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ABSTRACT: The first asymmetric trifluoromethylated allylic
alkylation of pyrazolones using α-(trifluoromethyl)alkenyl acetates
as a novel trifluoromethylated allylation reagent is described,
affording various functionalized chiral pyrazolones containing a
trifluoromethylated allyl substituent in high yields with excellent
regio-/enantio-/diastereoselectivities. Mechanistically, the double-
bond migration of α-(trifluoromethyl)alkenyl acetates in the
presence of 1,8-diazabicyclo[5.4.0]undec-7-ene is initial and
interesting step. More importantly, this study is of significance in providing a novel and widely applicable trifluoromethyl-
containing allylation reagent.

The palladium-catalyzed asymmetric allylic alkylation
(AAA) between a nucleophile and an allylic activated

substrates is one of the most efficient methods to construct a
chiral center in organic chemistry.1 Various allyl precursors,
such as allyl esters,2 allyl alcohols,3 and some other propylene
derivatives,4 have been used in the classic reaction. Recently,
allyl carbonates have been met with great success with the
cooperation of palladium catalysts and chiral ligands in AAA.2

Despite these considerable advances, there is limited literature
focused on developing new allylation reagents that can be
widely used for AAA. In particular, to our knowledge,
trifluoromethyl-containing allyl donors have rarely been
reported, and they have been even more rarely applied to
asymmetric reactions.5 In sharp contrast, the introduction of
fluorinated substituents into bioactive molecules has been
generally accepted as a common strategy to improve
physicochemical properties.6 Hence the search for widely
applicable allylation reagents with a fluorinated substituent is
still highly desired.
As part of our ongoing efforts in the synthesis of useful

trifluoromethyl-containing molecules, α-(trifluoromethyl)-
alkenyl trifluoromethanesulfonates have been discovered and
widely applied in the synthesis of trifluoromethyl-containing
compounds.7 In particular, the discovery of the double-bond
migration of α-(trifluoromethyl)alkenyl trifluoromethanesulfo-
nates mediated by bases inspired our great interest in
expanding this type of block into an asymmetric area. We
envisioned that the double-bond migration of α-
(trifluoromethyl)alkenyl esters enabled by a suitable base
would furnish a generic trifluoromethylated allyl precursor.

With the outline in mind, we next selected pyrazolone as the
nucleophile owing to our continuous study on the function-
alization of this bioactive molecule.8 Pyrazolones have drawn
great attention due to their prevalent applications in the
pharmaceutical industry.9 To this end, the catalytic function-
alization of pyrazolones, especially in the asymmetric realm,
has received increasing research interest,10 yet it remains
challenging. It is worth noting that only a few of reports have
disclosed the AAA of pyrazolones. The Gong group pioneered
the study of the palladium-catalyzed AAA of pyrazolones using
allylic alcohols3a or terminal olefins11 as the allyl precursors
(Scheme 1a). The Jiang group reported the selective
asymmetric nucleophilic addition of pyrazolones with alkoxy
allenes catalyzed by a chiral palladium complex or chiral
Brønsted acid (Scheme 1b).12 More recently, the Chen group
reported the rhodium-catalyzed regio- and enantioselective
allylic alkylation of pyrazolones with alkynes.13 We have
reported a chiral phosphoric acid (CPA)-catalyzed AAA of
pyrazolones with allenamides as the allylation reagents
(Scheme 1c).8c However, no asymmetric trifluoromethylated
allylic alkylation of pyrazolones is available to date.
Herein we report the first asymmetric trifluoromethylated

allylic alkylation of pyrazolones using α-(trifluoromethyl)
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alkenyl acetates as novel allyl precursors (Scheme 1d). The
combination of Pd(OAc)2 and R-BINAP efficiently renders a
high regio-/enantio-/diastereoselectivity in the trifluoromethy-
lated allylic alkylation of pyrazolones with various α-
(trifluoromethyl)alkenyl acetates.
We first investigated the leaving groups of α-(trifluorometh-

yl) alkenyl esters. After the optimization of several substrates
(see the Supporting Information, Table S1), we proved that
the transformation smoothly took place with excellent control
of regio-/stereochemistry when acetoxy was used as the leaving
group. The chiral ligands were next probed. (See the

