

pubs.acs.org/OrgLett

Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Chlorides with α -Bromolactones and Related Derivatives

Maximilian S. Hofmayer,[†] Alisa Sunagatullina,[†] Daniel Brösamlen, Philipp Mauker, and Paul Knochel*

ABSTRACT: α -Bromolactones bearing a substituent in the β -position undergo a highly *trans*-diastereoselective arylation with arylzinc chlorides in the presence of 10–20% CoCl₂ and 10–20% PPh₃ in THF under mild conditions (25 °C, 16 h) leading to optically enriched α -arylated lactones and protected aldol products (99% *ee*) in 52–96% yield. The synthetic utility of this arylation was demonstrated by the stereoselective preparation of an artificial rotenoid MOM-protected munduserol derivative.

T he preparation of chiral agrochemicals and pharmaceuticals requires general and efficient asymmetric syntheses.¹ Recently, several advances involving Pd- and Ni-catalyzed

Table 1. Reaction Conditions Optimization for the Cross-

^{*a*}Calibrated GC-yield using undecane as internal standard. ^{*b*}99.99% CoCl₂ was used. ^{*c*}Isolated yield of analytically pure 3a (dr = 99:1, 99% *ee*).

asymmetric carbon-carbon bond forming reactions have been reported.² These transition-metal-catalyzed asymmetric crosscouplings involve expensive³ or toxic⁴ Ni- or Pd-catalysts. Also, reactions involving alkyl-palladium intermediates are often of limited scope due to β -hydrogen elimination side reactions.⁵ It was shown that relatively inexpensive and less toxic CoCl₂ does efficiently catalyze cross-couplings.⁶ Also, organozinc compounds are excellent nucleophilic reagents for various Cocatalyzed cross-coupling reactions, as a broad range of sensitive functional groups are tolerated in these organometallics.⁷ 1,2-Substituted alkyl halides were used as electrophiles for transdiastereoselective cobalt-catalyzed cross-coupling reactions.^{6h,m,7a,§}In preliminary experiments, the readily available α -bromolactone 1, which was prepared from D-isoascorbic acid in 99% ee,⁹ was submitted to an arylation using 4-anisylzinc chloride (2a). The formation of product 3a was optimized using various metallic salts (Table 1). Whereas CuCl₂, CrCl₂, $MnCl_2$, and $FeCl_2$ were not effective catalysts (entries 1-5), $CoCl_2$ gave excellent results compared to $CoBr_2$ or $Co(acac)_2$ (entries 6-8). The addition of a ligand, such as PPh₃, allowed further yield improvement (entries 9-12). NiCl₂/PPh₃ was equally efficient (entry 13).

Received: December 19, 2019

ACS Publications

© XXXX American Chemical Society

Α

Letter

Table 2. Stereoselective Cobalt-Catalyzed Cross-Couplings of Arylzinc Reagents of Type 2 with α -Bromolactone 1

These optimized conditions were then applied to the arylation of α -bromolactone 1 using various arylzinc reagents of type 2 (Table 2).

Thus, *p*-trifluoromethoxyphenylzinc chloride (2b) was cross-coupled with 1, leading to the desired α -arylated lactone 3b in 63% yield (dr = 99:1, 99% ee, entry 1). Similarly, the electron-poor organozinc reagent 2c furnished the 4trifluorotolyl substituted lactone 3c in 62% yield (dr = 99:1, 99% ee, entry 2). Also, the meta-substituted arylzinc reagents 2d and 2e, bearing a MeS- and a TBSO-group in the metaposition are satisfactory coupling partners. They afforded the optically pure products 3d and 3e in 63-77% yield (dr = 99:1, 99% ee, entries 3-4). The arylation of 1 with (6methoxynaphthalen-2-yl)zinc chloride (2f) and the benzodioxolylzinc reagent 2g gave the lactone derivatives 3f and 3g in 61-84% yield (dr = 99:1, 99% ee, entries 5-6). Interestingly, the sterically hindered organozinc chloride 2h, having a benzyloxy substituent in the ortho-position, was efficiently coupled with α -bromolactone 1. The arylated lactone 3h was obtained in 94% yield; dr = 99:1; 99% ee (entry 7).

