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Abstract

Four ferrocene-based DA dyes with effective intramolecular charge tramsfiCT) properties
are designed and synthesized. These dyes can dasiseew photoredox catalysts in free radical
photopolymerization under soft blue and green LERBdiations. Differentt-conjugation bridge
molecules contained in the molecular structurehmeen shown to affect the photoreactivities of

the synthesized dyes in the photoinitiating systerhe UV-Vis absorption, electrochemical, and
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third-order nonlinear optical properties are inigeged. Experimental results are completed with
theoretical calculations to gain further insighbithe ICT of the dyes with differemtconjugation
bridge molecules. A good correlation of theonjugation bridge molecule changes of the dyes

with the experimental results is established.

Keywords

ferrocene derivatives; organometallic dye; photoxrecatalyst; third-order nonlinear optical

1. Introduction

Organometallic dyes with intramolecular charge ¢fan (ICT) properties have been already
successfully applied in polymerization reactionphstocatalysts due to their intense visible light
absorption, relatively long excited states, andasle redox potential [1-10]. The photocatalysts
regenerate during the initiation step through eidre oxidative cycle or a reductive cycle with

other additives (Scheme. 1). In an oxidative cytie, photocatalyst is generally oxidized by an
electron acceptore(g. iodonium salt) under light irradiation, first artaet recovered through the

reduction of an electron donae.d. amine). During the process, inactive radical isstoned and

new active radical is produced thereby considergtuseasing polymerization efficiency [11-13].
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Reductive cycle PC Oxidative cycle pPC**

PC = photocatalyst
D = electron donor D**
A = electron acceptor

Scheme 1 Reductive and oxidative photoredox catalytic cycle

The search of photocatalysts based on low-costlsnetach as complexes based on zinc,
copper, and iron metals is interesting in free galdand cationic photopolymerization under
visible LED irradiations. Ferrocen&d) and its derivatives are important parts becausteif
unique electrochemical and optical properties [R8cently, Jacques Lalevée et al. reported that a
series of zinc- [15], copper- [16, 17], and iroh8{20] based complexes have been developed as
photocatalysts in photopolymerization. Excellendtolinitiation efficiency can be achieved using
very low concentrations of metal-based complexeplagocatalysts in the systems due to the
photocatalytic effect [21].

Fc-based Dr-A dyes as photoredox catalysts are still seldoedus photopolymerization
under visible LED irradiations. We synthesized sdreederivatives Fclns) (Fig.1) to exploit
novel organometallic photocatalyst and investigte influence of n-conjugation bridge
molecules with different natures on light absonptielectrochemistry, and third-order nonlinear
optical properties ofc based Dr-A dyes. In these derivativeS¢ as electron donor was attached
to indan-1,3-dione as electron acceptor througtzdres, thiophene, carbazole, and phenothiazine
moieties ast-conjugation bridge. The UV-Visible absorption peojies and redox potentials were
investigated, and a good correlation between theemxental and theoretical (computed by

employing DFT and TD-DFT) results was achieved.iThenlinear absorption coefficieftand
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two photo absorption cross section were obtained using Z-scan method. Moreover,

photopolymerization experiments were carried outtaluate the photoredox catalysis ability of

the Fclns under visible LED irradiations. The photocatalysmechanism was proposed and

discussed.
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Fig.1 Structures oFc-based DA dyesFclns that synthesized in this study.

2. Results and discussion

2.1 Synthesisand characterization

The synthesis routes of the dyes and intermedif@ie€HOs) are shown in Scheme 2.

