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Synthesis of phenyltetraene chromophores-based hybrid materials for 

large nonlinear optical activity  
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Applications, Department of Materials Science & Engineering, Zhejiang University, Hangzhou, 

China 

Abstract: Two new chromophores, CLDS1 and CLDS2, based on a similar D-π-A structure as 

the phenyltetraene chromophore CLD, but with an alkylthio group perpendicular to the direction 

of the long molecular axis as isolation spacer were synthesized. Through a urethane forming 

reaction between 3-isocyanatopropyltriethoxysilane (ICTES) and chromophores, the alkoxysilane 

dyes were synthesized. Subsequently, a series of transparent and homogeneous inorganic-organic 

hybrid films were prepared via a sol-gel process of the alkoxysilane dye with triethoxyvinylsilane. 

The molecular structures of the resultants were confirmed by 1H NMR, FTIR and UV-visible 

spectra. After electric poling, the nonlinear optical coefficients (d33) of the hybrid films F-CLDS1 

and F-CLDS2 were determined to be 104.54 and 98.17 pm V-1, respectively, which are almost 3 

times the d33 value of hybrid film containing CLD (37.78 pm V-1), indicating that the 

incorporation of alkylthio group can efficiently improve the macroscopic optical nonlinearities of 

hybrid materials. 
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1. Introduction 

Second-order nonlinear optical (NLO) materials have received considerable attention due to 

their wide applications in all-optical switching, fast optical communications, and electro-optic 

modulation [1-2]. Compared with NLO inorganic crystals, organic NLO polymers display many 

advantages including large nonlinear optical coefficients, low dielectric constants, fast response 

time and excellent processing [1-9]. However, the thermal instability of poling-induced 

chromophore dipole alignment of the poled polymers limits their practical applications in EO 

devices. Linking the chromophores via covalent bonds onto a highly rigid matrices or 

cross-linkable polymers can effectively stabilize the dipole orientation. Recently, 

inorganic-organic hybrid NLO materials through sol-gel process have been considered to be one 

of the most potential matrix candidates for stabilizing poled dipole orientation [10-19]. By 

incorporating the NLO active chromophores into the inorganic silica networks, the resulting 

inorganic-organic materials may display high optical transparency, good thermal stability, and 

excellent NLO properties. Moreover, the inorganic silica matrix provides an inert environment 

for organic chromophores and theoretically will prevent damage induced by corona discharge 

poling and thermal decomposition [20-22]. 

To achieve large NLO activity, the rational molecular designs of dipole chromophores are 

crucial and have been demonstrated in a series of conjugated push-pull molecules. Among these 

molecular systems, the phenyltetraene conjugated bridges attached with terminal strong acceptors, 

such as FTC- and CLD-type chromophores, represents one of the most effective chromophores 

that result in large hyperpolarizability (β) [23-25]. However, the polymers doped with FTC- and 

CLD-chromophores tend to lower the NLO response at higher doping content because of the 
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strong dipole–dipole interactions among the chromophore moieties. According to the 

site-isolation principle, the introduction of some isolation groups to the chromophores is a very 

promising approach to decrease the dipole-dipole interactions and increase the poling efficiency 

[26, 27]. Indeed, Dalton and Jen have demonstrated a series of dendritic polymers with FTC- and 

CLD-chromophores for significantly enhanced optical nonlinearities [28, 29]. However, there are 

very few reports concerning the phenyltetraene chromophores linked hybrid materials. In addition, 

how to efficiently translate the large β values of the organic chromophores into high macroscopic 

NLO activities of hybrid materials receives little attention.  

In this report, we design and synthesize two new chromophores, CLDS1 and CLDS2, based 

on a similar D-π-A structure as the chromophore CLD, but with an alkylthio group perpendicular 

to the direction of the long molecular axis as isolation spacer (Fig. 1). The chromophore CLDS1 

and CLDS2 have a comparable β value, but differ in the position of the hydroxyl group, enabling 

them to be covalently anchored in silica matrix by their donor end or by their isolation spacer. 

Herein, we report the preparation and structural characterizations of the chromophore-linked 

hybrid materials, and discuss the influence of isolation group and anchoring position on NLO 

properties. 

2. Experimental Section 

2.1 Materials and measurements 

All commercially available starting chemicals were purchased and used as received. 