Supporting Information, Table S2.) The results showed that
the reaction proceeded smoothly in the presence of L1, L2, or
L3 (Table 1, entries 1−3) with the cooperation of Pd(OAc)2
(10 mol %) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU),
and R-BINAP exhibited the best selectivity (44% yield, >20:1
dr, 94% ee). Then, the palladium catalysts were explored (see
the Supporting Information, Table S3, entries 1−5), and
Pd(OAc)2 was proved to be the best catalyst, with slightly
higher enantioselectivity than [Pd(ally)Cl]2 (Table 1, entries 1
and 4). Some other palladium catalysts, such as PdCl2,
Pd2(dba)3, PdCl2(PPh3)2 had no catalytic activity for this
reaction. The following screening of bases showed that the
reaction did not occur when switching DBU to other
organobases (see the Supporting Information, Table S3,
entries 6−13), indicating that DBU was more efficient for
the double-bond migration of α-(trifluoromethyl)alkenyl
acetates. This speculation was proved in subsequent experi-
ments.(See the Supporting Information, Table S4.) The
examination of solvents (Table 1, entries 5−9) proved that
tetrahydrofuran (THF) fitted the reaction best. Increasing the
temperature resulted in a higher yield of 4a but reduced
enantioselectivity (Table 1, entry 10). Finally, after the careful
optimization of the equivalents of ligand, DBU, and 2a as well
as the reaction time (see the Supporting Information, Table
S5), the standard conditions of the palladium-catalyzed
asymmetric trifluoromethylated allylic alkylation of pyrazo-
lones were determined (Table 1, entry 11).
Various α-(trifluoromethyl)alkenyl acetates were subse-

quently prepared following our previous work on the synthesis
of α-(trifluoromethyl)alkenyl triflates.7a As shown in Scheme 2,
a wide range of branched α-(trifluoromethyl)alkenyl acetates
can be readily furnished in high yields. In particular, the
representative examples of alkyl- and heteroaryl-substituted
substrates 2p and 2o were also obtained in good yields.
Further studies focused on the substrate scope (Scheme 3).

The reaction of aryl-substituted α-(trifluoromethyl)alkenyl

Scheme 1. Asymmetric Allylic Alkylation of Pyrazolones

Table 1. Optimization of Reaction Conditionsa

entry cat. ligand solvent yield of 4a (%)b dr of 4ac ee of 4a (%)d

1 Pd(OAc)2 L1 1,4-dioxane 44 >20:1 94
2 Pd(OAc)2 L2 1,4-dioxane 40 >20:1 −86
3 Pd(OAc)2 L3 1,4-dioxane 30 >20:1 78
4e [Pd(allyl)Cl]2 L1 1,4-dioxane 52 >20:1 91
5 Pd(OAc)2 L1 toluene 47 >20:1 92
6 Pd(OAc)2 L1 CH2Cl2 55 >20:1 57
7 Pd(OAc)2 L1 DME 45 >20:1 91
8 Pd(OAc)2 L1 THF 40 >20:1 96
9 Pd(OAc)2 L1 acetonitrile 58 >20:1 72
10f Pd(OAc)2 L1 THF 61 >20:1 90
11g Pd(OAc)2 L1 THF 80 >20:1 96

aReactions were performed with 2a (0.375 mmol), 3a (0.25 mmol), cat. (10 mol %), ligand (22 mol

%), and DBU (0.75 mmol) in 3.0 mL of solvent at 15 °C for 24 h. bYield of isolated product. cDetermined by 1H NMR. dDetermined by chiral
high-performance liquid chromatography (HPLC). e5 mol % of [Pd(allyl)Cl]2 was used.

fPerformed at 20 °C. gStandard conditions: 2a (0.375
mmol), 3a (0.25 mmol), Pd(OAc)2 (10 mol %), L1 (12 mol %), and DBU (0.375 mmol) in 3.0 mL of THF at 15 °C for 52 h.
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acetates (2a−2n) with 3a under the standard conditions
showed that both electron-donating and electron-withdrawing
substituents at the ortho, para, and meta positions were all well
tolerated, and the corresponding products (4a−4n) were
delivered in good yields with excellent regio-/enantio-/
diastereoselectivities. In addition, 1,1,1-trifluoro-4-(thiophen-
2-yl)but-2-en-2-yl acetate (2o) also reacted smoothly, and the
desired product (4o) was formed in good yield with slightly
lower enantioselectivity. However, the use of the alkyl-
substituted substrate (2p) failed to provide the product
(4p), which we attribute to the failure of double-bond
migration in that molecule. (See the Supporting Information,
Scheme S1, for the control experiment.)
A series of functionalized pyrazolones were next examined

