The Journal of Organic Chemistry

CORNELL UNIVERSITY LIBRARY

Subscriber access provided by CORNELL UNIVERSITY LIBRARY

Article

Synthesis of Thiocarbamoyl Fluorides and Isothiocyanates using Amines with CF3SO2CI

Jingjing Wei, Shuaishuai Liang, Lvqi Jiang, and Wenbin Yi

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.0c01634 • Publication Date (Web): 31 Aug 2020

Downloaded from pubs.acs.org on September 3, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Synthesis of Thiocarbamoyl Fluorides and Isothiocyanates using Amines with CF₃SO₂CI

Jingjing Wei,^{†, §}Shuaishuai Liang,^{†, §} Lvqi Jiang,^{*,†} Wenbin Yi^{*,†}

[†] School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China

ABSTRACT: A practical and efficient produce to synthesize thiocarbamyl fluorides and isothiocyanates from amines with trifluoromethanesulfonyl chloride was developed. In the presence of reducing agent triphenylphosphine and sodium iodide, secondary amines/primary amines method thiocarbamyl fluorides and isothiocyanates in moderate to excellent yields, respectively. A broad scope of substrates and good functional group compatibility were observed.

INTRODUCTION

Organofluorine compounds are important in pharmaceutical chemistry and agrochemistry because of their special chemical and biological properties.¹ In recent years, the synthesis of thiocarbamoyl fluoride has received much attention owing to the special structure, which contains nitrogen, sulfur and fluorine elements, makes it have enormous potential applications in the pharmaceuticals field.² Isothiocyanates are important organic compounds that are widely present in drugs, natural products, and material molecules.³ As one of the most important classes of organic compounds, they are widely used in biological fields and synthetic chemistry.⁴ Considering the wide applications of isothiocyanates, the use of simple and efficient methods to construct the –NCS group in molecules is of great significance for the pharmaceutical and agrochemical industries. Thus, the development of synthetic methods for the synthesis of those compounds under mild conditions is highly desired.

In the last years, several strategies have been reported for the synthesis of thiocarbamoyl fluoride and/or isothiocyanates from secondary amines and/or primary amines. Until now, there are about five reagents has been development for the simultaneous synthesis of thiocarbamoyl fluorides and isothiocyanates. In 2017, the group of Schoenebeck demonstrated that amines react with Me₄NSCF₃ furnishing thiocarbamoyl fluorides and/or isothiocyanates at room temperature, respectively (Scheme 1).⁵ Afterwards the group of Xiao reported reaction of thiocarbonyl fluoride generated from Ph₃P⁺CF₂CO₂⁻, S₈ with amines (Scheme 1).⁶ Recently, Jiang's group⁷ described two pathways to access thiocarbamoyl fluorides and isothiocyanation by using CF₃SiMe₃, S₈, KF or AgSCF₃, KBr (Scheme 1). Although Zheng's group⁸ has reported that Langlois reagent (CF₃SO₂Na) can also participate in isothiocyanation of primary amines in the presence of CuI/HPO(OEt)₂ in 2017, a mild method for the synthesize of thiocarbamoyl fluoride using CF₃SO₂Na and triphenylphosphine has recently

been reported by our group (Scheme 1)⁹. With our continuous interest in exploring construction of N-C bounds, we thought the development of efficient methods by cheap material would constitute an attractive option for the access of thiocarbamoyl fluorides and isothiocyanates.

Scheme 1. Synthetic strategies for Thiocarbamoyl Fluorides/Isothiocyanates.

Trifluoromethanesulfonyl chloride (CF₃SO₂Cl), as a easy-to-handle and commercially available cheap material, has been widely used in the formation of sulfonamides and sulfonic esters,¹⁰ and also in electrophilic chlorination,¹¹ trifluoromethylation or trifluoromethyl-chlorosulfonylation etc.¹² Our group has reported its application in the electrophilic trifluoromethylthiolation of indoles, pyrroles, enamines and chloro-trifluoromethylthiolation of alkenes and alkynes.¹³ In this context, we envisioned that straightforward synthesis of thiocarbamoyl fluoride and isothiocyanates by CF₃SO₂Cl can be achieved under suitable reductive conditions, we herein disclose a novel use of trifluoromethanesulfonyl chloride to prepare thiocarbamoyl fluoride and isothiocyanates.

RESULTS AND DISCUSSION

We initially investiagated the treatment of *N*-methylaniline **1a** with CF₃SO₂Cl **2a** (1.5 equiv) in the presence of PPh₃(3.0 equiv) in DMF at r.t. to yield the thiocarbamyl fluorides product **3a** in 18% yield (Table 1, entry 1). Encouraged by this result, optimisation of the reaction conditions was then carried out. Considering that iodide anion can promote the reduction of sulfonyl chloride,¹⁴ a series of iodide sources including KI, NH₄I, NaI, and I₂ were tested (Table 1, entries 2–6). and among them NaI giving the highest yield (47%, Table 1, entry 4). When KI and NH₄I was used as the catalyst, the product **3a** was obtained in 40% and 35% yield, respectively (Table 1, entries 2, 3), I₂ did not increase the yield obviously (Table 1, entry 5). Increasing the loadings of NaI to 1.5 equiv increase the product yield to 88% (Table 1, entries 6, 7). We next examined the effect of solvents on yield. After several solvents were screened, DMF proved to be the best option in the transformation. Other solvents such as MeCN, THF, and 1,2-dichloroethane were less effective for this kind of reation (Table 1, entries 8-12). When the amount of CF₃SO₂Cl **2a** is reduced to 1.2 equiv, the yield will be reduced to 61% (Table 1, entries 13). Thus, 1:1.5:3:1.5 amine/CF₃SO₂Cl/PPh₃/NaI in DMF at r.t. for 4 h was selected as the optimized reaction conditions. Notably, the present reaction is scalable, and 1.25 g (74%) of **3a** was isolated when the reaction was performed on a 10 mmol scale (Table 1, entry 14).

Table 1. Optimization of reaction conditions^a

۲ Ph ⁷ 1a	↓ ↓ + CF ₃ SO ₂ C 2a	solvent, r.t.	Ph ^{-N} -
entry	additive (equiv)	solvent	yield(%) ^[b]
1	-	DMF	18
2	KI (0.5)	DMF	40

3	NH ₄ I (0.5)	DMF	35
4	NaI (0.5)	DMF	47
5	$I_2(0.5)$	DMF	13
6	NaI (1.0)	DMF	68
7	NaI (1.5)	DMF	88
8	NaI (1.5)	MeCN	22
9	NaI (1.5)	THF	41
10	NaI (1.5)	1,4-dioxane	trace
11	NaI (1.5)	DCE	40
12	NaI (1.5)	AcOH	18
13	NaI (1.5)	DMF	61 ^[c]
14	NaI (1.5)	DMF	74 ^[d]

^{*a*}Reaction conditions: N-methylaniline (0.5 mmol), CF₃SO₂Cl (0.75 mmol), PPh₃ (1.5 mmol), DMF (2.5 mL), r.t. for 4h. ^{*b*}Yield determined by ¹⁹F NMR using *p*-fluorotoluene as an internal standard on crude products. ^{*c*}CF₃SO₂Cl (0.6 mmol), PPh₃ (1.2 mmol) was used. ^{*d*}Yield was obtained at 10 mmol scale.

With the optimized reaction conditions in hand, we next investigated the substrate scope. Various secondary amines, including N-phenyl (**3a–3k**), N-benzyl (**3l–3m**) and N-alkyl (**3n–**3r) amines, were converted into the corresponding thiocarbamoyl fluorides with good yields (Scheme 2). Substrates bearing electron-donating and electron-withdrawing substituents on aryl rings also proceeded well. A good range of functional groups, including ester (**3e**), nitro (**3f**), ether (**3g**), and bromide (**3j**), were well tolerated under the mild reaction conditions. The conversion is not particularly sensitive to steric effects, as evidenced by the good yields of **3b**, **3c**, and **3d**. Notably, heterocyclic and heterocycle-containing amines and amino acid derivative were also successfully employed to provide the corresponding products in 71–83% yields (**3m-3p**). Alkyl amines (**3q**, **3r**) were also suitable for this reaction. It was worth mentioning that products **3s-3u**, which are the thiocarbamyl fluorides of the drug-like molecules, was obtained without affecting the core structure of these molecules. Indeed antidepressants such as sertraline and fluoxetine proceeded smoothly to provide the corresponding product **3s** and **3t** with yields 69% and 70%, respectively. Maprotiline, bearing an alkyl chain amine group, was also successfully transformed (**3u**).