Ethynylferrocene, bridge molecule€l 4, and theFcCHOs were prepared according to the

procedures presented in detail in the Supportifgrimation. TheFcCHOs were synthesizeda

Sonogashira coupling of ethynylferrocene with2, 3, and4 in the presence of Pd catalyst,

triphenylphosphine and triethylamine as the badeNtF as the solvent. Thieclns were obtained
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via Knoevenagel condensation B€CHOs with indan-1,3-dione in the presence of piperidise
the base in methanol/toluene (1:1, v/v) as theesalv

TheFclns were characterized using spectral techniquesdiruNMR ¢H, and*C), IR, and
HRMS. These characterization data fully supportdhtained structures. THel NMR and**C
NMR spectra are present in Fig. S1-S22. In'HéNMR spectra of théclns, the peaks ab =
4.1-4.7 ppm are attributable to the moiety (9 H). The peaks at= 0.7-4.5 ppm are
attributable to the alkyl group. The high field ahieal shift ¢ = 6.7-9.7 ppm) stems from

double bonds, benzene, thiophene carbazole, ambfifiazine moieties.
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Scheme 2 Synthesis routes of theclns

2.2 UV-Visabsorption studies

The UV-Vis absorption spectra of il ns were recorded in dichloromethane (DCM) at room

temperature and presented in Fig. 2. Their maxirabsorption wavelengths are gathered in Table

S1. As shown in Fig. 2, the absorption spectrat®ixan intense band in the region of 350-500 nm
5
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and 400-600 nm fdfclnl-3 andFcln4, respectively, which are attributed#tc— n* transitions
[22, 23]. The bands below 350 nm are attributethéoabsorption of bridges aid moiety [24].
Then — =* transitions exhibit red-shifted absorption as thaent of electron conjugation and
electron density of bridge molecules increase.dditeon, the absorption spectra B€Inl and
Fcln2 exhibit a distinct bands around 500-600 nm magulige from ICT transitions [25].
However, the band is not observed Fai n3 andFcln4. This may be due to the overlap of charge
transfer absorption with the — =* absorption [26]. The charge transferkiolnl andFcIn2 is

more effective thafrcln3 andFcln4.
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Fig. 2 UV-Vis spectra otheFcinsin DCM (c = 1 x 10° M).

TD-DFT calculations were carried out to determine éffect of varying the bridge molecules
on optical properties comprehensively and creatéerdative assignment of the electronic
transitions involved in the experimental absorptpectra. The calculated electronic absorption
data show good correlation with the experimentab.dénd the assignments of the relevant
transitions to the absorption bands are shown lkeTa1. The optimized geometries as well as the

frontier orbitals (HOMO and LUMO) are shown in F&jand the data are gathered in Table 2. The
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electron density is mainly located on the alkyne, and bridge molecules of HOMO. By contrast

in the LUMO, the electron density is mainly locatedthe indanone unit and bridge molecules for

theFclns. Other representative frontier molecular orbitlshe Fclns are shown in Fig. S23.

As shown in Table S1 and Fig. S23, the lower end@yd (509 nm) ofclnl originating

from HOMO-1 to LUMO+5, HOMO to LUMO are assignedfes to Cp ring transitions (MLCT)

with comparable contributions from— =n* and D— A transitions [27, 28]. The highest intensity

band (429 nm) ofclnl mainly originating from HOMO-2 to LUMO is assighednt — =*

transitions. The same situation is found Faln2. However, forFcln3 and Fcln4, the lowest

energy band (463 nm fdicln3, 528 nm forFcln4) mainly originating from HOMO-LUMO is

assigned as — =* transitions and D— A transitions as electron density is shifted fribv@ donor

(Fc and bridge molecules) toward the acceptor (indapdvioreover the high energy bands (250—

400 nm) can be assignedmas~ z* transitions of carbazole and phenothiazine megetand d-d

transitions of~c [29, 30].
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Fig. 3 lllustration of optimized geometries and fronteolecular orbitals of thEclns at

B3LYP/6-31G (d, p) level of theory.

2.3 Electrochemical studies

The electrochemical properties of thé&clns were recorded in DCM containing
tetrabutylammonium hexafluorophosphate as the stipgcelectrolyte using cyclic voltammetry
(CV) methods at a scan rate of 50 mVe Bi, values are taken as the half-wave point between
the forward and reverse peak for each reversildexgrocess. The partial CV curves of the
Fclns mainly about thé-c unit are shown in Fig.4 and the corresponding deg¢ashown in Table

1. The full CV curves of thEclns are presented in Fig. S24.
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Fig. 4 Cyclic voltammograms aheFclnsin DCM (vs. Ag/Ag")

Table 1 Electrochemical data ¢fc and the-cl ns obtained fronfig.4 in DCM.