Tetrahydrofuran (THF) was dried over molecular sieves (3A). Chromophore CLD was 

synthesized as reported [23].  

UV-visible absorption spectra were collected with a Hitachi U-4100 spectrometer. Infrared 
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specra were recorded by using a vector 22 Fourier transform infrared spectrometer (Bruker) in 

KBr disks. 1H NMR spectra of compounds were measured on a Bruker Avance DMX500 

spectrometer. Elemental analyses were taken from a Thermo Finnigan Flash EA1112 

microelemental analyzer. The thickness of hybrid films was collected via a Tencor alpha-step 200 

surface profiler. Thermogravimetric analysis (TGA) was performed with a TA Instruments SDT 

Q600 at a heating rate of 10 oC min-1 and under a nitrogen atmosphere. Differential scanning 

calorimetry (DSC) was studied using a Netzsch Instruments 200 F3 with a heating rate of 10 oC 

min-1 in a nitrogen atmosphere. In situ second harmonic generation (SHG) measurements of the 

poled films were taken using a Q-switched Nd:YAG laser at 1064 nm and a Y-cut quartz crystal 

as the Reference.  

2.2 Synthesis of chromophore CLDS1 and CLDS2 

2-(butylthio)-3-(4-((2-hydroxyethyl)(methyl)amino)styryl)-5,5-dimethylcyclohex-2-enone 

(1a). 1a was synthesized according to a literature procedure [30].  

3-(4-(diethylamino)styryl)-2-(2-hydroxyethylthio)-5,5-dimethylcyclohex-2-enone (1b). To a 

sodium ethylate (105 mmol) in ethanol (100 mL) was added mercaptoethanol (7.00 mL, g, 100 

mmol), and the solution was stirred for 15 min followed by the addition of isophorone oxide. The 

solution became dark immediately and was stirred for 30 min to form intermediate 

2-((2-hydroxyethyl)thio)-3,5,5-trimethylcyclohex-2-enone, and then 4-(diethylamino)- 

benzaldehyde  (110 mmol) was added and vigorously stirred at 70 oC for 12 h. The mixture was 

cooled to room temperature and extracted with dichloromethane, and purified by chromatography 

using AcOEt/DCM=1/6. 1H NMR (500 MHz, CDCl3, δ ppm): 7.92 (d, J=16.1 Hz, 1H), 7.47 (d, 

J=8.9 Hz, 2H), 7.08 (d, J=16.1 Hz, 1H), 6.66 (d, J=8.9 Hz, 2H), 3.56 (t, 3H), 3.41 (q, 4H), 2.82 (t, 
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2H), 2.66 (s, 2H), 2.45 (s, 2H), 1.20 (t, 6H), 1.09 (s, 6H). 

3-(4-((2-(tert-butyldimethylsilyloxy)ethyl)(methyl)amino)styryl)-2-(butylthio)-5,5-dimethylc

yclohex-2-enone (2a). 1a (7.90 g), imidazole (2.57 g) and tert-butylchlorodimethylsilane were 

mixed in DMF (30 mL), and the solution was stirred for 30 min and poured into saturated NH4Cl 

solution. The product was extracted with AcOEt and purified by chromatography 

(PE/AcOEt=30/1) to yield orange oil. 1H NMR (500 MHz, CDCl3, δ ppm): 7.93 (d, J=16.2 Hz, 

1H), 7.46 (d, J=8.8 Hz, 2H), 7.00 (d, J=16.2 Hz, 1H), 6.69 (d, J=8.8 Hz, 2H), 3.79 (t, 2H), 3.53 (t, 

2H), 3.06 (s, 3H), 2.74 (t, 2H), 2.63 (s, 2H), 2.42 (s, 2H), 1.46 (m, 2H), 1.42 (m, 2H), 1.09 (s, 

6H), 0.88 (m, 12H), 0.02 (s, 6H). 