Scheme 2. Scope of secondary amines^a

^aReaction conditions: secondary amine (0.5 mmol), CF₃SO₂Cl (0.75 mmol), PPh₃ (1.5 mmol), NaI (0.75 mmol) in DMF (2.5 mL) at r.t. for 4h; isolated yields.

The successful reaction of CF_3SO_2Cl with secondary amines prompted us to investigate its reaction with primary amines, to our delight, the protocol was also efficient for the primary amines to form isothiocyanates (Scheme 3). A variety of primary amines with electron-donating or electron-withdrawing groups conducted under the optimized condition and proceeded in good yields. Para-substituted amines with functional groups such as fluoride (5d), chloride (5e), bromine (5f), phenyl (5g), methoxy (5h), alkynyl (5i), cyano (5j), and nitro (5k) groups reacted to generate the corresponding products with yields ranging from 77% to 86%. Pyridin-3-amine was also applied in the reaction successfully to afford 5l with satisfactory results. Then alkyl amines were also investigated, affording the corresponding isothiocyanate products 5m-50 in moderate yields. In particular, antiviral and antiparkinsonian drug amantadine was also tolerated (50). Moreover, intramolecular thiocarbamides (5p-5r) could also be obtained from the corresponding amines.

Scheme 3. Scope of primary amines^a

^a Reaction conditions: primary amine (0.5 mmol), CF₃SO₂Cl (0.75 mmol), PPh₃ (1.5 mmol), NaI (0.75 mmol) in DMF (2.5 mL) at

r.t. for 4h; isolated yields. ^bYield was obtained at 10 mmol scale.

To gain some insight into the mechanism, some preliminary studies were conducted (Scheme 4). When Nmethylaniline reacted with CF₃SO₂Cl in the absence of PPh₃ and NaI, 11% yield of acylamide product was detected. Moreover, only trace of acylamide product was observed under standard conditions. The results indicated that reaction between CF3SO2Cl and amines do not occur rapidly without any additives, and the presence of PPh₃ and NaI also inhibited the amidation (Scheme 4, a). Based on the previous reports involving the formation of thiocarbamoyl fluoride from secondary amines^[5-9], it seems that thiocarbonyl fluoride may be the key intermediate in this reaction. Accordingly, we performed a reaction in which amines was replaced by pentamethylcyclopentadiene 6 and observed the the corresponding bridged product 7 (Scheme 4, b). At the same time, ³¹P NMR analysis of the reaction mixture revealed tjhat iodophosphonium salt (δ : +42 ppm)¹⁵ was present in the reaction. A proposed mechanism was illustrated on the basis of these results and previous reports (Scheme 4).^{12e, 16} At first, sulfenyl chloride react with PPh₃ to form chlorophosphonium salt (Ph₃P⁺Cl) via a halogen bonding process, the in situ generated chlorophosphonium sulfinate was converted into the Osulfinatophosphonium chloride, which then undergo Arbuzov collapse to yield CF₃SOCl and trimethylphosphine oxide. CF₃SOCl was then reduced by Ph₃P to form CF₃SCl (trifluoromethanesulfenyl chloride) via a similar process. Next, sulfenyl chloride react with PPh₃ to form CF₃S⁻ and chlorophosphonium salt (Ph₃P⁺Cl), which was attacked by NaI to produce CF₃SNa and (Ph₃P⁺I Cl⁻), while CF₃SNa decomposed to thiocarbonyl fluoride and NaF due to its instability.¹⁷ Finally, thiocarbonyl fluoride react with amines to affords the product thiocarbamoyl fluorides or isothiocyanates. Because of the reversible equilibrium between Ph₃P⁺I Cl⁻ and Ph₃P, iodophosphonium salt can still participate in the reduction of the reaction.

Scheme 4. Control Experiment and Proposed Reaction Mechanism

CONCLUSIONS

In summary, we have developed a convenient method for the synthesis of thiocarbamoyl fluorides and isothiocyanates with amines using trifluoromethanesulfonyl chloride. The reaction system consists of a reducing agent, PPh_3 and NaI, all reagents used in this process were widely available, and the reactions occurred smoothly under mild conditions. The highly efficient and concise nature of the reaction process along with the mild conditions employed, are the major advantages of this new method.

EXPERIMENTAL SECTION

General information

All chemical reagents are obtained from commercial suppliers and used without further purification. All known compounds are identified by appropriate technique such as ¹H NMR, ¹³C{¹H} NMR, ¹⁹F NMR and compared with previously reported data. All unknown compounds are characterized by ¹H NMR, ¹³C{¹H} NMR, ¹⁹F NMR and HRMS. Analytical thin-layer chromatography is performed on glass plates precoated with silica gel impregnated with a fluorescent indicator (254 nm), and the plates are visualized by exposure to ultraviolet light. ¹H, ¹³C{¹H} and ¹⁹F NMR spectra were recorded on a 500 MHz Bruker DRX 500 and tetramethylsilane (TMS) was used as a reference. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.0). and chemical shifts are reported in ppm. GC-MS data was recorded on a ISQ LT Single Quadrupole Mass Spectrometer, coupled with a Trace 1300 Gas Chromatograph (Thermo Fisher Scientific). Melting points were measured on a melting point apparatus and were uncorrected. High resolution mass spectral data were acquired on Waters Micromass GCT Premier spectrometer (electro ionization: EI) and Waters Q-Tof microTM (electrospray ionization: ESI).

A typical procedure for preparation of thiocarbamoyl fluorides or isothiocyanates

A 10 mL oven-dried reaction vessel was charged with PPh₃ (1.5 mmol, 393 mg, 3 equiv.) and NaI (0.75

mmol, 112.5 mg, 1.5 equiv.) under N₂, *N*-Methylaniline (0.5 mmol, 54 mg, 1.0 equiv.) was dissolved in DMF (1.25 mL) and the solution was added to the vessel by syringe, CF_3SO_2Cl (0.75 mmol, 126 mg, 1.5 equiv.) was dissolved in DMF (1.25 mL) and the solution was added to the vessel by syringe. The resulting solution was stirred at room temperature for 4h. After that, the reaction mixture was diluted with water and extracted with CH_2Cl_2 , the organic layers were washed with brine and concentrated under reduced pressure. Then the residue was purified by column chromatography to give the corresponding products.

A typical procedure of gram-scale synthesis for thiocarbamoyl fluorides

In a 150 mL oven-dried reaction vessel was consecutively placed PPh₃ (30 mmol, 7.86 g, 3 equiv), NaI (15 mmol, 2.25 g, 1.5 equiv) under N₂, *N*-Methylaniline **1a** (1.07 g, 10 mmol, 1 equiv) dissolved in DMF (40 mL) was added to the sealed reaction vessel by syringe, then the mixture was cooled to 0 °C under stirring. CF₃SO₂Cl (15 mmol, 2.52 g, 1.5 equiv.) dissolved in DMF (10 mL) was then slowly added via syringe. The resulting mixture was then allowed to warm to room temperature and stirred for 5h. Upon completion, the reaction mixture was diluted with water (300ml) and extracted with CH₂Cl₂ (300ml), the organic layers were washed with brine (300ml) three times and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to obtain **3a** in 74% yield (1.25 g).

A typical procedure of gram-scale synthesis for isothiocyanates

In a 150 mL oven-dried reaction vessel was consecutively placed PPh₃ (30 mmol, 7.86 g, 3 equiv), NaI (15 mmol, 2.25 g, 1.5 equiv) under N₂, aniline **1a** (0.93 g, 10 mmol, 1 equiv) dissolved in DMF (40 mL) was added to the sealed reaction vessel by syringe, then the mixture was cooled to 0 °C under stirring. CF₃SO₂Cl (15 mmol, 2.52 g, 1.5 equiv.) dissolved in DMF (10 mL) was then slowly added via syringe. The resulting mixture was then allowed to warm to room temperature and stirred for 5h. Upon completion, the reaction mixture was diluted with water (300ml) and extracted with CH₂Cl₂ (300ml), the organic layers were washed with brine (300ml) three times and concentrated under reduced pressure.. The crude product was purified by column chromatography on silica gel to obtain **3a** in 71% yield (0.96 g).

