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ABSTRACT
A convenient and efficient Pd(acac)2/Xantphos-catalyzed regioselective hydrosilylation of allenes
has been developed. This convenient catalyst proved to be suitable for a broad range of allenes,
offering a general and efficient route to branched allylsilanes in high yields with exceptional regio-
selectivity. A Pd(0) species involved mechanism is proposed.
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Catalytic hydrosilylation of C-C multiple bonds is a highly
step- and atom-economical route to organosilicon com-
pounds,[1] which represent benign synthetic reagents in a wide
variety of subsequent reactions,[2] such as the allylsilanes and
vinylsilanes are utilized in Hiyama[3] and Sakurai reactions.[4]

In contrast to the extensive studies that have been reported on
the hydrosilylation of alkene and alkyne,[5] the research on
hydrosilylation of allenes has started relatively late because the
presence of two continuous orthogonal p bonds makes the
hydrosilylation of allene more challenging in controlling the
regio- and stereoselectivity.[8k,9a] Besides, some side reactions
such as hydrogenation[6] and multiaddition[5d,7] of allene can
also complicate the catalytic system. In recent years, consider-
able efforts have been devoted to developing chemo-, regio-,
and stereoselective hydrosilylation of allenes by transition metal
catalysts (Scheme 1a).[8,9] For example, in 2017, Ge et al.
reported a Co-catalyzed hydrosilylation at the terminal C¼C
bonds of allenes that yielded linear allylsilanes,[8a] and a syn-
thetic route to internal vinylsilanes involving the hydrosilyla-
tion of allenes with supported Pd-Au alloy catalysts has been
developed by Shishido group.[8b] In 2013, the Montgomery
group reported a Ni-catalyzed allene hydrosilylation for ter-
minal vinylsilanes,[9a] and they also first reported the palla-
dium-catalyzed hydrosilylation of allene (L1) to access the
branched allylsilanes (B-Allylsilanes).[9a] Later, the Schmidt

group showed that employing a 3-iminophosphine ligand (L2)
produces branched allylsilanes efficiently and regioselective-
ly.[9b] More recently, our group designed a bithiophene-alkyne-
based ligand (L3) for the Pd-catalyzed regioselective allene
hydrosilylation. It exhibits high selectivity and catalytic effi-
ciency toward the production of branched allylsilanes.[9c] But
there are some inconveniences that they need to use glove box
or synthesize the ligands (Scheme 1b). All the methods revealed
that ligands are significant for controlling the regio- and stereo-
selectivity. Herein, we demonstrate a handy and efficient
Palladium-catalyzed hydrosilylation of allenes, utilizing a com-
mercially available Xantphos ligand to prepare branched-allylsi-
lanes with excellent yield and regioselectivity (Scheme 1c).

In our initial screening experiments, we examined different Pd
catalysts and phosphorus ligands (Table 1). The 1-octylallene and
PhSiH3 were used asmodel substrates.We first tried the Pd(acac)2
and PPh3, getting the branched allylsilanes in low yield with poor
selectivitiy (Table 1, entry 1). Then, we screened a series of biden-
tate phosphine ligands. The dppm, dppbz, and dppf were ineffi-
cient for allene hydrosilylation (Table 1, entries 2–4). However,
the reaction afforded the branched allylsilanes in high isolated
yield with excellent selectivity when we used the dpephos or
Xantphos as ligand (Table 1, entries 5–6). Decreasing the catalyst
loading to 1mol% resulted in obvious reduction of yield (Table 1,
entry 7). Other palladium sources, such as Pd(OAc)2, PdCl2, and

� 2020 Taylor & Francis Group, LLC

CONTACT Xiao-Tao Liu xiaotao.liu@wxintl.com Wanxiang Technology Co., Ltd., Huaian 223300, Jiangsu, P.R. China; Zhuang-Ping Zhan zpzhan@xmu.edu.cn
Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, P.R. China.
Supplemental data for this article is available online at https://doi.org/10.1080/10426507.2020.1845683.

PHOSPHORUS, SULFUR, AND SILICON AND THE RELATED ELEMENTS
https://doi.org/10.1080/10426507.2020.1845683

http://crossmark.crossref.org/dialog/?doi=10.1080/10426507.2020.1845683&domain=pdf&date_stamp=2020-11-13
https://doi.org/10.1080/10426507.2020.1845683
https://doi.org/10.1080/10426507.2020.1845683
http://www.tandfonline.com


Pd(MeCN)2Cl2, were also tried, but these results were inferior to
that of Pd(acac)2 (Table 1, entries 8–10). So we identified the opti-
mum conditions: hydrosilylation of allenes was performed with
2mol% Pd(acac)2 and Xantphos as the catalyst system at 30 �C.

