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Bacterial infections continue to threaten human life, in
particular because of the increasing number of organisms
resistant to present-day antibiotics.[1] In the development of
new antibacterial agents, one approach is to trace back
antibiotic natural products to “lead structures” and improve
their activity by variation of the substituents. With this
background, the thiotetronic acid (+)-thiolactomycin (1;
Scheme 1), which is produced by the actinomycete Nocardia
sp.[2] and is active against a number of pathogens[2] including
Mycobacterium tuberculosis[3] and the malaria parasite Plas-
modium falciparum,[4] became a source of inspiration
recently. The interest in 1 is spurred by its rapid absorption
in tissues, its effectiveness in mouse infection models,[2,5, 6] and
its low toxicity in animals.[2] On a molecular level, 1 is an
inhibitor[5] of the bacterial,[7] but not human, enzymes that
convert malonyl acyl carrier protein (“malonyl-ACP”) and
the acyl-ACP intermediates of growing chain lengths through
b-ketoacyl-ACPs into lipids.[5,8] X-ray analysis of enzyme-
bound thiolactomycin indicates that the latter functions as a
malonyl-ACP surrogate.[9,10]

Since its isolation,[2] racemic thiolactomycin has been
synthesized once,[13] its dextrorotatory isomer three
times,[14–16] and the levorotatory isomer twice.[17, 15] The syn-
thesis of (�)-1 by Thomas and Chambers started from ethyl
l-lactate, comprised 19 linear steps, gave 0.3% overall yield

of product, and elucidated its configuration.[17] Townsend and
co-workers needed nine steps to transform d-alanine into the
first synthetic specimen of (+)-1 (6% overall yield).[14] Ohata
and Terashima synthesized (+)-1 via a d-phenylalanine-based
enolate and (�)-1 via its l isomer in eight steps with one
separation by HPLC (22% overall yield).[15] Very recently,
Takabe and co-workers completed a 12-step synthesis of
(+)-1 (3% overall yield) from methyl propionate that
included an enzymatic resolution.[16] Modifications of the
above-mentioned routes,[13,14] spin-off products thereof,[15,17]

or semisyntheses[18] from natural (+)-1 have provided dozens
of racemic[19] or enantiomerically pure[20] thiolactomycin
analogues with non-natural substituents at centers C-3, O-4,
and/or C-5. Nevertheless, in early 2006 medicinal chemists
emphasized that “one of the problems in making progress in
this area is the difficult chemical synthetic route to thiolacto-
mycin analogues”.[6] In this regard, the approach to such
compounds disclosed herein provides new opportunities. One
of its assets is that thiotetronic acids like thiolactomycin are
obtained for the first time through catalytic asymmetric
synthesis. Moreover, our strategy highlights an innovative and
completely diastereoselective way of establishing a stereo-
genic C�S bond.

Retrosynthetically, (+)-thiolactomycin (1) was traced
back to the polyfunctional diester 2 with syn-oriented C�S
and C�OH bonds (Scheme 1) or the diastereomeric diester
with the identical orientation of the C�S bond but the
opposite orientation of the C�OH bond (not shown). This
plan relied on the feasibility of a vic-didesoxygenation/
Dieckmann condensation sequence for the conversion of
either of these compounds into (+)-1. Specifically, diester
isomer 2 would be the precursor of 1 if vinyl epoxide 4 and
thiocarboxylate 3 underwent a syn-selective SN’ ring-opening
reaction. Conversely, the epimeric diester would become the
precursor of 1 if vinyl epoxide ent-4 and thiocarboxylate 3
combined by an anti-selective SN’ attack. The stereochemistry
of such vinyl epoxide openings has been investigated
almost[22] only with non-sulfur nucleophiles[23a,b] and only[24]

with simpler vinyl epoxides than our sterically hindered and
alkoxycarbonyl-substituted substrates 4 or ent-4 ; both syn[23]

and anti[23a,b] selectivity as well as no stereoselectivities were
observed. Making up for the incertitude that these findings
implied for our endeavors, either of the vinyl epoxides 4 and
ent-4 would be accessible by the silylation of an appropriately
configured vinyl glycidol. The latter would be obtained from a
Sharpless asymmetric epoxidation[25] (SAE) of the underlying
allyl alcohol in the presence of l- and d-diisopropyl tartrate
(DIPT), for 4 and ent-4, respectively.