2-(2-(tert-butyldimethylsilyloxy)ethylthio)-3-(4-(diethylamino)styryl)-5,5-dimethylcyclohex-

2-enone (2b). In a similar manner described above, 2b was synthesized as a red oil (68%). 1H 

NMR (500 MHz, CDCl3, δ ppm): 7.90 (d, J=16.2 Hz, 1H), 7.47 (d, J=8.8 Hz, 2H), 7.00 (d, 

J=16.2 Hz, 1H), 6.65 (d, J=8.8 Hz, 2H), 3.70 (t, J=7.2 Hz, 2H), 3.40 (q, J=7.1 Hz, 4H), 2.87 (t, 

J=7.2 Hz, 2H), 2.61 (s, 2H), 2.41 (s, 2H), 1.19 (t, J=7.0 Hz, 6H), 1.08 (s, 6H), 0.87 (s, 9H), 0.02 

(s, 6H). 

2-(3-(4-((2-(tert-butyldimethylsilyloxy)ethyl)(methyl)amino)styryl)-2-(butylthio)-5,5-dimeth

ylcyclohex-2-enylidene)acetonitrile (3a). To a mixture of NaH (4.52 g, 60 wt%, 113 mmol) in 

THF (100 mL) at 0 oC was added diethyl cyanomethylphosphonate (17 mL) dropwise by syringe. 

After the solution clear, 2a (16.46 g, 32.8 mmol) in THF (30 mL) was added to above solution 

and the solution was refluxed for 14 h. The product was extracted with AcOEt, evaporated and 

purified by chromatography (ethyl acetate/petroleum ether=1/30) to yield yellow oil (3.94 g, 

23%). 1H NMR (500 MHz, CDCl3, δ ppm): 7.89 (d, J=16.3 Hz, 1H), 7.43 (d, J=8.9 Hz, 2H), 6.86 
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(d, J=16.2 Hz, 1H), 6.70 (d, J=8.9 Hz, 2H), 6.25 (s, 1H), 3.80 (t, J=6.0 Hz, 2H), 3.53 (t, J=6.1 Hz, 

2H), 3.06 (s, 3H), 2.59 (s, 2H), 2.58 (t, J=7.0 Hz, 2H), 2.49 (s, 2H), 1.50 (m, 2H), 1.43 (m, 2H), 

1.03 (s, 6H), 0.90 (m, 12H), 0.03 (s, 6H). 48 H (48H). 13C NMR (75 MHz, CDCl3, δ ppm): 158.8, 

149.9, 149.1, 134.8, 128.9, 126.7, 124.8, 124.4, 119.6, 112.0, 94.6, 60.7, 54.8,43.6, 41.7, 39.4, 

35.4, 32.0, 30.4, 28.2, 26.1, 22.1,18.4, 13.9, -5.2. 

2-(2-(2-(tert-butyldimethylsilyloxy)ethylthio)-3-(4-(diethylamino)styryl)-5,5-dimethylcycloh

ex-2-enylidene)acetonitrile (3b). In a similar manner described above, 3b was synthesized as an 

orange oil (71%). 1H NMR (500 MHz, CDCl3, δ ppm): 7.85 (d, J=1H), 7.42 (d, 2H), 6.86 (d, 1H), 

6.66 (d, 2H), 6.26 (s, 1H), 3.69 (t, 2H), 3.41 (q, 4H), 2.70 (t, 2H), 2.58 (s, 2H), 2.48 (s, 2H), 1.20 

(t, 6H), 1.03 (s, 6H), 0.89 (s, 9H), 0.04 (s, 6H). 

2-(3-(4-((2-(tert-butyldimethylsilyloxy)ethyl)(methyl)amino)styryl)-2-(butylthio)-5,5-dimeth

ylcyclohex-2-enylidene)acetaldehyde (4a). To a 3a (3.94 g, 7.5 mmol) in toluene (50 mL) at -78 

oC was added DIBAL-H (20 mL, 1M in hexane, 20 mmol) dropwise. The solution was stirred for 

1 h at this temperature, warmed at -40 oC for 30 min, added with AcOEt (5 mL) and water (20 

mL), and vigorously stirred at room temperature for 8h after another AcOEt (50 mL) was added. 