Epa' (V) Epnc” (V) Evz’ (V) ipa (A) ipc (A)

Fc 0.161 0.085 0.123 2.061x30 -1.574x10
Fcinl 0.357 0.289 0.323 1.320x10 -8.898 x 10
Fcln2 0.371 0.299 0.335 1.345x10 -8.680 x 10
Fcin3 0.292 0.224 0.258 1.301x10 -8.531x 10
Fcln4 0.297 0.229 0.263 9.590 x40 -8.349 x 10

0.652 0.581 0.616 1.410x10 -3.320 x 10

# Epa andEp. correspond to the cathodic and anodic peak paferis. Ag/Ag”), respectively”

Half-wave potentialE;, = (Epa + Epo)/2.

As shown in Fig.4Fcln1-3 exhibit only one reversible oxidation peaks, whothresponded to

Fc sub-unit. However-cln4 exhibits two reversible oxidation peaks, which esponded td-c

sub-unit and phenothiazine moiety, respectively].[&bompared td-c, the Fclns all exhibit an

anodic shift in the oxidation potential BE moiety AE;,, = 0.200, 0.212, 0.135, and 0.140,

— Fclnl-4, Table 1), indicating that there is increasedted&ic communication between tie
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moiety and acceptor moieties. The presence of &mcepoieties result in the lower electron
density at thé-c moiety and inhibition of oxidation d¥c [28].

Fcinl andFcln2 show nearly identicak;, values AE;, = 0.012VFcinl — Fcln2). This
result can be attributed to the slight differencethie energies of HOMO d¥clnl and Fcln2
(Table 2). The same situation is also found betwezn3 andFcln4 (AE;, = 0.005VFcIn3 —
Fclnd). However, by increasing the extent of electronjegation and electron density of bridge
molecules, a relatively large cathodic shiftBp, values is observed (e.§E;, = 0.065VFcIinl
— FcIn3; AEy, = 0.060VFcinl —Fcln4, Table 1). This result reflects a decreased ealpicir
communication between donor and acceptor moiefiéxln3 andFcln4. This observation is in
accordance with increased energy of the HOM®dm3 andFcln4 compared with that ifrclnl
andFcln2 (Table 2) [32-34].

The onset potentials for the oxidati&fj* and reductiorEy" were determined from the CV
curves according to the literature methods [35§.(F825-28, Table S2). The experimental and
theoretical HOMO and LUMO energy levels are sumpaatiin Table 2. As shown in Table 2, the
energy values of HOMO and LUOM obtained from CVad@omoscv: ELumorcy) and theoretical
calculations Enomo, ELumo) €xhibit essentially the same trend. The eleceadbal band gaps
Egcv obtained from electrochemical measurements ardlesnthan optical band gajyop
obtained from UV-Vis absorption spectra. The sofwsiute interaction and interactions between

the analyte and the electrode surface may resgerfsibthis discrepancy [36, 37]. Moreover, this

discrepancy results in the different value€afuvocv andE umoropts

Table2

10
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Comparison of the experimental (CV/UV-Vis absorptispectra) and calculated (TD-DFT)

HOMO-LUMO and band gaps of thel ns.

Experimental data TD-DFT calculatidns

EHOMO/CVb ELUMO/CVb Eg/cvb Eg/optc ELUMO/optd Evomo  ELumo AE

(eV) (eV) (eV) (eV) (eV) (eV) (ev) (eV)
Fcinl -4.925 -3.629 1.296 2.127 -2.798 -5.491 -2.612 2.879
Fcln2 -4.944 -3.641 1.303 1.984 -2.960 -5.495 -2.688 2.807
Fcin3 -4.862 -3.346 1516 2.375 -2.487 -5.120 -2.286 2.834
Fclnd -4.864 -3.409 1.455 1.959 -2.905 -5.045 -2.423 2.622