Unsymmetrical thiocarbamoyl fluoride compounds can form two conformers 3' and 3'' which can be observed as distinct species in the NMR:

methyl(phenyl)carbamothioic fluoride 3a' and 3a''.⁷ **3a':3a''**=5:1, yellow oil, yield 86% (72.7 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 – 7.32 (m, 5H+3H, **3a''+3a'**), 7.20 (dt, *J* = 8.2, 1.3 Hz, 2H, **3a'**), 3.65 (s, 3H, **3a'**), 3.49 (d, *J* = 2.5 Hz, 3H, **3a''**). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 21.57 (**3a'**), 20.05 (**3a''**). ¹³C {¹H} NMR (126 MHz, Chloroform-*d*) δ 181.6 (d, *J* = 319.6 Hz, **3a'**), 145.1 (**3a''**), 142.1 (**3a'**), 131.0 (**3a''**), 130.7 (**3a'**), 129.7 (**3a''**), 129.6 (**3a'**), 127.0 (d, *J* = 1.8 Hz, **3a''**), 125.9 (**3a'**), 45.9 (d, *J* = 7.3 Hz, **3a'**), 41.9 (**3a''**).

methyl(o-tolyl)carbamothioic fluoride 3b' and 3b''. ⁷ **3b':3b''**=4:1, yellow solid, yield 81% (74.1 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.37 – 7.22 (m, 3H+3H, **3b'+3b''**), 7.19 (d, *J* = 6.7 Hz, 1H, **3b''**), 7.15 – 7.08 (m, 1H, **3b'**), 3.56 (d, *J* = 1.6 Hz, 3H, **3b'**), 3.41 (d, *J* = 2.2 Hz, 3H, **3b''**), 2.29 (s, 3H, **3b''**), 2.24 (s, 3H, **3b'**). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 21.32 (**3b'**), 17.25 (**3b''**). ¹³C {¹H} NMR (126 MHz, Chloroform-*d*) δ 182.5 (d, *J* = 325.4 Hz, **3b''**), 182.0 (d, *J* = 318.0 Hz, **3b'**), 143.6 (**3b''**), 141.2 (**3b'**), 135.2 (**3b''**), 134.9 (**3b'**), 132.8 (**3b''**), 132.5 (**3b''**), 130.2 (**3b''+3b'**), 128.9

(**3b**''), 128.4 (**3b**'), 126.9 (d, *J* = 2.1 Hz, **3b**''), 126.3 (**3b**'), 45.0 (d, *J* = 7.3 Hz, **3b**'), 40.9 (d, *J* = 4.2 Hz, **3b**''), 18.2 (**3b**'+**3b**'').

methyl(m-tolyl)carbamothioic fluoride 3c' and 3c''.⁷ **3c':3c''**=6:1, yellow oil, yield 77% (70.5 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.36 – 7.25 (m, 1H+1H, **3c''+3c'**), 7.20 – 7.12 (m, 1H+3H, **3c'+3c''**), 7.04 – 6.96 (m, 2H, **3c'**), 3.62 (s, 3H, **3c'**), 3.45 (d, *J* = 2.5 Hz, 3H, **3c''**), 2.37 (d, *J* = 5.4 Hz, 3H+3H, **3c''+3c'**). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 21.32 (**3c'**), 19.76 (**3c''**). ¹³C {¹H} NMR (126 MHz, Chloroform-*d*) δ 183.2 (d, *J* = 323.9 Hz, **3c''**), 181.6 (d, *J* = 319.2 Hz, **3c'**), 145.1 (**3c''**), 142.1 (**3c'**), 141.1 (**3c''**), 140.8 (**3c'**), 130.7 (**3c''**), 130.4 (**3c'**), 130.3 (**3c'**), 128.3 (**3c''**), 127.4 (**3c''**), 126.4 (**3c'**), 123.9 (d, *J* = 1.9 Hz, **3c''**), 122.9 (**3c'**), 45.9 (d, *J* = 7.2 Hz, **3c'**), 42.0 (d, *J* = 4.4 Hz, **3c''**), 22.4 (**3c''**), 22.3 (**3c'**).

methyl(p-tolyl)carbamothioic fluoride 3d' and 3d''.⁷ 3d':3d''=5:1, yellow oil, yield 80% (73.2 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.26 (d, *J* = 7.3 Hz, 2H, 3d''), 7.22 (d, *J* = 8.4 Hz, 2H+2H, 3d'+3d''), 7.08 (d, *J* = 8.0 Hz, 2H, 3d'), 3.62 (s, 3H, 3d'), 3.46 (d, *J* = 2.5 Hz, 3H, 3d''), 2.37 (d, *J* = 5.6 Hz, 3H+3H, 3d''+3d'). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 21.14 (3d'), 19.76 (3d''). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 183.4 (d, *J* = 324.0 Hz, 3d''), 181.7 (d, *J* = 319.1 Hz, 3d'), 142.7 (3d''), 139.7 (3d''), 139.6 (3d'), 139.6 (3d'), 131.5 (3d''), 131.2 (3d'), 126.6 (d, *J* = 2.0 Hz, 3d''), 125.6 (3d'), 46.0 (d, *J* = 7.1 Hz, 3d'), 42.0 (d, *J* = 4.7 Hz, 3d''), 22.3 (3d''), 22.1 (3d').

methyl 4-((fluorocarbonothioyl)(methyl)amino)benzoate 3e' and 3e''. 3e':3e''=6:1, White solid, M.p. 66.8-68.2 °C, yield 82% (93.1 mg). Eluent: ethyl acetate/petroleum ether (10:90). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.07 (d, J = 8.3 Hz, 2H+2H, 3e''+3e'), 7.43 (d, J = 8.2 Hz, 2H, 3e''), 7.33 – 7.25 (m, 2H, 3e'), 3.90 (s, 3H+3H, 3e''+3e'), 3.64 (s, 3H, 3e'), 3.49 (d, J = 4.3 Hz, 3H, 3e''). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 22.07 (3e'), 21.21 (3e''). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 181.1 (d, J = 320.6 Hz, 3e'), 166.8 (3e'), 145.7 (3e'), 132.0 (3e'), 131.0 (3e'), 127.2 (3e'), 126.0 (3e'), 53.5 (3e'), 45.6 (d, J = 7.1 Hz, 3e'), 41.7 (3e'). HR-MS (EI) m/z: M⁺ Calcd. For C₁₀H₁₀FNO₂S 227.0416; f ound 227.0415.

methyl(4-nitrophenyl)carbamothioic fluoride **3f**' and **3f**''. ⁷ **3f**':**3f**''=4:1 , yellow solid, yield 76% (81.3 mg). Eluent: ethyl acetate/petroleum ether (10:90). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.33 (d, J = 8.5 Hz, 2H, **3f**'), 7.47 (d, J = 8.6 Hz, 2H, **3f**'), 3.71 (s, 3H, **3f**'). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 23.03 (**3f**'), 22.46 (**3f**''). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 180.7 (d, J = 317.0 Hz, **3f**'), 147.9 (**3f**'), 147.2 (**3f**'), 127.0 (**3f**'), 126.1 (**3f**').