The alumina gel was filtered off by filtration and the solution was dried over rotary evaporator, 

and was purified by chromatography (AcOEt/PE=1/25-2/20) to yield red oil (2.51g, 63%). 1H 

NMR (500 MHz, CDCl3, δ ppm): 10.16 (d, J=8.1 Hz, 1H), 7.99 (d, J=16.3 Hz, 1H), 7.44 (d, 

J=8.9 Hz, 2H), 7.03 (d, J=8.0 Hz, 1H), 6.87 (d, J=16.3 Hz, 1H), 6.69 (d, J=8.9 Hz, 2H), 3.80 (t, 

J=6.0 Hz, 2H), 3.52 (t, J=6.0 Hz, 2H), 3.05 (s, 3H), 2.75 (s, 2H), 2.56 (t, J=7.2 Hz, 2H), 2.52 (s, 

2H), 1.49 (m, 2H), 1.40 (m, 2H), 1.05 (s, 6H), 0.88 (m, 12H), 0.03 (s, 6H). 

2-(2-(2-(tert-butyldimethylsilyloxy)ethylthio)-3-(4-(diethylamino)styryl)-5,5-dimethylcycloh
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ex-2-enylidene)acetaldehyde (4b). In a similar manner described above, 4b was synthesized as a 

red oil (54%). 1H NMR (500 MHz, CDCl3, δ ppm): 10.15 (d, J=8.0 Hz, 1H), 7.95 (d, J=16.2 Hz, 

1H), 7.43 (d, J=8.8 Hz, 2H), 7.01 (d, J=8.1 Hz, 1H), 6.87 (d, J=16.2 Hz, 1H), 6.66 (d, J=8.8 Hz, 

2H), 3.69 (t, J=7.2 Hz, 2H), 3.41 (q, J=7.1 Hz, 4H), 2.75 (s, 2H), 2.71 (t, J=7.2 Hz, 2H), 2.51 (s, 

2H), 1.21 (t, J=7.1 Hz, 6H), 1.05 (s, 6H), 0.87 (s, 9H), 0.02 (s, 6H). 

2-(4-((1E,3E)-3-(3-(4-((2-(tert-butyldimethylsilyloxy)ethyl)(methyl)amino)styryl)-2-(butylthi

o)-5,5-dimethylcyclohex-2-enylidene)prop-1-enyl)-3-cyano-5,5-dimethylfuran-2(5H)-ylidene

)malononitrile (5a). To a solution of 4a (2.45 g, 5.57 mmol) and 

2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (1.33 g, 6.69 mmol) in CH2Cl2 

(50 mL) was added AcOH (0.1 mL) and piperidine (0.2 mL) mixture. The solution was stirred at 

room temperature for 4 h, dried and purified by chromatography (CH2Cl2) to yield dark blue solid 

(2.30 g, 58%). m.p.: 157 and 206 oC. Td (95 wt%): 260 oC. 1H NMR (500 MHz, CDCl3, δ ppm): 

8.11 (t, J=13.5 Hz, 1H), 8.03 (d, J=16.1 Hz, 1H), 7.52 (d, J=12.2 Hz, 1H), 7.45 (d, 8.9 Hz, 2H), 

6.95 (d, J=16.1 Hz, 1H), 6.70 (d, J=9.0 Hz, 2H), 6.39 (d, J=14.8 Hz, 1H), 3.80 (t, J=5.9 Hz, 2H), 

3.54 (t, J=5.9 Hz, 2H), 3.07 (s, 3H), 2.59 (t, J=7.2 Hz, 2H), 2.55 (s, 2H), 2.50 (s, 2H), 1.70 (s, 

6H), 1.53 (m, 2H), 1.43 (m, 2H), 1.03 (s, 6H), 0.88 (m, 12H), 0.02 (s, 6H). 

2-(4-((1E,3E)-3-(2-(2-(tert-butyldimethylsilyloxy)ethylthio)-3-(4-(diethylamino)styryl)-5,5-di

methylcyclohex-2-enylidene)prop-1-enyl)-3-cyano-5,5-dimethylfuran-2(5H)-ylidene)malono

nitrile (5b). In a similar manner described above, 5b was synthesized as a dark solid (0.55 g, 

58%). 1H NMR (500 MHz, CDCl3, δ ppm): 7.15 (t, J=13.5 Hz, 1H), 8.00 (d, J=15.7 Hz, 1H), 7.52 

(d, J=12.1 Hz, 1H), 7.45 (d, J=8.1 Hz, 2H), 6.96 (d, J=16.1 Hz, 1H), 6.67 (d, J=7.5 Hz, 2H), 6.37 

(d, J=15.0 Hz, 1H), 3.73 (t, J=6.9 Hz, 2H), 3.43 (q, J=6.8 Hz, 4H), 2.74 (t, J=6.9 Hz, 2H), 2.55 (s, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

8 
 

2H), 2.51 (s, 2H), 1.70 (s, 6H), 1.22 (t, J=6.9 Hz, 6H), 1.03 (s, 6H), 0.89 (s, 9H), 0.04 (s, 6H). 