Starting from L-threonine and pivalaldehyde, the chiral α bromolactone 4 was prepared, bearing a smaller methyl substituent in the β -position.⁸ The cross-coupling of 4 with Table 3. Stereoselective Cobalt-Catalyzed Cross-Couplings of Arylzinc Reagents of Type 2 with α -Bromolactone 4 Leading to Protected β -Hydroxy Esters of Type 5

^{*a*}Isolated yield of analytically pure products of type 5. ^{*b*}dr = 50:50.

various arylzinc reagents of type 2 was performed (Table 3). Thus, *p*-anisylzinc chloride 2a led to the desired product 5a in 81% yield (dr = 99:1, 99% *ee*). Similarly, *p*-trifluoromethoxyphenylzinc chloride 2b and the electron-poor trifluoromethylsubstituted arylzinc reagent 2c underwent the coupling reaction affording the protected β -hydroxy ester derivatives 5b and 5c (dr = 99:1, 99% *ee*) in 61–63% yield (entries 2–3). This arylation also proceeded well with *meta*-substituted zinc organometallics, such as the TBS-protected phenol (2e) and thioanisylzinc chloride (2d). The corresponding arylated esters 5d and 5e were obtained in 61–69% yield (dr = 99:1, 99% *ee*, entries 4–5). Methoxynaphthylzinc chloride 2f and benzodioxolylzinc chloride 2g stereoselectively arylated the α -bromolactone 4, leading to the protected β -hydroxy esters 5f and 5g in 73–82% yield (dr = 99:1, 99% *ee*, entries 6–7).

Also, the zinc organometallics 2i and 2j bearing an ester function in the *meta-* and *para-*position were satisfactory coupling partners, leading to 5h and 5i in 52-76% yield (entries 8-9). The *meta-*carbethoxyphenylzinc chloride 2j

Scheme 1. Total Synthesis of the Artificial Rotenoid Derivative MOM-Protected Munduserol (6)

gave the product in excellent diastereomeric ratio (dr = 99:1). However, an ester substituent in the *para*-position resulted in epimerization in the course of the reaction (dr = 50:50). This can be explained by a subsequent base-catalyzed epimerization of the very acidic proton in the α -position to the aryl substituent in **Sh**.

Many naturally occurring rotenoids and their structurally closely related unnatural derivatives show considerable antiplasmodial or cytotoxic activities.¹⁰ These bioactive compounds were the target of several total syntheses.¹¹ Using this new Co-catalyzed arylation, we have prepared MOM-protected munduserol 6, an artificial rotenoid derivative starting from the α -arylated lactone 3h (Scheme 1). Thus, 3h was reduced to the lactol with DIBAL-H and trapped with 2fluoro-4-methoxyphenylmagnesium chloride (7). Interestingly, the diol 8 was obtained as a single diastereomer in 86% yield over two steps (dr = 99:1).¹² Next, the benzyl protecting group of 8 was removed via a palladium-catalyzed hydrogenolysis.¹¹ A selective Mitsunobu reaction allowed the first ring closure, affording the desired product 9 in 74% yield over two steps (dr = 99:1). Protection of 9 with MOMCl and deprotection of the silyl group with TBAF furnished 10 in 53% yield over two steps (dr = 99:1). Deprotonation of the secondary alcohol under forcing reaction conditions allowed the second ring closure via an intramolecular nucleophilic aromatic substitution. The MOM-protected munduserol 6 was obtained in 28% yield (dr = 99:1).

In conclusion, a highly *trans*-diastereoselective cobaltcatalyzed cross-coupling of arylzinc reagents with α -bromolactones bearing a substituent in the β -position was developed. α -Arylated butyrolactones and α -arylated protected β -hydroxy esters were obtained in the presence of 10–20% CoCl₂ and 10–20% PPh₃ in THF under mild conditions (25 °C, 16 h) in 52–96% yield (dr = 99:1, 99% *ee*). A stereoselective synthesis of an artificial rotenoid derivative MOM-protected munduserol (**6**) was performed.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.9b04564.