(4-methoxyphenyl)(methyl)carbamothioic fluoride 3g' and 3g''. ⁷ 3g':3g''=5:1, yellow oil, yield 80% (79.6 mg). Eluent: ethyl acetate/petroleum ether (5:95). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.24 (d, *J* = 8.9 Hz, 2H, 3g''), 7.14 – 7.09 (m, 2H, 3g'), 6.97 – 6.89 (m, 2H+2H, 3g''+3g'), 3.80 (d, *J* = 2.8 Hz, 3H+3H, 3g''+3g'), 3.61 (s, 3H, 3g'), 3.45 (d, *J* = 2.5 Hz, 3H, 3g''). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 21.11 (3g'), 19.76 (3g''). ¹³C {¹H} NMR (126 MHz, Chloroform-*d*) δ 183.6 (d, *J* = 324.3 Hz, 3g''), 181.8 (d, *J* = 318.7 Hz, 3g'), 160.3 (3g''+3g'), 138.0 (3g''), 134.9 (3g'), 128.0 (d, *J* = 2.0 Hz, 3g''), 127.0 (3g'), 116.0 (3g''), 115.8 (3g'), 56.6 (3g'), 56.6 (3g''), 46.1 (d, *J* = 7.3 Hz, 3g'), 42.1 (d, *J* = 4.6 Hz, 3g'').

butyl(phenyl)carbamothioic fluoride 3h' and 3h''. 3h':3h''=4:1, yellow oil, yield 79% (83.3 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.49 – 7.39 (m, 3H+2H, **3h''+3h'**), 7.39 – 7.34 (m, 1H, **3h'**), 7.30 (dd, *J* = 7.6, 1.9 Hz, 2H, **3h''**), 7.17 (dd, *J* = 7.7, 2.0 Hz, 2H, **3h'**), 4.09 – 4.01 (m, 2H, **3h'**), 3.80 (td, *J* = 7.5, 1.6 Hz, 2H, **3h''**), 1.71 – 1.57 (m, 2H+2H, **3h'+3h''**), 1.34 (hd, *J* = 7.4, 2.5 Hz, 2H+2H, **3h'+3h''**), 0.91 (td, *J* = 7.4, 2.5 Hz, 3H+3H, **3h''+3h'**). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 24.40 (**3h'**), 16.74 (**3h''**). ¹³C {¹H} NMR (126 MHz, Chloroform-*d*) δ 183.4 (d, *J* = 324.3 Hz, **3h''**), 181.5 (d, *J* = 319.5 Hz, **3h'**), 143.8 (**3h''**), 140.6 (**3h'**), 130.9 (**3h''**), 130.7 (**3h'**), 129.7 (**3h''+3h'**), 127.9 (**3h''**), 126.9

(3h'), 57.9 (d, J = 7.3 Hz, 3h'), 54.9 (d, J = 3.3 Hz, 3h''), 31.1 (3h''), 29.1 (3h'), 20.9 (3h'), 20.8 (3h''), 14.7 (3h'), 14.6 (3h''). HR-MS (EI) m/z: M⁺ Calcd. For C₁₁H₁₄FNS 211.0831; found 211.0825.

benzyl(phenyl)carbamothioic fluoride 3i' and 3i''. 3i':3i''=4:1, yellow oil, yield 73% (89.4 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.38 – 7.23 (m, 6H+8H, **3i''+3i'**), 7.17 – 7.11 (m, 4H, **3i''**), 6.98 (dd, *J* = 7.5, 2.3 Hz, 2H, **3i'**), 5.28 (s, 2H, **3i'**), 4.94 (s, 2H, **3i''**). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 24.43 (**3i'**), 18.31 (**3i''**). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 183.0 (d, *J* = 324.3 Hz, **3i''**), 182.6 (d, *J* = 319.8 Hz, **3i'**), 143.8 (**3i''**), 140.4 (**3i'**), 135.4 (**3i''**), 135.3 (**3i'**), 130.8 (**3i'**), 130.6 (**3i'**), 130.0 (**3i'**), 129.7 (**3i'**), 129.5 (**3i''**), 129.5 (**3i''**), 128.0 (**3i''**), 127.1 (**3i'**), 61.7 (d, *J* = 6.9 Hz, **3i'**), 58.7 (d, *J* = 3.4 Hz, **3i''**). HR-MS (EI) m/z: M⁺ Calcd. For C₁₄H₁₂FNS 245.0674; found 245.0669.

5-bromoindoline-1-carbothioyl fluoride 3j' and 3j''. 3j':3j''=1:4, yellow solid, M.p. 117.7-121.5 °C, yield 78% (101.0 mg). Eluent: ethyl acetate/petroleum ether (5:95). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.66 (dd, J = 8.7, 2.2 Hz, 1H, **3j'**), 7.40 (td, J = 7.9, 7.2, 2.0 Hz, 3H+1H, **3j''+3j'**), 7.27 (s, 1H, **3j'**), 4.41 – 4.30 (m, 2H+2H, **3j'+3j''**), 3.21 (dt, J = 16.7, 8.3 Hz, 2H+2H, **3j''+3j'**). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 39.56 (**3j''**), 16.86 (**3j''**). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 177.2 (d, J = 326.5 Hz,), 140.1, 140.1, 137.0, 136.2, 132.3 (d, J = 3.6 Hz), 131.4, 130.0, 129.2, 120.3, 119.9 (d, J = 2.1 Hz), 119.7, 119.5, 55.2 (d, J = 6.8 Hz), 52.3, 27.7, 27.3. Due to difficulty to assign peaks in ¹³C NMR to **3j'** and **3j''** only chemical shifts are indicated. HR-MS (EI) m/z: M⁺ Calcd. For C₉H₇BrFNS 258.9467; found 258.9471.

2,3-dihydro-4H-benzo[b][1,4]oxazine-4-carbothioyl fluoride 3k' and 3k''. 3k':3k''=1:25, yellow oil, yield 73% (71.9 mg). Eluent: ethyl acetate/petroleum ether (5:95). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.41 (t, *J* = 7.5 Hz, 1H, **3k''**), 7.16 (t, *J* = 7.9 Hz, 1H, **3k''**), 6.93 (t, *J* = 7.7 Hz, 2H, **3k''**), 4.38 (dp, *J* = 9.7, 4.7 Hz, 4H, **3k''**). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 25.58 (**3k'**), 18.11 (**3k''**). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 180.5 (d, *J* = 324.6 Hz), 147.0 , 129.2 , 125.3 , 125.2 , 124.7 , 121.8 , 118.9 , 66.2 , 49.7 (d, *J* = 6.4 Hz). Due to difficulty to assign peaks in ¹³C NMR to **3k'** and **3k''** only chemical shifts are indicated. HR-MS (EI) m/z: M⁺ Calcd. For C₉H₈FNOS 197.0311; found 197.0317.

methyl(naphthalen-1-ylmethyl)carbamothioic fluoride 3l' and 3l''. 3l':3l''=10:7, yellow solid, M.p. 69.6-71.3 °C, yield 75% (87.1 mg). Eluent: ethyl acetate/petroleum ether (5:95). ¹H NMR (500 MHz, Chloroform*d*) δ 8.05(d, J = 8.3 Hz, 1H, **3l'**), 7.95 – 7.91 (m, 1H+1H, **3l''+3l'**), 7.91 – 7.84 (m, 1H+2H, **3l'+3l''**), 7.63 – 7.54 (m, 2H+2H, **3l'+3l''**), 7.49 (td, J = 7.6, 2.8 Hz, 1H+1H, **3l'+3l''**), 7.42 (d, J = 6.9 Hz, 1H, **3l'**), 7.30 (d, J = 7.1 Hz, 1H, **3l''**), 5.43 (s, 2H, **3l'**), 5.17 (s, 2H, **3l''**), 3.28 (s, 3H, **3l''**), 2.96 (d, J = 2.3 Hz, 3H, **3l'**). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 17.58 , 13.79 . ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 183.1 (d, J =321.1 Hz), 182.5 (d, J = 320.6 Hz), 135.0 , 134.9 , 133.3 (d, J = 10.9 Hz), 132.6 , 131.9 , 130.6 , 130.5 , 130.4 , 130.3 , 130.2 , 130.0 , 129.6 (d, J = 12.7 Hz), 128.3 , 128.2 (d, J = 2.5 Hz), 127.4 (d, J = 4.1 Hz), 126.6 , 126.5 , 126.4 , 124.5 , 123.2 , 58.0 (d, J = 6.4 Hz), 53.7 (d, J = 6.1 Hz), 42.0 (d, J = 6.2 Hz), 36.1 (d, J = 6.5Hz). Due to difficulty to assign peaks in ¹³C NMR to **3I'** and **3I''** only chemical shifts are indicated. HR-MS (EI) m/z: M⁺ Calcd. For C₁₃H₁₂FNS 233.0674; found 233.0680.