Anal. Calcd. for C34H38N4O3S (582.76): C, 70.07; H, 6.57 ; N, 9.61. Found: C, 69.91; H, 6.61; N, 

9.50. 

2-(4-((1E,3E)-3-(2-(butylthio)-3-(4-((2-hydroxyethyl)(methyl)amino)styryl)-5,5-dimethylcycl

ohex-2-enylidene)prop-1-enyl)-3-cyano-5,5-dimethylfuran-2(5H)-ylidene)malononitrile 

(CLDS1). To the 5a (2.05, 2.89 mmol) solution in acetone (50 mL) was added dilute HCl (4.30 

mL, 1.2 N, 5.16 mmol). The solution was stirred overnight and diluted with water (100 mL) and 

neutralized with potassium carbonate, the precipitation was collected as a dark blue powder (1.68 

g, 98%). m.p. (with decomposition): 232 oC. Td (95 wt%): 254 oC. 1H NMR (500 MHz, CDCl3, δ 

ppm): 8.08 (t, J=13.5 Hz, 1H), 8.03 (d, J=16.2 Hz, 1H), 7.50 (d, J=12.3 Hz, 1H), 7.47 (d, J=8.8 

Hz, 2H), 6.95 (d, J=16.1 Hz, 1H), 6.78 (d, J=8.9 Hz, 2H), 6.39 (d, J=14.8 Hz, 1H), 3.87 (q, J=5.7 

Hz, 2H), 3.58 (t, J=5.6 Hz, 2H), 3.08 (s, 3H), 2.58 (t, J=7.2 Hz, 2H), 2.53 (s, 2H), 2.50 (s, 2H), 

1.71 (s, 6H), 1.66 (t, J=5.9 Hz, 1H), 1.52 (m, 2H), 1.43 (m, 2H), 1.04 (s, 6H), 0.88 (t, J=7.3 Hz, 

3H). 

2-(3-cyano-4-((1E,3E)-3-(3-(4-(diethylamino)styryl)-2-(2-hydroxyethylthio)-5,5-dimethylcycl

ohex-2-enylidene)prop-1-enyl)-5,5-dimethylfuran-2(5H)-ylidene)malononitrile (CLDS2). In 

a similar manner described above, chromophore CLDS2 was synthesized as a green powder 

(86%). m.p.: 246 oC. Td (95 wt%): 252 oC. 1H NMR (500 MHz, CDCl3, δ ppm): 8.14 (t, J=13.5 

Hz, 1H), 8.00 (d, J=15.8 Hz, 1H), 7.51 (d, J=12.1 Hz, 1H), 7.46 (d, J=7.7 Hz, 2H), 6.98 (d, 

J=16.0 Hz, 1H), 6.67 (d, J=8.2 Hz, 2H), 6.39 (d, J=14.8 Hz, 1H), 3.70 (t, J=6.0 Hz, 2H), 3.42 (q, 

J=6.8 Hz, 4H), 2.81 (t, J=5.9 Hz, 2H), 2.57 (s, 2H), 2.51 (s, 2H), 1.70 (s, 6H), 1.22 (t, J=7.0 Hz, 

6H), 1.04 (s, 6H). Anal. Calcd. for C35H40N4O2S (580.78): C, 72.38; H, 6.94; N, 9.65. Found: C, 
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72.23; H, 6.93; N, 9.60. 