Under the identified conditions (Table 1, entry 6), we
explored the substrate scope of a variety of allenes with pri-
mary phenylsilane and the results are summarized in
Scheme 2. In general, a variety of allenes reacted to produce

Scheme 1. Hydrosilylation of allenes: previous work and our work.

Table 1. Optimization of conditions for hydrosilylation of 1-octylallene
and PhSiH3

a.

Entry cat Ligand 2a/yield%b r.r.c

1 Pd(acac)2 PPh3 46 1:1
2 Pd(acac)2 Dppm 25 1:2
3 Pd(acac)2 Dppbz 15 1:3
4 Pd(acac)2 Dppf trace –
5 Pd(acac)2 dpephos 90 30:1
6 Pd(acac)2 xantphos 96 32:1
7d Pd(acac)2 xantphos 65 13:1
8 Pd(OAc)2 xantphos 44 3:1
9 PdCl2 xantphos trace –
10 Pd(MeCN)2Cl2 xantphos trace –
aReaction conditions: 1-octylallene (0.25mmol), phenylsilane (0.3mmol), L (2mol%), Pd source(2mol%), THF (1mL), 30 �C, 1 h, N2 atmosphere. bThe yields of 2a
were determined by 1H NMR spectroscopy with 1,3,5-trimethoxybenzene as an internal standard. cr.r. ¼ 2a/other isomers, determined by 1H NMR spectroscopy.
dPd(acac)2 (1mol%), xantphos (1mol%).

Scheme 2. Scope of allene hydrosilylation with PhSiH3.
a,b,c,aReaction conditions:

allenes (1mmol), PhSiH3 (1.2mmol), Pd(acac)2 (2mol%), xantphos (2mol%),
THF (2mL), 30 �C, 0.5–3 h, N2 atmosphere. bYields of isolated products. cThe
selectivity of product (r.r. ¼ branched allylsilane product/all other isomers) was
> 15:1, determined by 1H NMR spectroscopy.
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the desired branched allylsilanes (2a–2m) in high yields
(75%–94%) with excellent regioselectivities. The heteroatom-
free straight-chain aliphatic allenes gave the target products
in high yields (2a, 2b). This reaction also showed good func-
tional group tolerance with a range of reactive groups, such
as chloro (2c), hydroxyl (2d), ester (2e, 2f), and ether (2h).
Furthermore, the allene showed a higher reactivity than the
alkene as demonstrated by the isolation of 2e in a high yield
with an exclusive chemoselectivity toward the allene unit.
Aliphatic allenes containing protecting groups, including
acetate (2g), tosylate (2i), and silyl ether (2j), were also com-
patible with the reaction conditions to afford the expected
products in decent yields with high selectivities. In addition,
we also used Aryl-substituted allenes to evaluate this cata-
lytic system. Aromatic allenes bearing electron-donating and
neutral groups proceeded smoothly to afford the branched
allylsilanes in good yields with high selectivities (2k–2m).

According to our previous investigation[9c] and related
literatures,[8g,9a] we proposed a rationale for the palladium-
catalyzed hydrosilylation of allenes as shown in Scheme 3.
Firstly, Pd(acac)2 was reduced to form the Pd(0) catalyst,
and oxidative addition of hydrosilane to Pd(0) generated the
complex [2]. Then, hydrometalation of the allene complex
intermediate [3] formed an allylpalladium intermediate [4].
Finally, C-Si reductive elimination of [4] would afford allyl-
silane product with return of the active Pd(0) catalyst into
the cycle. Further detailed mechanistic studies are ongoing
to establish unambiguously the real mechanistic nature of
the reaction.

In conclusion, we have developed a convenient and efficient
palladium-catalyzed regioselective allene-hydrosilylation method
for the synthesis of branched allylsilanes.1 The catalyst is read-
ily available and stable, and a wide range of allenes bearing a
variety of synthetically useful functional groups could be toler-
ated, affording the corresponding products in high yields with
excellent regioselectivities. Further investigations including

mechanistic studies and synthetic applications of the allylsilane
products have been pursued in our lab.
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