methyl(thiophen-3-ylmethyl)carbamothioic fluoride 3m' and 3m''. 3m':3m''=10:7, yellow oil, yield 69% (65.1 mg). Eluent: ethyl acetate/petroleum ether (1:99). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.33 – 7.26 (m, 1H+1H, 3m'+3m''), 7.16 – 7.12 (m, 1H, 3m'), 7.05 – 6.97 (m, 1H+2H, 3m'+3m''), 5.09 (s, 2H, 3m'), 4.81 (s, 2H, 3m''), 3.31 (d, J= 1.7 Hz, 3H, 3m''), 3.12 (d, J= 2.2 Hz, 3H, 3m'). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 16.52 (3m'), 14.02 (3m''). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 182.9 (d, J = 321.4 Hz, 3m'), 182.0 (d, J = 320.6 Hz, 3m''), 136.9 (3m''), 136.4 (3m'), 129.4 (3m'), 128.9 (3m''), 128.3 (3m''), 127.7 (3m'), 127.7 (3m''), 54.6 (d, J = 5.6 Hz, 3m'), 50.5 (d, J = 6.4 Hz, 3m''), 41.9 (d, J = 6.2 Hz, 3m''), 36.7 (d, J = 6.4 Hz, 3m'). HR-MS (EI) m/z: M⁺ Calcd. For C₇H₈FNS₂ 189.0082; found 189.0079.

4-phenylpiperazine-1-carbothioyl fluoride 3n. ¹⁸ Off-white solid, yield 82% (91.8 mg). Eluent: ethyl acetate/petroleum ether (5:95). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.29 (t, *J* = 7.7 Hz, 2H), 6.92 (t, *J* = 7.0 Hz, 3H), 4.11 (t, *J* = 5.2 Hz, 2H), 3.91 – 3.79 (m, 2H), 3.24 (dt, *J* = 40.8, 5.2 Hz, 4H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 13.34 . ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 181.1 (d, *J* = 320.3 Hz), 151.2 , 130.5 , 122.2 , 118.0 , 51.4 (d, *J* = 6.2 Hz), 50.1 , 49.6 , 47.6 (d, *J* = 5.3 Hz).

4-(pyridin-2-yl)piperazine-1-carbothioyl fluoride 3o. Yellow solid, M.p. 80.0-83.1 °C, yield 74% (83.3 mg). Eluent: ethyl acetate/petroleum ether (10:90). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.22 (dd, J = 5.0, 1.9 Hz, 1H), 7.56 (ddd, J = 8.9, 7.2, 2.0 Hz, 1H), 6.81 – 6.64 (m, 2H), 4.19 – 4.07 (m, 2H), 3.93 – 3.83 (m, 2H), 3.71 (ddd, J = 19.2, 6.8, 4.8 Hz, 4H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 13.91 . ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 181.2 (d, J = 320.8 Hz), 159.2 , 148.8 , 139.2 , 115.5 , 108.5 , 51.0 (d, J = 6.2 Hz), 47.2 (d, J = 5.1 Hz), 45.6 , 45.2 . HR-MS (EI) m/z: M⁺ Calcd. For C₁₀H₁₂FN₃S 225.0736; found 225.0745.

tert-butyl 4-(fluorocarbonothioyl)piperazine-1-carboxylate 3p. ¹⁸ Off-white solid, yield 75% (93.0 mg). Eluent: ethyl acetate/petroleum ether (5:95). ¹H NMR (500 MHz, Chloroform-*d*) δ 3.97 (dd, J = 6.4, 4.4 Hz, 2H), 3.72 (t, J = 5.3 Hz, 2H), 3.59 (t, J = 5.4 Hz, 2H), 3.56 – 3.49 (m, 2H), 1.48 (s, 9H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 14.43 . ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 181.1 (d, J = 320.3 Hz), 155.2 , 81.9 , 51.3 (d, J = 6.0 Hz), 47.5 , 29.3 .

diallylcarbamothioic fluoride 3q. Yellow oil, yield 69% (54.7 mg). Eluent: ethyl acetate/petroleum ether (1:99). ¹H NMR (500 MHz, Chloroform-*d*) δ 5.81 (dddt, *J* = 47.8, 16.3, 10.2, 5.9 Hz, 2H), 5.36 – 5.16 (m, 4H), 4.33 (dd, *J* = 6.2, 1.5 Hz, 2H), 4.04 (dd, *J* = 5.8, 1.7 Hz, 2H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 15.21 . ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 182.8 (d, *J* = 321.6 Hz), 131.4 , 130.6 , 120.9 , 120.2 , 56.6 (d, *J* = 5.6 Hz), 52.1 (d, *J* = 5.5 Hz). HR-MS (EI) m/z: M⁺ Calcd. For C₇H₁₀FNS 159.0518; found 159.0522.

bis(2-ethylhexyl)carbamothioic fluoride 3r. Yellow oil, yield 76% (115.1 mg). Eluent: ethyl acetate/petroleum ether (1:99). ¹H NMR (500 MHz, Chloroform-*d*) δ 3.60 (d, *J* = 7.5 Hz, 2H), 3.44 – 3.30 (m, 2H), 2.01 (p, *J* = 6.8 Hz, 1H), 1.70 (p, *J* = 6.5 Hz, 1H), 1.38 – 1.21 (m, 16H), 0.95 – 0.85 (m, 12H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 17.53 . ¹³C {¹H} NMR (126 MHz, Chloroform-*d*) δ 183.0 (d, *J* = 319.8 Hz), 58.1, 54.8, 39.1, 37.4, 31.4, 31.3, 29.5, 29.5, 24.8, 24.7, 24.0, 24.0, 15.1, 15.0, 11.6, 11.5. HR-MS (EI) m/z: M⁺ Calcd. For C₁₇H₃₄FNS 303.2396; found 303.2406.

((15,45)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydronaphthalen-1-yl)(methyl)carbamothioic fluoride 3s' and 3s''. 3s':3s''=5:3, white solid, M.p. 92.2-95.7 °C, yield 65% (119.3 mg). Eluent: ethyl acetate/petroleum ether (5:95). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.38 – 7.30 (m, 3H+1H, 3s'+3s''), 7.28 (d, J = 2.0 Hz, 2H, 3s''), 7.21 (d, J = 7.7 Hz, 1H, 3s'), 7.14 (d, J = 7.7 Hz, 1H, 3s''), 7.09 (dd, J = 8.9, 2.1 Hz, 1H+1H, 3s'+3s'), 7.02 (ddd, J = 6.2, 5.0, 1.3 Hz, 1H+1H, 3s'+3s''), 6.82 (ddd, J = 11.0, 8.3, 2.1 Hz, 1H+1H, 3s'+3s''), 6.17 (dt, J = 11.1, 5.7 Hz, 1H, 3s'), 5.63 (t, J = 8.4 Hz, 1H, 3s''), 4.24 (td, J = 6.0, 2.9 Hz, 1H+1H, 3s'+3s''), 3.10 (s, 3H, 3s''), 2.91 (d, J = 2.7 Hz, 3H, 3s'), 2.31 (dddt, J = 17.9, 12.4, 8.6, 5.6, 2.9 Hz, 1H+1H, 3s'+3s''), 2.08 (dtt, J = 13.4, 5.0, 3.0 Hz, 1H+1H, 3s'+3s''), 2.00 (dtd, J = 11.8, 5.8, 2.6 Hz, 1H, 3s'), 1.94 – 1.82 (m, 2H, 3s''), 1.74 (tdd, J = 13.1, 10.6, 2.8 Hz, 1H, 3s'). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 20.30 (3s'), 11.65 (3s''). ¹³C {¹H} NMR (126 MHz, Chloroform-*d*) δ 184.1 (d, J = 320.5 Hz, 3s'), 183.0 (d, J = 320.8 Hz, 3s''), 147.4 (3s'), 147.2 (3s''), 131.6 (3s''), 131.5 (3s'), 131.4 (3s''), 131.3 (3s'), 129.6 (3s''), 132.6 (3s''), 132.3 (3s'), 131.6 (3s''), 131.5 (3s'), 128.9 (3s''), 128.2 (3s''+3s'), 63.4 (d, J = 6.5 Hz, 3s'), 59.9 (3s''), 43.8 (3s''), 43.8 (3s''), 38.7 (3s''), 33.1 (3s'), 30.8 (3s''), 30.7 (3s'), 23.9 (3s''), 21.6 (3s''). HR-MS (EI) m/z: M⁺ Calcd. For C₁₈H₁₆Cl₂FNS 367.0365; found 367.0371.