Full experimental details, ¹H and ¹³C NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

Paul Knochel – Department of Chemistry, Ludwig-Maximilians-Universität 81377 München, Germany; ⊙ orcid.org/0000-0001-7913-4332; Email: paul.knochel@cup.unimuenchen.de

Authors

- Maximilian S. Hofmayer Department of Chemistry, Ludwig-Maximilians-Universität 81377 München, Germany
 Alisa Sunagatullina – Department of Chemistry, Ludwig-Maximilians-Universität 81377 München, Germany
 Daniel Brösamlen – Department of Chemistry, Ludwig-
- Maximilians-Universität 81377 München, Germany Philipp Mauker – Department of Chemistry, Ludwig-Maximilians-Universität 81377 München, Germany

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.9b04564

Author Contributions

[†]M.S.H. and A.S. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the DFG and the LMU Munich for financial support. We also thank Albemarle for the generous gift of chemicals.

REFERENCES

(1) (a) Modern Drug Synthesis; Li, J. J., Johnson, D. S., Eds.; Wiley-VCH: Weinheim, Germany, 2010. (b) Yeh, V.; Szabo, W. A. Asymmetric Cross-Coupling Reactions. In Applications of Transition Metal Catalysis in Drug Discovery and Development; Crawley, M. L., Trost, B. M., Eds.; John Wiley and Sons: 2012; pp 165–213. (c) Innovative Drug Synthesis; Li, J. J., Johnson, D. S., Eds.; Wiley-VCH: Weinheim, Germany, 2015.

(2) (a) Horibe, H.; Fukuda, Y.; Kondo, K.; Okuno, H.; Murakami, Y.; Aoyama, T. Tetrahedron 2004, 60, 10701-10709. (b) Genov, M.; Fuentes, B.; Espinet, P.; Pelaz, B. Tetrahedron: Asymmetry 2006, 17, 2593-2595. (c) Taylor, B. L. H.; Jarvo, E. R. Synlett 2011, 2011, 2761-2765. (d) Binder, J. T.; Cordier, C. J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 17003-17006. (e) Choi, J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 9102-9105. (f) Wang, C.-Y.; Derosa, J.; Biscoe, M. R. Chem. Sci. 2015, 6, 5105-5113. (g) Eno, M. S.; Lu, A.; Morken, J. P. J. Am. Chem. Soc. 2016, 138, 7824-7827. (h) Yang, X.; Xu, G.; Tang, W. Tetrahedron 2016, 72, 5178-5183. (i) Lovinger, G. J.; Aparece, M. D.; Morken, J. P. J. Am. Chem. Soc. 2017, 139, 3153-3160. (j) Poremba, K. E.; Kadunce, N. T.; Suzuki, N.; Cherney, A. H.; Reisman, S. E. J. Am. Chem. Soc. 2017, 139, 5684-5687. (k) Uozumi, Y.; Matsuura, Y.; Suzuka, T.; Arakawa, T.; Yamada, Y. M. A. Synthesis 2016, 49, 59-68. (1) Myhill, J. A.; Wilhelmsen, C. A.; Zhang, L.; Morken, J. P. J. Am. Chem. Soc. 2018, 140, 15181-15185. (m) Huang, W.; Hu, M.; Wan, X.; Shen, Q. Nat. Commun. 2019, 10, 2963. (n) Jin, Y.; Wang, C. Angew. Chem., Int. Ed. 2019, 58, 6722-6726. (o) Wang, G.; Xin, X.; Wang, Z.; Lu, G.; Ma, Y.; Liu, L. Nat. Commun. 2019, 10,

559. (p) Aparece, M. D.; Hu, W.; Morken, J. P. ACS Catal. 2019, 9, 11381-11385.

(3) World market prices for Pd: 51140 EUR/kg; for Co: 32 EUR/kg (retireved Nov. 2019, http://www.infomine.com).

