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Abstract A method for the Brønsted acid promoted desulfination of
aryl sulfoxides is presented. In the presence of a thiol, electron-rich sulf-
oxides undergo C–S bond cleavage to give the corresponding protode-
sulfinated arenes and disulfides.
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Sulfoxides are versatile reagents in organic synthesis.
Besides their widespread use as ligands1 and chiral auxilia-
ries,2 sulfoxides have found application as directing
groups.3 In particular, we and others have shown that aro-
matic sulfoxides are especially useful for functionalization
at the ortho-position.4 More recently, the functionalization
of meta-5 and para-positions6 in aromatic sulfoxides has
also been achieved. Importantly, the chiral information en-
coded on the tetrahedral sulfur can be harnessed to control
new stereocenters on carbon through chirality transfer.7a,b

While cross-coupling and other methods enable the
post-reaction conversion of sulfur residues,8 their substitu-
tion by a simple hydrogen atom is a commonly performed
reaction. Amongst the different sulfur-based functional
groups, several undergo facile C–S or heteroatom–S bond
cleavage under acidic conditions. Examples include the de-
sulfonylation of aromatic sulfonic acids9 in strongly acidic
media or the removal of Ellman’s auxiliary with hydrochlo-
ric acid (Scheme 1, a).10 Interestingly, indolylsulfides can
also be cleaved when dissolved in TFA in the presence of a
thiol, as has been shown by Girard and co-workers (Scheme
1, b).11 The removal of sulfoxides, however, commonly re-
quires hydrogenation with the pyrophoric Raney-nickel12 or
sulfoxide–lithium exchange with organolithium reagents
such as t-BuLi.13

We have recently discovered that certain sulfoxides can
be cleaved under mildly acidic conditions. Herein, we pres-
ent the preliminary results of our investigations towards an
acid-catalyzed desulfination reaction (Scheme 1, c).

Scheme 1  (a) Deprotection of aryl sulfonic acids and sulfonamides un-
der acidic conditions. (b) Desulfenylation reported by Girard. (c) This 
work: Sulfoxide C–S bond cleavage in acidic media.

We started our investigations using sulfoxide 1a as our
standard substrate and employing triflic acid as the protic
catalyst (Table 1). Dichloromethane proved to be the best
solvent at a concentration of 0.2 M and a catalyst loading of
50 mol% was required to achieve full conversion after 12 hours.
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Triflimide showed comparable results. Importantly, an ex-
ternal nucleophilic thiol was found to promote the process
in agreement with the previous results of Girard.11

Table 1  Optimization of the Desulfination Reaction Conditions

We then went on to explore the generality of this proto-
col with a range of sulfoxides (Scheme 2). o,o-Disubstituted
derivatives were readily cleaved under the optimized reac-
tion conditions, while less hindered sulfoxide 1c showed no
conversion. This indicates that steric hindrance greatly fa-
cilitates the reaction. Heteroaromatic sulfoxides 1d–g also
underwent the reaction smoothly, whereas less electron-
rich derivative 1h bearing a Ts-protecting group was fully
recovered after the reaction. Benzothiophene 1i required an
elevated temperature, showing only traces of the desulfi-
nated product at room temperature. In the case of me-
thoxythiophene derivative 1j, the product was found to be
unstable under the reaction conditions, with only a small
amount of isolated protodesulfinated material being ob-
tained. The reaction with cyclic sulfoxide 1k led to quanti-
tative formation of a sulfide, the product of reduction.

Our mechanistic proposal is outlined in Scheme 3. Addi-
tion of a Brønsted acid to a sulfoxide presumably leads to
association with the highly polarized sulfoxide oxygen.14

Alternatively, protonation on the electron-rich arene would
generate a short-lived intermediate 4, which would rapidly
be intercepted by the nucleophilic thiol generating the
product 2 and one equivalent of thiosulfinate 5. The thio-
sulfinate formed in this process is not stable under the re-
action conditions and further reacts to give a mixture of
symmetrical and unsymmetrical disulfides as the only de-
tectable byproducts.15 

Scheme 3  Proposed mechanism for the acid-catalyzed sulfoxide 
cleavage 

In summary, we have developed a convenient method
for the desulfination of electron-rich aryl sulfoxides pro-
moted by a Brønsted acid.16,17 
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Entry Deviation from general conditions Conversion

1 MeOH 0%

2 acetone 0%

3 Et2O 0%

4 HFIP traces

5 CH2Cl2 (0.5 M) traces

6 Tf2NH (80 mol%), 20 h 100%

7 standard conditions 100% (67%)a

a Isolated yield in parentheses.

1a 2a
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HTfOH (50 mol%)

OctSH (4 equiv)

CH2Cl2 (0.2 M), 23 °C, 12 h

Scheme 2  Substrate scope for the desulfination of sulfoxides; the 
yields given are those of the corresponding deprotected products 2. 
NMR yields are reported in parentheses. a The reaction was heated to 
40 °C. b Full conversion into the reduced sulfide was observed.
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