2.3 Synthesis of alkoxysilane dye ICTES-CLD, ICTES-CLDS1 and ICTES-CLD2 

ICTES-CLD. To the solution of CLD (0.40 g, 0.79 mmol) in dry THF (6 mmol) were added Tin 

(II) 2-ethylhexanoate (3 drops) and 3-isocyanatopropyltriethoxysilane (ICTES, 0.45 g, 1.82 

mmol). After the mixture was stirred at 65 oC for 8 h, the solution was cooled to room 

temperature was added to petroleum ether (150 mL) and a lot of precipitation occurred. The 

precipitation was collected by filtration and purified by chromatography using AcOEt/petroleum 

ether=1/1 as eluents to yield 0.24 g of dark blue solid (0.32 mmol, 41%). 1H NMR (500 MHz, 

CDCl3, δ ppm): 8.01-8.29 (m, 1H), 7.39 (t, 2H), 6.71-6.86 (m, 4H), 6.25-6.38 (m, 3H), 4.92 (s, 

1H), 4.23 (t, 2H), 3.82 (q, 6H), 3.63 (t, 2H), 3.18 (q, 2H), 3.05 (s, 3H), 2.42 (t, 4H), 1.69 (d, 6H), 

1.26 (m, 9H), 1.05 (d, 6H), 0.62 (t, 2H).  

ICTES-CLDS1. In a similar manner described above, ICTES-CLDS1 was synthesized as a dark 

blue solid (71%). 1H NMR (500 MHz, CDCl3, δ ppm): 8.06 (m, 2H), 7.51 (d, J=12.2 Hz, 1H), 

7.46 (d, J=8.3 Hz, 2H), 6.94 (d, J=16.1 Hz, 1H), 6.74 (d, J=8.0 Hz, 2H), 6.39 (d, J=14.8 Hz, 1H), 

4.94 (s, 1H), 4.24 (s, 2H), 3.82 (q, 6H), 3.64 (s, 2H), 3.17 (d, 2H), 3.06 (s, 3H), 2.57 (m, 4H), 

2.50 (s, 2H), 1.71 (s, 6H), 1.62 (m, 2H), 1.53 (m, 2H), 1.43 (m, 2H), 1.23 (q, 9H), 1.03 (s, 6H), 

0.88 (s, 3H), 0.62 (t, 2H). 

ICTES-CLDS2. In a similar manner described above, ICTES-CLDS2 was synthesized as a blue 

solid (54%). 1H NMR (500 MHz, CDCl3, δ ppm): 8.11 (d, J=12.3 Hz, 1H), 8.00 (d, J=16.2 Hz, 

1H), 7.49 (d, J=12.4 Hz, 1H), 7.46 (d, J=8.6 Hz, 2H), 6.96 (d, J=16.0 Hz, 1H), 6.67 (d, J=8.3 Hz, 

2H), 6.40 (d, J=14.8 Hz, 1H), 4.87 (t, J=5.1 Hz, 1H), 4.12 (t, J=6.7 Hz, 2H), 3.81 (q, J=7.0 Hz, 

6H), 3.43 (q, J=6.8 Hz, 4H), 3.10 (q, J=6.3 Hz, 2H), 2.82 (t, J=6.6 Hz, 2H), 2.56 (s, 2H), 2.51 (s, 
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2H), 1.71 (s, 6H), 1.24 (m, 15H), 1.04 (s, 6H), 0.59 (t, J=8.1 Hz, 2H). 

2.4 Preparation of Hybrid Films 

The alkoxysilane dyes (0.1 mmol) were mixed with triethoxyvinylsilane (VTES, 1.9 mmol) in 

THF, and then 8 mmol acidic water (pH=1) was added. The solutions were kept stirring for 12 

hours and aged for another 4 days. Then the solutions were filtered through 0.22 µm filter and 

spin-coated on clean indium tin oxide (ITO) glass substrate to afford blue organic-inorganic 

hybrid films. 

3. Results and Discussion 

3.1 Synthesis and Characterization 

The detailed synthetic procedure of chromophores was presented in Scheme 1. The 

chromophore CLDS1 was synthesized start from a nucleophilic substitution of epoxyisophorone 

with alkanethiol, giving a thiol-substituted isophorone. Horner-Emmons olefination followed by 

DIBAL-H reduction converted dienone 2a into aldehyde 4a. Knoevenagel condensation of the 

2-cyanomethylene-3-cyano-4, 5, 5-trimethyl-2, 5-dihydrofuran to aldehyde 4a was performed to 

yield 5a, and then the deprotection procedure of 5a produced hydroxyl-functionalized 

chromophore CLDS1. In the synthesis of the analogous chromophore CLDS2, 

2-mercaptoethanol was selected to react with epoxyisophorone to introduce hydroxyl group at the 

side of chromophore. These chromophores were further reacted with 

3-isocyanatopropyltriethoxysilane to give alkoxysilane dyes via a urethane forming reaction 

[31-33]. Following the hydrolysis and copolymerization process of the alkoxysilane dyes and 

triethoxyvinylsilane, a series of inorganic-organic hybrid film were prepared. 