3 Calculating on the TD-DFT/B3LYP/ Genecp (SDD/6-3(d3 p)) level® Calculated a&yomorcy
= eEX™ — Eiprerent 4.8],ELumorcy = €[Ews™ — EvEerest 4.8],Egcv = ELumorcy — Eromorcy
(Ex and Ex* were obtained from Table SZ).Egop estimated from the UV-Vis absorption

spectra’ Calculated a& yvoropt = Egiopt + Eromorcy-

2.4 Third-order nonlinear optical properties

Since theFclns all exhibit one-photo absorption at 500-600 nreytmay exhibit 2PA at 1000—
1200 nm. The nonlinear absorption of #ens was measured with picosecond laser excited at
1064 nm, where the dyes show no linear absorplibe. typical open—aperture Z-scan traces of
the Fcins are shown in Fig. 5. The squares represent theriexental data, and the solid curve is
the fitting line.

As can be seen, the open-aperture traces exhitddaa dip, all the dyes in tetrahydrofuran
(THF) solution exhibits a reverse saturated abgmrpbptical property. The corresponding

nonlinear absorption coefficientsand 2PA cross sectiorswere calculated. Table. 3 lists the

11
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results.

Fclnl andFcln2 exhibit higher 2PA cross section thBoln3 andFcin4. All the dyes have
the same donor and acceptor parts. Thus, the bndgecules may play a key role in the
third-order nonlinear properties of tikelns. The order of thes values for the dyes iBclnl =
Fcln2 > Fcln4 > Fcln3, althoughFclnd andFcln3 have relatively large planar structure in the
molecular level. It is known that NLO properties atirectly related to the ICT character of
molecules [38-40]. The relatively efficient chatgensfer ofFclnl andFcln2 can account for the
observed trend of the values. This result is in accordance with thateobsd from the UV-Vis
absorption and electrochemistry study. In additein3 exhibits the smallest 2PA cross section,
besides the ICT factor, the weakest one-photo pbsarat 500-600 nm may also responsible for
the result. For comparison, Rhodamine B (RB), amonly used 2PA dye, arfélc were tested
under the same experimental conditions using Z-swatihod. The results are listed in Table 3 and

Fig. S29.
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Table 3 Third-order nonlinear optical parameters for Hokns and RB at 1064 nm.

Fcinl Fcln2 Fcln3 Fcln4 RB
nonlinear absorption
coefficients 3.76 3.67 1.29 2.91 1.16
(cm/GW)
2PA cross section
5.83 5.69 2.00 451 1.80
(10" GM)

2.5 Freeradical photopolymerization (FRP)

2.5.1 Photoinitiating Ability of thé&clns based photoinitiating systems for FRP

All the dyes exhibit relatively high absorption tine region of visible light, which make them

possible photoredox catalysts to initiate free caldpolymerization under long-wavelength light

sources. The FRP of tripropylene glycol diacryl@i®GDA) in the presence of two-component

photoinitiating systems were carried out under Hl&® according to the photopolymerization

experiments (see experimental details). The dobbtel conversion rates. time curves of the

photocurable resin films containing differdftl ns were obtained, and the results were shown in

Fig. 6. When using thé&clns or ONI alone in TPGDA, no effective polymerizatiomsere

observed under blue LED irradiation (Fig. S30).

As shown in Fig. 6 (a), the FRP of thelns/ONI is efficient in terms of final conversions

(FCs) under blue LED. The conversions can reac8o 7%, 45%, and 82% fd¥cln1/ONI,

Fcln2/ONI, Fcln3/ONI, andFcln4/ONI, respectively, when the irradiation time wa¥04. And

the FCs was approximately 56%, 74%, 86%, and 8®gperctively, for the corresponding

13
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two-component photoinitiating systems. It is clézat the order of FRP efficiencies under blue

LED is FcIn4/ONI > FcIn3/ONI > Fcln2/ONI > FcInl/ONI. The relatively high initiating

efficiency of Fcln4/ONI and Fcln3/ONI may be due to the good photosensitization tgbdf

phenothiazine and carbazole moieties containelicim4 and Fcln3 in photoinitiating systems

[41-43]. Under green LED, onlicln4/ONI has the initiating ability for FRP (Fig. 6 (djCs =

76%), which can be caused by the relatively lonogtison under green LED for othEclns (see

Fig. 2).