methyl(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)carbamothioic fluoride 3t. 3t':3t''=5:6, yellow oil, yield 70% (129.9 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, Chloroform-*d*) δ

7.43 (d, J = 8.4 Hz, 2H, **3t**^{*}+**3t**^{*}), 7.38 – 7.26 (m, 5H, **3t**^{*}+**3t**^{*}), 6.89 (dd, J = 8.6, 6.1 Hz, 2H, **3t**^{*}+**3t**^{*}), 5.23 (ddd, J = 38.3, 8.6, 4.1 Hz, 1H, **3t**^{*}+**3t**^{*}), 4.00 – 3.86 (m, 1H, **3t**^{*}+**3t**^{*}), 3.81 – 3.65 (m, 1H, **3t**^{*}+**3t**^{*}), 3.36 – 3.09 (m, 3H, **3t**^{*}+**3t**^{*}), 2.42 – 2.13 (m, 2H, **3t**^{*}+**3t**^{*}). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 17.69 , 13.64 , - 61.47 .¹³C {¹H} NMR (126 MHz, Chloroform-*d*) δ 183.8 (d, J = 6.5 Hz), 181.2 (d, J = 4.7 Hz), 161.0 (d, J = 21.1 Hz), 140.8 (d, J = 40.4 Hz), 133.3 (d, J = 10.6 Hz), 130.1 (d, J = 11.2 Hz), 129.4 (d, J = 13.5 Hz), 127.9 (p, J = 3.6 Hz), 126.6 (d, J = 7.3 Hz), 124.6 – 123.7 (m), 116.8 (d, J = 3.6 Hz), 78.9 , 53.7 (d, J = 5.5 Hz), 49.7 (d, J = 4.9 Hz), 42.8 (d, J = 5.9 Hz), 38.1 (d, J = 6.5 Hz), 37.8 , 35.5 . Due to difficulty to assign peaks in ¹³C NMR to **3t**^{*} and **3t**^{*} only chemical shifts are indicated. HR-MS (EI) m/z: M⁺ Calcd. For C₁₈H₁₇F₄NOS 371.0967; found 371.0972.

(3-(9,10-ethanoanthracen-9(10H)-yl)propyl)(methyl)carbamothioic fluoride 3u' and 3u''. 3u':3u''=1:1, yellow oil, yield 70% (118.5 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.37 – 7.27 (m, 3H+3H, 3u'+3u''), 7.24 – 7.10 (m, 5H+5H, 3u'+3u''), 4.34 (d, *J* = 2.8 Hz, 1H+1H, 3u'+3u''), 4.02 (t, *J* = 7.9 Hz, 1H+1H, 3u'+3u''), 3.79 (t, *J* = 7.5 Hz, 1H+1H, 3u'+3u''), 3.49 – 3.21 (m, 3H+3H, 3u'+3u''), 2.60 – 2.44 (m, 2H+2H, 3u'+3u''), 2.31 – 2.20 (m, 1H+1H, 3u'+3u''), 2.20 – 2.09 (m, 1H+1H, 3u'+3u''), 1.93 – 1.83 (m, 2H+2H, 3u'+3u''), 1.62 (ddd, *J* = 16.5, 7.1, 3.5 Hz, 2H+2H, 3u'+3u''). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ 17.52 (3u'), 13.16 (3u''). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 182.7 (d, *J* = 321.1 Hz), 182.5 (d, *J* = 319.7 Hz), 146.0, 145.8, 126.6, 126.5, 124.7, 124.6, 122.2, 121.9, 57.5 (d, *J* = 5.9 Hz), 53.7 (d, *J* = 4.7 Hz), 45.8, 45.6, 45.5 (d, *J* = 6.3 Hz), 42.7 (d, *J* = 6.0 Hz), 37.8 (d, *J* = 6.4 Hz), 30.7, 28.9 (d, *J* = 13.0 Hz), 28.7 (d, *J* = 8.0 Hz), 24.7, 22.5. Due to difficulty to assign peaks in ¹³C NMR to 3u' and 3u'' only chemical shifts are indicated. HR-MS (EI) m/z: M⁺ Calcd. For C₂₁H₂₂FNS 339.1457; found 339.1460.

Isothiocyanatobenzene 5a. ⁷ Yellow oil, yield 84% (56.7 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.36 (tt, *J* = 9.7, 4.7 Hz, 2H), 7.30 (td, *J* = 7.2, 3.5 Hz, 1H), 7.21 (dt, *J* = 12.6, 6.3 Hz, 2H). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 136.5, 132.3, 130.6, 128.4, 126.8.

1-isothiocyanato-4-methylbenzene 5b. ⁷ Yellow oil, yield 85% (63.3 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.16 (d, *J* = 8.3 Hz, 2H), 7.13 – 7.09 (m, 2H), 2.36 (s, 3H). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 138.6 , 135.6 , 131.2 , 129.4 , 126.6 , 22.3 .

2-isothiocyanato-1,3,5-trimethylbenzene 5c. ⁷ White solid, yield 82% (72.6 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, Chloroform-*d*) δ 6.87 (s, 2H), 2.34 (s, 6H), 2.30 (s, 3H). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 159.6, 136.0, 131.6, 131.0, 130.2, 130.0, 127.8, 114.8, 62.5, 56.2, 42.7, 42.1.

1-fluoro-4-isothiocyanatobenzene 5d. ⁷ Yellow oil, yield 79% (60.4 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.25 – 7.18 (m, 2H), 7.11 – 7.00 (m, 2H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -112.00 . ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 162.2 (d, J = 249.1 Hz), 128.4 , 128.4 , 117.8 , 117.6 .

1-chloro-4-isothiocyanatobenzene 5e. ⁷ Yellow oil, yield 80% (67.6 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.32 (dq, *J* = 9.1, 2.5, 2.0 Hz, 2H), 7.24 – 7.10 (m, 2H). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 137.8 , 134.0 , 130.8 , 130.2 , 128.0 .

1-bromo-4-isothiocyanatobenzene 5f. ⁷ Yellow oil, yield 82% (87.3 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.70 – 7.62 (m, 2H), 7.00 – 6.90 (m, 2H). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 139.7, 138.1, 132.2, 128.5, 93.1.

4-isothiocyanato-1,1'-biphenyl 5g. ⁶ White solid, yield 86% (90.7 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.63 – 7.56 (m, 4H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.42 – 7.37 (m,

1H), 7.34 – 7.29 (m, 2H). $^{13}C\{^{1}H\}$ NMR (126 MHz, Chloroform-*d*) δ 141.3 , 140.7 , 136.6 , 131.3 , 130.0 , 129.2 , 128.9 , 128.0 , 127.2 .

1-isothiocyanato-4-methoxybenzene 5h.⁷ Yellow oil, yield 83% (68.5 mg). Eluent: ethyl acetate/petroleum ether (5:95). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.18 – 7.13 (m, 2H), 6.85 (d, *J* = 9.0 Hz, 2H), 3.80 (s, 3H). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 159.6, 134.9, 128.0, 124.6, 115.9, 56.6.

1-ethynyl-4-isothiocyanatobenzene 5i. ⁶ Yellow solid, yield 85% (67.6 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.48 – 7.44 (m, 2H), 7.20 – 7.14 (m, 2H), 3.18 (s, 1H). ¹³C {¹H} NMR (126 MHz, Chloroform-*d*) δ 138.0 , 134.4 , 132.6 , 126.8 , 122.2 , 83.5 , 80.3 .