The structures of chromophores and alkoxysilane dyes were confirmed by 1H NMR and FTIR 
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spectroscopy. All the spectral assignments clearly support the proposed structure. The peaks 

assigned to vinylic protons of alkoxysilane dye ICTES-CLD illustrate the presence of cis- and 

trans-isomer mixtures of the dye, while for ICTES-CLDS1 and ICTES-CLDS2, protonic peak 

with a coupling constant 14.8 Hz at 6.38 ppm show the all-trans double-bond configuration of 

derived tetraene alkoxysilanes which could provide a better conjugation and increase the 

hyperpolarizability of the dyes significantly.  

The IR spectra of chromophore CLDS1, alkoxysilane dye ICTES-CLDS1 and hybrid film 

F-CLDS1 are shown in Fig. 2. In terms of chromophore CLDS1, the absorption of cyano group 

in acceptor 2-cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran appears at 2220 cm-1, 

and the characteristic absorption band at 3430 cm-1 is assigned to stretching vibration of the 

hydroxyl group. Compared with CLDS1, the presences of the secondary amino group and 

carbonyl group indicate that alkoxysilane dye ICTES-CLDS1 was obtained from the coupling 

reaction between hydroxyl groups in chromophore and isocyanate group in ICTES. For hybrid 

film F-CLDS1, the significantly increased broad absorption band around 1080 cm-1 and 

decreased ethyl group absorption around 2900 cm-1 suggests the formation of Si-O-Si network 

due to the hydrolysis and condensation of Si-O-R.  

UV-vis absorption spectra of chromphores in CHCl3 indicate that chromophore CLD has a 

maximum absorption wavelength (λmax) of 661 nm, and CLDS1 almost exhibits the same 

absorption band with a λmax at 662 nm, indicating that the butylthio substituent does not affect the 

molecular D-π-A structure. Compared with chromophore CLD and CLDS1, the λmax of 

chrmophore CLDS2 shifts bathochromicly to 691 nm, which can be explained by the variation of 

donor group in CLDS2. As shown in Fig. 3, the shapes of absorption bands the hybrid films 
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F-CLDS1 and F-CLDS2 are similar but broader to the corresponding chromophores in solution, 

indicating that the chromophores have been successfully incorporated in the silica networks. The 

broadening of absorption bands in films can attributed to the fact that chromophores exhibit more 

vibrational and rotational in the complex environment of silica matrix than in pure solution.  

The thermal stability of the chromophores and hybrid materials are measured by 

thermogravimetric analysis. As shown in Fig. 4, the decomposition temperature (Td) of 

chromophores CLDS1 and CLDS2 are 254 and 252 oC, respectively. The hybrid films F-CLDS1 

and F-CLDS2 show the decomposition temperatures at 270 and 257 oC, respectively. This 

implies that the inorganic silica backbone can indeed improve the thermal stability of 

chromophores.  

3.2 Nonlinear optical properties 

The β
CT

µg values of chromophores were measured by solvatochromic method [15, 31]. As 

shown in Table 1, the chromophore CLD shows a βCTµg value of 6967.9×10-30 esu⋅D, while the 

chromophore CLDS1 and CLDS2 exhibit a larger βCTµg value of 7207.6 and 7976.8×10-30esu⋅D, 

respectively. This indicates that the introduction of alkylthio substituent can enhance the βCTµg 

value because the auxiliary π-accepting alkylthio group can make the chromophores have better 

conjugation [30]. Except of the enhancement of βCTµg value, it is expected that the alkylthio side 

group will affect the poling efficiency and the macroscopic NLO response of hybrid materials. To 

investigate the substituent effect on NLO properties of hybrid materials, the films F-CLD, 

F-CLDS1 and F-CLDS2 were poled at 5.5 kV dc voltage from 120 to 160 oC for half an hour 

and the second order NLO properties were characterized by in situ SHG measurement. The SHG 

coefficients (d33) were calculated by equations according to the references [34] and summarized 
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in Table 2. The experimental data were collected at 1064 nm fundamental wavelength, and 

considering the severe absorption at the doubling frequency 532 nm, absorption correction was 

applied.  