(4) (a) Handbook on the Toxicology of Metals; Friberg, L., Nordberg, G. F., Vouk, V. B., Eds.; Elsevier: Amsterdam, 1986. (b) Egorova, K. S.; Ananikov, V. P. Angew. Chem., Int. Ed. **2016**, 55, 12150–12162.

(5) Cahiez, G.; Moyeux, A. Chem. Rev. **2010**, 110, 1435–1462.

(6) (a) Czaplik, W. M.; Mayer, M.; Jacobi von Wangelin, A. Synlett 2009, 2009, 2931-2934. (b) Gülak, S.; Stepanek, O.; Malberg, J.; Rad, B. R.; Kotora, M.; Wolf, R.; Jacobi von Wangelin, A. Chem. Sci. 2013, 4, 776-784. (c) Mao, J.; Liu, F.; Wang, M.; Wu, L.; Zheng, B.; Liu, S.; Zhong, J.; Bian, Q.; Walsh, P. J. J. Am. Chem. Soc. 2014, 136, 17662-17668. (d) Liu, F.; Bian, Q.; Mao, J.; Gao, Z.; Liu, D.; Liu, S.; Wang, X.; Wang, Y.; Wang, M.; Zhong, J. Tetrahedron: Asymmetry 2016, 27, 663-669. (e) Rérat, A.; Michon, C.; Agbossou-Niedercorn, F.; Gosmini, C. Eur. J. Org. Chem. 2016, 2016, 4554-4560. (f) Barde, E.; Guérinot, A.; Cossy, J. Org. Lett. 2017, 19, 6068-6071. (g) Liu, F.; Zhong, J.; Zhou, Y.; Gao, Z.; Walsh, P. J.; Wang, X.; Ma, S.; Hou, S.; Liu, S.; Wang, M.; Wang, M.; Bian, Q. Chem. - Eur. J. 2018, 24, 2059-2064. (h) Thomas, L.; Lutter, F. H.; Hofmayer, M. S.; Karaghiosoff, K.; Knochel, P. Org. Lett. 2018, 20, 2441-2444. (i) Linke, S.; Manolikakès, S. M.; Auffrant, A.; Gosmini, C. Synthesis 2018, 50, 2595-2600. (j) Lutter, F. H.; Graßl, S.; Grokenberger, L.; Hofmayer, M. S.; Chen, Y.-H.; Knochel, P. ChemCatChem 2019, 11, 5188-5197. (k) Sun, X.; Wang, X.; Liu, F.; Gao, Z.; Bian, Q.; Wang, M.; Zhong, J. Chirality 2019, 31, 682-687. (1) Dorval, C.; Dubois, E.; Bourne-Branchu, Y.; Gosmini, C.; Danoun, G. Adv. Synth. Catal. 2019, 361, 1777-1780. (m) Koch, V.; Lorion, M. M.; Barde, E.; Bräse, S.; Cossy, J. Org. Lett. 2019, 21, 6241-6244. (n) Song, T.; Arseniyadis, S.; Cossy, J. Org. Lett. 2019, 21, 603-607.