4-isothiocyanatobenzonitrile 5j. ⁷ Yellow oil, yield 79% (63.2 mg). Eluent: ethyl acetate/petroleum ether (10:90). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.68 – 7.63 (m, 2H), 7.33 – 7.28 (m, 2H). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 140.6, 137.1, 134.7, 127.5, 118.9, 111.7.

1-isothiocyanato-4-nitrobenzene 5k. ^{5b} Yellow solid, yield 77% (69.3 mg). Eluent: ethyl acetate/petroleum ether (10:90). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.31 – 8.22 (m, 2H), 7.42 – 7.33 (m, 2H). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 146.8 , 141.3 , 139.0 , 127.4 , 126.3 .

3-isothiocyanatopyridine 51.⁷ Yellow oil, yield 82% (55.8 mg). Eluent: ethyl acetate/petroleum ether (10:90). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.55 – 8.35 (m, 2H), 7.53 – 7.39 (m, 1H), 7.28 (dd, *J* = 9.0, 3.5 Hz, 1H). ¹³C {¹H} NMR (126 MHz, Chloroform-*d*) δ 148.6, 148.1, 140.2, 133.3, 130.5, 125.0.

(2-isothiocyanatoethyl)benzene 5m. ²⁰ Colorless oil, yield 74% (60.3 mg). Eluent: ethyl acetate/petroleum ether (1:99). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.34 (dd, *J* = 8.1, 6.7 Hz, 2H), 7.30 – 7.26 (m, 1H), 7.24 – 7.18 (m, 2H), 3.72 (t, *J* = 7.0 Hz, 2H), 2.99 (t, *J* = 7.0 Hz, 2H).

3-(2-isothiocyanatoethyl)-1H-indole 5n.¹⁹ White solid, yield 75% (75.8 mg). Eluent: ethyl acetate/petroleum ether (10:90). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.09 (s, 1H), 7.55 (d, *J* = 7.9 Hz, 1H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.24 – 7.20 (m, 1H), 7.17 – 7.13 (m, 1H), 7.10 (d, *J* = 2.3 Hz, 1H), 3.77 (t, *J* = 6.8 Hz, 2H), 3.16 (t, *J* = 6.8 Hz, 2H).

1-isothiocyanatoadamantane 50.⁷ White solid, yield 77% (74.3 mg). Eluent: ethyl acetate/petroleum ether (1:99). ¹H NMR (500 MHz, Chloroform-*d*) δ 2.10 (q, J = 3.2 Hz, 3H), 1.97 (d, J = 2.9 Hz, 6H), 1.70 – 1.60 (m, 6H). ¹³C {¹H} NMR (126 MHz, Chloroform-*d*) δ 59.5 , 44.8 , 36.6 , 30.3 .

1,3-dihydro-2H-benzo[d]imidazole-2-thione 5p.²¹ White solid, yield 69% (51.8 mg). Eluent: ethyl acetate/petroleum ether (10:90). ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.49 (s, 2H), 7.07 (ddt, *J* = 19.4, 5.8, 3.4 Hz, 4H). ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 169.6 , 133.7 , 123.8 , 110.9 .

benzo[d]oxazole-2(3H)-thione 5q.²¹ White solid, yield 70% (52.9 mg). Eluent: ethyl acetate/petroleum ether (10:90). ¹H NMR (500 MHz, DMSO-*d*₆) δ 13.81 (s, 1H), 7.48 – 7.41 (m, 1H), 7.28 – 7.15 (m, 3H). ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 181.6 , 149.6 , 132.6 , 126.6 , 125.2 , 111.9 , 111.4 .

benzo[d]thiazole-2(3H)-thione 5r.²² White solid, yield 67% (55.9 mg). Eluent: ethyl acetate/petroleum ether (10:90). ¹H NMR (500 MHz, DMSO- d_6) δ 13.70 (s, 1H), 7.63 (d, J = 7.9 Hz, 1H), 7.38 – 7.30 (m, 1H), 7.30 – 7.20 (m, 2H). ¹³C{¹H} NMR (126 MHz, DMSO- d_6) δ 191.3 , 142.7 , 130.8 , 128.6 , 125.6 , 123.2 , 113.9 .

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publication website at DOI:

¹H NMR, ¹³C NMR, and ¹⁹F NMR for products (PDF).

AUTHOR INFORMATION

Corresponding Authors

* E-mail: lvqi.jiang@njust.edu.cn, yiwb@njust.edu.cn

Author Contributions

§ These authors contributed equally to this paper.

ORCID

Lvqi Jiang: 0000-0002-1921-985X

Wen-bin Yi: 0000-0003-4606-7668

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the National Natural Science Foundation of China (21776138, 21476116),

Fundamental Research Funds for the Central Universities (30920021124, 30918011314), Natural Science

Foundation of Jiangsu (BK20180476), the China Postdoctoral Science Foundation Funded Project (No. 2019M661848), Qing Lan and Six Talent Peaks in Jiangsu Province and Priority Academic Program Development of Jiangsu Higher Education Institutions, Bruker DRX 500 at Analysis and Test Center Nanjing University of Science and Technology for the help in obtaining NMR data.

REFERENCES

(1) (a) Hagmann, W. K. The Many Roles for Fluorine in Medicinal Chemistry. J. Med. Chem. 2008, 51, 4359-4369. (b) Meanwell, N. A. Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. J. Med. Chem. 2011, 54, 2529-2591. (c) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chem. Rev. 2014, 114, 2432-2506. (d) Gouverneur, V.; Seppelt, K. Introduction: Fluorine Chemistry. Chem. Rev. 2015, 115, 563-565.

(2) (a) Walter, W.; Bode, K. D. Syntheses of Thiocarbamates. Angewandte Chemie International Edition in English 1967, 6, 281-293. (b) Leroux, F.; Jeschke, P.; Schlosser, M. α-Fluorinated Ethers, Thioethers, and Amines: Anomerically Biased Species. Chem. Rev. 2005, 105, 827-856. (c) Azizi, N.; Aryanasab, F.; Saidi, M. R. Straightforward and Highly Efficient Catalyst-Free One-Pot Synthesis of Dithiocarbamates under Solvent-Free Conditions. Org. Lett. 2006, 8, 5275-5277. (d) Scattolin, T.; Bouayad-Gervais S.; Schoenebeck, F. Straightforward access to N-trifluoromethyl amides, carbamates, thiocarbamates and ureas, Nature, 2019, 573, 102-107.

(3) (a) Mukerjee, A. K.; Ashare, R. Isothiocyanates in the chemistry of heterocycles. *Chem. Rev.* 1991, *91*, 1-24.
(b) Vincent-Rocan, J.-F.; Beauchemin, A. M. N-Isocyanates, N-Isothiocyanates and Their Masked/Blocked Derivatives: Synthesis and Reactivity. *Synthesis* 2016, *48*, 3625-3645.

(4) (a) Posner, G. H.; Cho, C. G.; Green, J. V.; Zhang, Y.; Talalay, P. Design and synthesis of bifunctional isothiocyanate analogs of sulforaphane: correlation between structure and potency as inducers of anticarcinogenic detoxication enzymes. *J. Med. Chem.* **1994**, *37*, 170-176. (b) Uto, T.; Hou, D.-X.; Morinaga, O.; Shoyama, Y. Molecular Mechanisms Underlying Anti-Inflammatory Actions of 6-(Methylsulfinyl)hexyl Isothiocyanate Derived from Wasabi. *Advances in Pharmacological Sciences* **2012**, *2012*, 614046. (c) Dufour, V.; Stahl, M.; Baysse, C. The antibacterial properties of isothiocyanates. *Microbiology* **2015**, *161*, 229-243.

(5) (a) Scattolin, T.; Deckers, K.; Schoenebeck, F. Efficient Synthesis of Trifluoromethyl Amines through a Formal Umpolung Strategy from the Bench-Stable Precursor (Me₄N)SCF₃. *Angew. Chem. Int. Ed.* **2017**, *56*, 221-224. (b) Scattolin, T.; Klein, A.; Schoenebeck, F. Synthesis of Isothiocyanates and Unsymmetrical Thioureas with the Bench-Stable Solid Reagent (Me₄N)SCF₃. *Org. Lett.* **2017**, *19*, 1831-1833.

