem.* 2000, 267, 6140.
- 14. Olsen, C.; Wagtmann, N. Gene 2002, 299, 185.
- Scallan, M. J.; Raj, B. K. M.; Calvo, B.; Garin-Chesa, P.; Sanz-Moncasi, M. P.; Healey, J. H.; Old, L. J.; Rettig, W. J. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 5657.
- McDonald, J. K.; Leibach, F. H.; Grindeland, R. E.; Ellis, S. J. Biol. Chem. 1968, 243, 4143.
- Lankas, G. R.; Leiting, B.; Sinha Roy, R.; Eiermann, G. J.; Beconi, M. G.; Biftu, T.; Chan, C.-C.; Edmondson, S.; Feeney, W. P.; He, H.; Ippolito, D. E.; Kim, D.; Lyons, K. A.; Ok, H. O.; Patel, R. A.; Petrov, A. N.; Pryor, K. A.; Qian, X.; Reigle, L.; Woods, A.; Wu, J. K.; Zaller, D.; Zhang, X.; Zhu, L.; Weber, A. E.; Thornberry, N. A. *Diabetes* 2005, *54*, 2988.
- 18. Sami, T. The Pink Sheet DAILY, Jan. 22, 2007.
- For earlier studies, see: (a) Xu, J.; Ok, H. O.; Gonzalez, E. J.; Colwell, L. F., Jr.; Habulihaz, B.; He, H.; Leiting, B.; Lyona, K. A.; Marsilio, F.; Patel, R. A.; Wu, J. K.; Thornberry, N. A.; Weber, A. E.; Parmee, E. R. *Bioorg. Med. Chem. Lett.* 2004, *14*, 4759; (b) Brockunier, L.; He, J.; Colwell, L. F., Jr.; Habulihaz, B.; He, H.; Leiting, B.; Lyons, K. A.; Marsilio, F.; Patel, R.; Teffera, Y.; Wu, J. K.; Thornberry, N. A.; Weber, A. E.; Parmee, E. R. *Bioorg. Med. Chem. Lett.* 2004, *14*, 4763; (c) Edmondson, S. D.; Mastracchio, A.; Beconi, M.; Colwell, L., Jr.; Habulihaz, H.; He, H.; Kumar, S.; Leiting, B.; Lyons, K.; Mao, A.; Marsilio, F.; Patel, R. A.; Wu, J. K.; Zhu, L.; Thornberry, N. A.; Weber, A. E.; Parmee, E. R. *Bioorg. Med. Chem. Lett.* 2004, *14*, 5151.
- 20. The structure of DPP-4 in complex with a triazolopiperazine-based beta amino acid inhibitor has been assigned the RCSB code rcsb043852 and PDB ID code 2QOE.