(7) (a) Hammann, J. M.; Haas, D.; Knochel, P. Angew. Chem., Int. Ed. 2015, 54, 4478-4481. (b) Haas, D.; Hammann, J. M.; Greiner, R.; Knochel, P. ACS Catal. 2016, 6, 1540-1552. (c) Haas, D.; Hammann, J. M.; Lutter, F. H.; Knochel, P. Angew. Chem., Int. Ed. 2016, 55, 3809-3812. (d) Hammann, J. M.; Hofmayer, M. S.; Lutter, F. H.; Thomas, L.; Knochel, P. Synthesis 2017, 49, 3887-3894. (e) Hammann, J. M.; Lutter, F. H.; Haas, D.; Knochel, P. Angew. Chem. 2017, 129, 1102-1106. (f) Hammann, J. M.; Thomas, L.; Chen, Y.-H.; Haas, D.; Knochel, P. Org. Lett. 2017, 19, 3847-3850. (g) Hofmayer, M. S.; Hammann, J. M.; Lutter, F. H.; Knochel, P. Synthesis 2017, 49, 3925-3930. (h) Li, J.; Knochel, P. Angew. Chem., Int. Ed. 2018, 57, 11436-11440. (i) Balkenhohl, M.; Ziegler, D. S.; Desaintjean, A.; Bole, L. J.; Kennedy, A. R.; Hevia, E.; Knochel, P. Angew. Chem., Int. Ed. 2019, 58, 12898-12902. (j) Graßl, S.; Hamze, C.; Koller, T. J.; Knochel, P. Chem. - Eur. J. 2019, 25, 3752-3755. (k) Lutter, F. H.; Grokenberger, L.; Hofmayer, M. S.; Knochel, P. Chem. Sci. 2019, 10, 8241-8245. (1) Lutter, F. H.; Hofmayer, M. S.; Hammann, J. M.; Malakhov, V.; Knochel, P. Generation and Trapping of Functionalized Aryl- and Heteroarylmagnesium and -Zinc Compounds. In Organic Reactions; Denmark, E. S., Ed.; Wiley: 2019; Vol. 100, pp 63-120.

(8) (a) Hammann, J. M.; Steib, A. K.; Knochel, P. Org. Lett. 2014, 16, 6500-6503. (b) Hammann, J. M.; Haas, D.; Steib, A. K.; Knochel, P. Synthesis 2015, 47, 1461-1468.

(9) See Supporting Information.

(10) (a) Fang, N.; Casida, J. E. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 3380. (b) Fang, N.; Casida, J. E. J. Agric. Food Chem. 1999, 47, 2130–2136. (c) Yenesew, A.; Derese, S.; Midiwo, J. O.; Oketch-Rabah, H. A.; Lisgarten, J.; Palmer, R.; Heydenreich, M.; Peter, M. G.; Akala, H.; Wangui, J.; Liyala, P.; Waters, N. C. Phytochemistry 2003, 64, 773–779. (d) Ahmed-Belkacem, A.; Macalou, S.; Borrelli, F.; Capasso, R.; Fattorusso, E.; Taglialatela-Scafati, O.; Di Pietro, A. J. Med. Chem. 2007, 50, 1933–1938. (e) Varughese, R. S.; Lam, W. S.-T.; Marican, A. A. b. H.; Viganeshwari, S. H.; Bhave, A. S.; Syn, N. L.; Wang, J.; Wong, A. L.-A.; Kumar, A. P.; Lobie, P. E.; Lee, S. C.; Sethi, G.; Goh, B. C.; Wang, L. Cancer 2019, 125, 1789–1798.

(11) (a) Nakatani, N.; Matsui, M. Agric. Biol. Chem. 1968, 32, 769– 772. (b) Granados-Covarrubias, E. H.; Maldonado, L. A. J. Org. Chem. **2009**, 74, 5097–5099. (c) Nayak, M.; Kim, I. J. Org. Chem. **2015**, 80, 11460–11467. (d) Georgiou, K. H.; Pelly, S. C.; de Koning, C. B. Tetrahedron **2017**, 73, 853–858. (e) Nakamura, K.; Ohmori, K.; Suzuki, K. Angew. Chem., Int. Ed. **2017**, 56, 182–187. (f) Matsuoka, S.; Nakamura, K.; Ohmori, K.; Suzuki, K. Synthesis **2019**, 51, 1139–1156. (g) Perveen, S.; Yang, S.; Meng, M.; Xu, W.; Zhang, G.; Fang, X. Commun. Chem. **2019**, 2, 8.

(12) (a) Mengel, A.; Reiser, O. Chem. Rev. 1999, 99, 1191–1224.
(b) Evans, D. A.; Cee, V. J.; Siska, S. J. J. Am. Chem. Soc. 2006, 128, 9433–9441.

(13) Hartung, W. H.; Simonoff, R. Hydrogenolysis of Benzyl Groups Attached to Oxygen, Nitrogen, or Sulfur. *Organic Reactions*; John Wiley and Sons: 1953; pp 263–326.