Three-component  photoinitiating  systems Fclps/ONI/NMP)  photopolymerization

experiments were also studies. Interestingly, tbsults are quite different from those of

two-component photoinitiating systems. The initigtefficiency is increased markedly, especially

for Fcinl andFcln2. As shown in Fig. 6 (b), the conversion can reagptho 52% and 90% for

Fcln/ONI/NMP andFcln2/ONI/NMP (only 8% and 7% for their correspondingotsomponent

systems), when the irradiation time was 100s. T@e Was approximately 93%, 92%, 92%, and

90%, for FcIn/ONI/NMP, Fcln2/ONI/NMP, FcIn3/ONI/NMP, and Fcln4/ONI/NMP,

respectively, which all higher than their corresfiog two-component photoinitiating systems.

The order of FRP efficiencies under blue LED FHsln2/ONI/NMP > FcIln3/ONI/NMP >

Fcln4/ONI/NMP > Fcln/JONI/NMP. Under green LEDFcIn2/ONI/NMP also exhibit good

initiating efficiency for FRP besideBcIn4/ONI/NMP (Fig. 6 (c)). No polymerization was

observed when using NMP alone in photopolymeriraBaperiments (Fig. S30). Recently, the

intermolecular charge transfer complexes betweememnd iodonium are proposed as highly

efficient photoinitiating systems [44], howevergtbharge transfer complex was not observed for

ONI/NMP in DCM (Fig. S31) and no polymerization wadserved using ONI/NMP in

14
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photopolymerization (Fig. S30).
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Fig. 6 Photopolymerization profiles of TPGDA in the pnese of FclngONI and

Fclns/ONI/NMP (Fclns: 0.1 wt%; ONI: 2.0 wt%; NMP: 4.0 wt%); (a, b) undelue LED; (c)

under green LED.

2.5.2Photochemical reactivity d¥clns based photoinitiating systems

The light absorption spectra of thelns allow a good overlapping with the emission speofra

LEDs at 450 nm or 520 nm (Table 4). The light apon ability of theFclns probably plays a

key role in FRP. This is the reason why only phut@iting systems based ditln2 andFcln4

with relatively high extinction coefficients at 52n can initiate polymerization under green LED

irradiation.

The steady state photolysis experiments ofRbles were carried out under blue LED. As

shown in Fig. 7, the photolysis BEIN1/ONI in THF is faster thafrcinl alone. The results show

that interaction between tte&lns and ONI occurs during the irradiation. The freergy change

AGs for the electron transfer between singlet excietihns and ONI was calculated from the

classical Rehm-Weller equatiditis = E,x — E.cq — Es — C; whereEqy, Ereq Es, and C are the

oxidation potentials of theclns, the reduction potential of ONI, the excited seigitate energy
15
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of the Fclns, and the electrostatic interaction energy of thidailly-formed ion pair, which is
generally considered to be negligible in polar entg. The results are gathered in Table. 4. The
calculatedAGs values were all negative, which confirms that phecess was thermodynamically

favoured [45, 46].

204 @ ——o0m 2.0 ——om

——0.5m
——1.5m

[} ® 15 ——2.5m

é b | ——3.5m

8 g ——5.5m

5 S ——7.5m

2 a 10 ——9.5m

< < —11.5m

0.5
T : T . 0.0+ . : T
300 400 500 600 700 300 400 500 600 700
A (nm) A (nm)

Fig. 7 Steady state photolysis of (&¢Inl alone and (b}J-cln/ONI in THF upon the blue LED
exposure (fcinl] = 7.54 x 10° M, [ONI] = 1.47 x 10° M); UV-Vis spectra recorded at different

irradiation times (m = minute).

Table4
Light absorption molar extinction coefficients of theFclns at the emission wavelengths of the

LEDs and the parameters characterizing the photoisiey reactivity of theé=cl ns with ONI.