The required allyl alcohol was the ethoxycarbonyl-sub-
stituted pentadienol 7 (Scheme 2), which was synthesized[26]

Scheme 1. Retrosynthetic analysis of (+)-thiolactomycin (1).
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by aWittig reaction between aldehyde 5[27] and phosphorane 6
and a subsequent ethanolysis, as reported previously.[21]

Pentadienol 7 was then subjected to a catalytic[25b] SAE.[28]

The resulting epoxy-alcohol 8 could be protected with tert-
butyldiphenylsilyl chloride without the need for workup in
between. This one-pot procedure afforded the siloxy- and
ethoxycarbonyl-substituted vinyl epoxide 4 in 83% yield and
with 93% ee.[29] Likewise, SAE of pentadienol 7 in the
presence of d-(�)-DIPT followed by in situ silylation pro-
vided the enantiomeric epoxide ent-4 with 92% ee.[29]

Thiolyses of vinyl epoxide 4 were first studied employing
thioacetic acid (Scheme 3 and Table 1), which is commercially
available and was hence a good substitute for the thiopro-
pionic acid to be prepared later from propionyl chloride and
H2S. We expected difficulties in directing the nucleophile
towards position C-2 of our substrate 4 (SN’ reaction) rather
than positions C-3 (conjugate addition) or C-4 or C-5 (SN

reactions). However, site-selectivity was not an issue whereas
the lack of reactivity and/or chemoselectivity was. Thioacetic
acid alone or combined with Na2CO3 led to only incomplete
conversion of 4, while Cs2CO3, triethylamine, HDnigEs base, or
pyridine as additives led to its decomposition. Thioacetic acid
in the presence of Ti(OiPr)4

[30] led to ring opening of
2,3-epoxy-1-hexanol but not of epoxide 4. However, mixtures
of epoxide 4 and thioacetic acid could be activated by other
Lewis acids (see Table 1). This approach furnished the desired
SN’ product 9 with the expected E configuration of the C=C
bond as well as a seemingly single, although unassigned,
configuration at C-2. Moreover, we obtained some lactone 12,
apparently from an intramolecular transesterification of the
isomeric SN’ product iso-9 with the Z-configured C=C bond.
In addition, products without incorporation of thioacetic acid
were isolated, namely aldehyde 10 and the conjugated diene
11. Aldehyde 10 appears to result from a semipinacol
rearrangement of the substrate 4, a well-established trans-
formation of silylated epoxy-alcohols.[31] Diene 11 could
originate from substrate 4 by a 1,4-elimination or from
initially formed 9 by a 1,2-elimination. The highest yield of SN’
product 9 (48%) and the best chemoselectivity (almost no by-
products 10–12) were obtained when exactly 5.0 equivalents
each of Me3Al and thioacetic acid were combined in

dichloromethane at �78 8C and the solution was warmed to
room temperature before adding vinyl epoxide 4.[21,32]

The thiolysis conditions from Scheme 3 were readily
applicable to the opening of vinyl epoxide 4 by thiopropionic
acid (Scheme 4, step a). Thus, SN’ 13 was isolated in 60%
yield[33] as a single diastereomer and with 93% ee according to
HPLC analysis. This result proved that there was 100%
transfer of chirality from the C4�O bond (broken) to the C2�S
bond (newly established). That the stereostructure of com-
pound 13 was indeed 2, that is, that the C�OH and the C�S
bond are syn- rather than anti-oriented, followed from the
fact that our synthesis gave dextrorotatory thiolactomycin. As
the latter is R-configured,[17] the corresponding stereocenter
of compound 13 must also have this configuration. This
finding is tantamount to assigning 100% syn selectivity to the
epoxide-opening step, 4!13.