using 2c as the allylic alkylation partner, and most of them

furnished the corresponding products 4q−4ab in high yields
with excellent regio-/enantio-/diastereoselectivities. In the case
of the nitro-substituted substrate, the corresponding product
4u revealed a lower enantioselectivity, probably due to the
coordination of the nitro group with the palladium catalyst.
The 3-methyl variant (4aa) was obtained with markedly lower
diastereoselectivity (3:1 dr) as a result of the lower steric
hindrance, albeit it had high enantioselectivity (92% ee).
Unfortunately, the reactions of four-unsubstituted pyrazolone
and 4-phenyl pyrazolone did not occur under standard
conditions (4ac and 4ad). The relative and absolute
configurations of the product 4ab were determined by X-ray
crystal analysis (CCDC 2070216).
A control experiment was subsequently performed to shed

light on the reaction mechanism. As shown in Scheme 4, 4a

was obtained in a maintained yield and with maintained
stereoselectivity (77% yield, >20:1 dr, 95% ee) when the
trifluoromethyl-containing allyl precursor 2a was replaced with
its double-bond shifted isomer 2a′. A plausible mechanism was
proposed for the asymmetric trifluoromethylated allylic
alkylation according to the control reaction result and
literature14 (Scheme 5). Initially, the deprotonation of 2 in

the presence of DBU generated A and its resonance form A′
combined with a proton to furnish the precursor of
trifluoromethylated allylic alkylation (2′). Then, the addition
of 2′ with the resulting chiral Pd0 complex (B) afforded the
chiral π-allyl palladium complex C, which then underwent
nucleophilic substitution with enolated pyrazolone to give the
intermediate D. Finally, demetallization of D generated the

Scheme 2. Preparation of α-(Trifluoromethyl)alkenyl
Acetatesa

aSee the Supporting Information for the detailed reaction conditions.

Scheme 3. Scope of Pd-Catalyzed Asymmetric
Trifluoromethylated Allylic Alkylationa

aReactions were performed with 2 (0.75 mmol, 1.5 equiv), 3 (0.5
mmol, 1.0 equiv), Pd(OAc)2 (11.2 mg, 0.05 mmol, 10 mol %), R-
BINAP (37.4 mg, 0.06 mmol, 12 mol %), and DBU (114 mg, 0.75
mmol, 1.5 equiv) in 3.0 mL of THF at 15 °C for 36−60 h.

Scheme 4. Control Experiment to Understand the Reaction
Mechanism

Scheme 5. Proposed Reaction Mechanism
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desired product 4 accompanying the regeneration of the chiral
Pd0 complex (B) to the next catalytic cycle.
To demonstrate the utility of this process, gram-scale

synthesis and transformations were carried out (Scheme 6).

First, the reaction of 2a and 3a on a 3 mmol scale was
performed to give the corresponding product 4a in a
maintained yield with maintained enantio-/diastereoselectiv-
ities (83% yield, >20:1 dr, 95% ee) in comparison with the
small scale. The catalytic hydrogenation of 4a with hydrogen
on Pd/C was able to give 6a in good yield with maintained
stereoselectivity. Furthermore,4a can be oxidized with
potassium permanganate, and the corresponding product
(cis-diol, 7a) was obtained in 49% yield with >20:1 dr and
95% ee. The configuration of the hydroxyl groups in 7a was
determined by 1H NMR, hydrogen−deuterium exchange 1H
NMR, and COSY NMR. (See the Supporting Information for
copies of the 7a NMR spectrum.) As such, the chiral
pyrazolones bearing a trifluoromethylated allylic substituent
could be diversified by the available classical methods.
In summary, we have developed the first and efficient

palladium-catalyzed asymmetric trifluoromethylated allylic
alkylation of pyrazolones using α-(trifluoromethyl)alkenyl
acetates as novel trifluoromethyl-containing allyl precursors.
This strategy shows a broad substrate scope in terms of both
the α-trifluoromethyl alkenyl acetates and the pyrazolones to
afford an array of functionalized chiral pyrazolones containing
a trifluoromethylated allyl substituent in high yields with
excellent enantio-/diastereoselectivities. This work not only is
valuable in the construction of various chiral trifluoromethy-
lated allylic pyrazolones but also provides a novel and widely
applicable trifluoromethyl allylation reagent. Further applica-
tion of this trifluoromethyl allylation reagent is currently in
progress.
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