The d33 values of hybrid films F-CLD, F-CLDS1 and F-CLDS2 are 37.78, 104.54 and 98.17 

pm V-1, respectively. Compared with the film F-CLD, the film F-CLDS1 shows about 3 times 

enhancement of d33 value. The significantly enhanced macroscopic optical nonlinearities of 

F-CLDS1 could be attributed to the fact that by adding an alkylthio group perpendicular to the 

conjugated backbone at the center of the bridge, not only it can improve the βCTµg value, but also 

serve as an efficient isolation spacer to reduce the interchromophore electrostatic interactions. It 

needs to be mentioned that the film F-CLDS2, in which the chromophore CLDS2 was covalently 

linked to silica matrix, also exhibits an excellent NLO property. This clearly shows that the 

enhancement of NLO response is mainly attributed to the incorporation of alkylthio group as 

isolation spacer, while scarcely be influenced by anchoring position of chromophore. It may 

provide an efficient approach to design and synthesize new hybrid materials for large optical 

nonlinearity.  

For the purpose of determining the temperature at which dipolar relaxation of SHG signal is 

halved, a thermal dynamic induced depoling experiment was performed while the half-decay 

temperature (Td/2) was used as notation (Fig. 5). As shown in Table 1, the hybrid film F-CLDS2 

has a highest half-decay temperature of 127 oC. This behavior could be rationalized by the more 

difficult dipole orientation in hybrid film F-CLDS2, indicating that the side-on chromophore 

attachment geometry can enhance the thermal stability of NLO properties in comparison with end 

attachment model.  
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4. Conclusion 

Two new chromophores, CLDS1 and CLDS2, based on a similar D-π-A structure as the 

phenyltetraene chromophore CLD, but with an alkylthio group perpendicular to the direction of 

the long molecular axis as isolation spacer were synthesized. By anchoring the chromophores in 

inorganic silica matrix, a series of hybrid materials were prepared. Due to the incorporation of 

alkylthio group, the hybrid films F-CLDS1 and F-CLDS2 exhibit a significantly enhanced d33 

value of 104.54 and 98.17 pm V-1, respectively, which are almost 3 times the d33 value of hybrid 

film containing CLD. Furthermore, the film F-CLDS2 shows a quite high thermal stability of 

optical nonlinearity. This result could provide an efficient approach to design and synthesize new 

hybrid materials for large optical nonlinearity. 
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Table 1 Solvatochromic data and hyperpolarizabilities of the chromophores 

a measured in DMF b measured in 1,4-dioxane 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chromophore 
λmax

a 

(nm) 

ε 

(104 mol-1⋅L⋅cm-1) 

∆ν1/2 

(cm-1) 

λmax
b 

(nm) 

∆ν 

(cm-1) 

a 

nm 

βCT⋅µg 

(10-30esu⋅D) 

CLD 669 3.32 4762 626 1026 1.1 6967.9 

CLDS1 667 3.08 5099 622 1085 1.1 7207.6 

CLDS2 673 3.41 5617 633 939 1.1 7976.8 
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Table 2 Nonlinear optical property of hybrid films.  

Hybrid film λmax(nm  d33(pm/V) Td/2
a(oC) 

F-CLD 599 37.78 110 

F-CLDS1 635 104.54 102 

F-CLDS2 666 98.17 112 

a Half-decay temperature of d33 value. 
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Figure Captions 

 

Scheme 1. Synthetic route of alkoxysilane dyes ICTES-CLDS1 and ICTES-CLDS2 

 

Fig. 1. Structures of the chromophores CLD, CLDS1 and CLDS2 

 

Fig. 2. FT-IR spectra of CLDS1, ICTES-CLDS1 and film F-CLDS1 

 

Fig. 3. UV-vis spectra of chromophores in CHCl3 and hybrid films  

 

Fig. 4. TGA curves of chromophores and hybrid films 

 

Fig. 5. Decay of the normalized d33 values as a function of temperature for film F-CLDS2. 
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Fig. 3 
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Two new phenyltetraene-based chromophores with alkylthio group were synthesized 

Inorganic-organic hybrid films are prepared through sol-gel process 

Incorporation of alkylthio group effectively improves the nonlinear optical property 

 

  