(6) Yu, J.; Lin, J.-H.; Xiao, J.-C. Reaction of Thiocarbonyl Fluoride Generated from Difluorocarbene with Amines. *Angew. Chem. Int. Ed.* **2017**, *56*, 16669-16673.

(7) Zhen, L.; Fan, H.; Wang, X.; Jiang, L. Synthesis of Thiocarbamoyl Fluorides and Isothiocyanates Using CF₃SiMe₃ and Elemental Sulfur or AgSCF₃ and KBr with Amines. *Org. Lett.* **2019**, *21*, 2106-2110.

(8) Liao, Y.-Y.; Deng, J.-C.; Ke, Y.-P.; Zhong, X.-L.; Xu, L.; Tang, R.-Y.; Zheng, W. Isothiocyanation of amines using the Langlois reagent. *Chem. Commun.* **2017**, *53*, 6073-6076.

(9) Liang, S.; Wei, J.; Jiang, L.; Liu, J.; Mumtaz, Y.; Yi, W., One-pot synthesis of trifluoromethyl amines and perfluoroalkyl amines with CF₃SO₂Na and R₁SO₂Na. *Chem. Commun.* **2019**, *55*, 8536-8539.

(10) Wender, P. A.; Smith, T. E.; Vogel, P.; Gerber-Lemaire, S. *e-EROS Encyclopedia of Reagents for Organic Synthesis*; Wiley: New York, 2007.

(11) (a) Shibata, N.; Kohno, J.; Takai, K.; Ishimaru, T.; Nakamura, S.; Toru, T.; Kanemasa, S. Highly Enantioselective Catalytic Fluorination and Chlorination Reactions of Carbonyl Compounds Capable of Two-Point Binding. *Angew. Chem. Int. Ed.* **2005**, *44*, 4204-4207. (b) Shainyan, B. A.; Danilevich, Y. S. Reaction of trifluoromethanesulfonyl chloride with CH acids. *Russ. J. Org. Chem.* **2009**, *45*, 1412. (c) Hamashima, Y.; Nagi, T.; Shimizu, R.; Tsuchimoto, T.; Sodeoka, M., Catalytic Asymmetric α-Chlorination of 3-Acyloxazolidin-2-one with a Trinary Catalytic System. *Eur. J. Org. Chem.* **2011**, *2011*, 3675-3678.

(12) (a) Nagib, D. A.; MacMillan, D. W. C. Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis. *Nature* **2011**, *480*, 224-228. (b) Jiang, H.; Cheng, Y.; Zhang, Y.; Yu, S. Sulfonation and Trifluoromethylation of Enol Acetates with Sulfonyl Chlorides Using Visible-Light Photoredox Catalysis. *Eur. J. Org. Chem.* **2013**, *2013*, 5485-5492. (c) Cantillo, D.; de Frutos, O.; Rincón, J. A.; Mateos, C.; Kappe, C. O. Continuous Flow α-Trifluoromethylation of Ketones by Metal-Free Visible Light Photoredox Catalysis. *Org. Lett.* **2014**, *16*, 896-899. (d) Tang, X.-J.; Dolbier Jr, W. R. Efficient Cu-catalyzed Atom Transfer Radical Addition Reactions of Fluoroalkylsulfonyl Chlorides with Electron-deficient Alkenes Induced by Visible Light. *Angew. Chem. Int. Ed.* **2015**, *54*, 4246-4249. (e) Chachignon, H.; Maeno, M.; Kondo, H.; Shibata, N.; Cahard, D. Novel Use of CF₃SO₂Cl for the Metal-Free Electrophilic Trifluoromethylthiolation. *Org. Lett.* **2016**, *18*, 2467-2470.

(13) (a) Jiang, L.; Yi, W.; Liu, Q. Direct Phosphorus-Induced Fluoroalkylthiolation with Fluoroalkylsulfonyl Chlorides. *Adv. Synth. Catal.* **2016**, *358*, 3700-3705. (b) Jiang, L.; Ding, T.; Yi, W.-b.; Zeng, X.; Zhang, W. Fluoroalkylsulfonyl Chlorides Promoted Vicinal Chloro-fluoroalkylthiolation of Alkenes and Alkynes. *Org. Lett.* **2018**, *20*, 2236-2240.

(14) (a) Zhao, X.; Lu, X.; Wei, A.; Jia, X.; Chen, J.; Lu, K. Potassium iodide promoted thiolation of pyrazolones and benzofurans using aryl sulfonyl chlorides as sulfenylation reagents. *Tetrahedron Lett.* **2016**, *57*, 5330-5333. (b) Lu, K.; Deng, Z.; Li, M.; Li, T.; Zhao, X. Transition metal-free direct trifluoromethylthiolation of indoles using trifluoromethanesulfonyl chloride in the presence of triphenylphosphine. Org. Biomol. Chem. **2017**, *15*, 1254-1260.

(15) (a) Dillon, K. B.; Lincoln, J. The structures of Ph₃PICI and Ph₃PIBr. *Polyhedron* 1989, *8*, 1445-1446.
(b) Tornieporth-Oetting, I.; Klapötke, T. Synthese und spektroskopische charakterisierung ionischer triphenyliodopnikogenhexafluoroarsenate des typs [(C₆H₅)₃EI]⁺[AsF₆]⁻ (E=P, As, Sb, Bi); bakterizide aktivität von [(C₆H₅)₃BiI]⁺[AsF₆]. *J. Organomet. Chem.* 1989, *379*, 251-257.

(16) Zhao, Y.; Lin, J.-H.; Hang, X.-C.; Xiao, J.-C. Ag-Mediated Trifluoromethylthiolation of Inert Csp3–H Bond. *J. Org. Chem.* **2018**, *83*, 14120-14125.

(17) (a) Tavener, S. J.; Adams, D. J.; Clark, J. H. Trifluoromethylthiolation of aromatic substrates using thiophosgene—fluoride salt reagents, and formation of byproducts with multi-carbon chains. *J. Fluorine Chem.*

1	
2	
3	1999, 95, 171-176. (b) Adams, D. J.; Clark, J. H. Preparation of Trifluoromethyl Aryl Sulfides Using Silver(I)
4 5	Trifluoromethanethiolate and an Inorganic Iodide. J. Org. Chem. 2000, 65, 1456-1460.
5	(18)Onida K · Vanove L · Tlili A Direct Synthesis of Thiocarhamovl Fluorides and Trifluoromethylamines
7	Through Eluoringtive Desulfurization Eur. I. Org. Chem. 2010, 6106, 6100
8	$(10) \mathbf{R} = \mathbf{R} + $
9	(19) Park, S.; Hayes, B. L.; Marankan, F.; Mulhearn, D. C.; Wanna, L.; Mesecar, A. D.; Santarsiero, B. D.;
10	Johnson, M. E.; Venton, D. L. Regioselective Covalent Modification of Hemoglobin in Search of Antisickling
11	Agents. J. Med. Chem. 2003, 46, 936-953.
12	(20) Janczewski, Ł.; Gajda, A.; Gajda, T. Direct, Microwave-Assisted Synthesis of Isothiocyanates. Eur. J.
13	Org. Chem. 2019, 2019, 2528-2532.
15	(21) Ding C · Wang S · Sheng Y · Dai O · Zhao Y · Liang G · Song Z One-step construction of
16	unsymmetrical thiourage and ovaralidinathiones from amines and carbon disulfide via a cascade reaction
17	ansymmetrical unourcas and oxazonumetriones from animes and carbon disumde via a cascade reaction
18	sequence. <i>RSC Advances</i> 2019, 9, 26/68-26/72.
19	(22)Liu, X.; Zhang, SB.; Dong, ZB. AICI3-Promoted Synthesis of 2-Mercapto Benzoheterocycles by
20	Using Sodium Dimethyldithiocarbamate as Thiocarbonyl Surrogate. Eur. J. Org. Chem. 2018, 2018, 5406-
21	5411.
23	
24	
25	
26	
27	
20 29	
30	
31	
32	
33	
34	
36	
37	
38	
39	
40	
41	
42	
44	
45	
46	
47	
48	
49 50	
51	
52	
53	
54	
55	
56 57	
57	
59	
60	