Proceeding towards thiolactomycin (Scheme 4,
steps b–e), desilylation of compound 13 with the HF/pyridine
complex provided glycol 14 in 85% yield. Initially, glycol 14
was cleaved oxidatively by NaIO4 to afford aldehyde 16 in
90% yield. Surprisingly, olefination of 16 with methylene-
triphenylphosphorane gave the required diene 15 with

Scheme 2. Synthesis of vinyl epoxide 4. a) Addition of 5 to a solution
of 6 (1.1 equiv) in CH2Cl2, 50 8C, 5 h (Ref. [21]: 85%); b) NaOH
(5 mol%), EtOH, 25 8C, 12 h; 84% over two steps (Ref. [21]: 91%;
77% over both steps); c) tBuOOH (2.0 equiv), l-(+)-DIPT (12 mol%),
Ti(OiPr)4 (10 mol%), CH2Cl2, 4-E M.S., �30 8C, 12 h; PPh3 (2.0 equiv);
tBuPh2SiCl (1.0 equiv), imidazole (2.2 equiv), CH2Cl2, 25 8C, 1 h; 83%.
DIPT=diisopropyl tartrate.

Scheme 3. Optimization of a model thiolysis. a) Reagents (see
Table 1), CH2Cl2, �78 8C, 3 h; b) reagents, CH2Cl2, �78!25 8C,
60 min; �78 8C, addition of 4 ; �78!25 8C, 2 h; c) reagents, CH2Cl2,
�78!25 8C, 60 min; addition of epoxide 4 at 25 8C, 1 h.

Table 1: Reaction conditions and product yields (see Scheme 3).

Conditions Reagents (equiv) Isolated products

a BF3·OEt2 (1.0), AcSH (0.0–1.0) up to 50% 10 (51% ee)
b AlMe3 (4.0), AcSH

(4.0–5.0)
19% 9 + up to 10% 11,
+ up to 10% 12

c AlMe3 (5.0), AcSH (5.0) 48% 9
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variable (2–55%) but mostly low yields (30%). Neither the
exclusion of light, the addition of a radical scavenger, nor the
use of degassed solvents and eluents during and after the
reaction led to an improvement. Fortunately, Garegg and
SamuelssonEs reductive vic-didesoxygenation with PPh3, imi-
dazole, and I2

[34] applied to glycol 14 avoided this bottleneck.
This transformation afforded diene 15 reproducibly in 69%
yield. Moreover, it shortened our synthesis by one step. The
last step towards (+)-1 (94% ee[29]) involved a Dieckmann
condensation of diester 15 (Scheme 4, step e) as reported by
Townsend and co-workers,[14] It completed the hitherto short-
est synthesis of (+)-thiolactomycin in seven steps from
aldehyde 5 and ylide 6.

The flexibility of our approach was used to synthesize the
analogous thiotetronic acids (+)-17 (92% ee[29]), (+)-18 (95%
ee[29]), and (+)-19 (90% ee[29]) in the same straightforward
fashion (Scheme 5).[35] Thiotetronic acid (+)-17 is a non-
natural homologue of thiolactomycin (1), whereas (+)-18 and
(+)-19 are antibiotics known as 834-B1[36] and thiotetromycin,
respectively.[37] Their syntheses have not been reported
before.

In summary, short asymmetric syntheses of thiotetronic
acid antibiotics were accomplished. Starting with the alde-
hyde intermediate 5 of the technical synthesis of vitamin A,
the natural products thiolactomycin (1), 834-B1 (18), and
thiotetromycin (19) were each synthesized in seven steps and
with overall yields reaching 16%. Key transformations were

SAEs of alkoxycarbonyl-substituted pentadienols, anti-selec-
tive SN’ thiolyses of vinyl epoxides, and olefin-forming vic-
didesoxygenations.
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