€460nm €520nm ona Ereda ESC AGsd
Mtcm®)  (Mtem?l)  (V/SCE)  (V/SCE) (eV) (eV)
Fcinl 7600 6900 0.617 -0.938 2.014 -0.717
Fcln2 29625 9800 0.631 -0.899 1.982 -0.671
Fcln3 36100 4100 0.552 -1.148 2.095 -0.863
Fcln4 11200 26600 0.557 -1.072 2.085 -0.848
ONI 0 0 -0.68

2 Eox andE,eq Were obtained from Table SB> (re/re+= 0.38 Vs, SCE [47],E1/ (re/rety= 0.123 V
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285

286

287

288

289

290

291

292

293

vs. Ag/Ag"). ®E e (ONI) = -0.68V [48].° Calculated on the TD-DFT/B3LYP/Genecp (SDD/6-31G

(d, p) level? Calculated from the classical Rehm—Weller equation

Ar,l*
/2/ *Felns (11)
P/ Fclns ([1I) Fclns (1I)
NMP NMP™ NMP*, + H

Scheme 3 Chemical mechanisms for thel ns photoredox catalysts

As reported in previous related studies [13, 493Jabal mechanism, based on photoinduced
electron transfer reaction, is proposed in reasti(ri)—(r2) as well as in Scheme 3. After
absorption, the exciteBlcins (Fclns) is produced (rl); then the interaction betweleci ns and
ground state ONI produce an unstable onium saitabdr,l* and theFclns oxidized form,Fclns
(111). The subsequent decomposition of this unstahiical ultimately forms initiating radical ‘Ar
(r2).

Fcins(I1) — “Feins (1) (hy) (r1)

Fcins (1) + Arl™ — Fclns (Ill) +Aryl” — Arl + Ar® (r2)
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Fig. 8 Photolysis kinetics dfcl ns/ONI andFclnsONI/NMP measured under blue LEOF@ n1]
=7.54 x 10° M, [FcIn2] = 7.44 x 10° M, [FcIn3] = 5.96x 10° M, [Fcln4] = 5.64x% 10° M,

[ONI] = 1.47 x 10° M, and [NMP] = 1.35 x 18 M).

Remarkably, when incorporating NMP in three-compin&clnONI/NMP systems,
additional reactions that convert"Amto very reactive NMR_y, radicalvia H-abstraction reactions
(r3) and regeneratecl ns through reduction ofclns (Ill) by NMP will take place (r4, r5) [17].
The photolysis efficiencies of tHeclns/ONI andFclns/ONI/NMP in THF were calculated from
the A/Aq ratio, whereA is the absorbance of the assigned wavelergthng: 385nm,Fcln2:
426nm,Fcln3: 447nm, and-cln4: 309nm) at different irradiation times aAg is the absorbance
before irradiation. These data are presented ingrig

As shown in Fig. 8 (a), the photolysis dfcinl in the three-component systems
(FcIn/ONI/NMP) is much slow than in the two-componenstsyns Eclnl/ONI). The same

situation is also found ifrcin2 based systems (Fig. 8 (b)). The redox potentiaNbfP was
18
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330

measured using CV methods (Fig. S32). As shownign §32, three oxidation signals are
observed Koy = -0.031V,Eoy, = 0.501V, andEqys = 0.897Vvs. Ag/Ag”). The reduction potential
of Felng(IIl) (e.g., 0.357Ws. Ag/Ag’ for Fcinl in Table S2) is higher thaf, and close tdEy,

of NMP. These results can support reaction 4 () liighlight a regeneration of these tid ns

in the presence of NMP [12, 50]. The regeneratibrthese twoFclns ensures a photoredox
catalyst behavior in line with an improved readyiviThis is in full agreement with the
photopolymerization experimental results which shaivat the performance of the
three-component systems is much better than thstce€Eomponent systems féicinl andFcln2
(see Fig. 6) [51]. However, fdicln3, the photolysis rate of the three-component syssefaster
than that of the two-component system (Fig. 8 (Elis may be due to that NMP mainly occur
reaction 3 (r3) inFcln3 based photoinitiating system. Newly formed reactimdical NMP
show improved efficiency ikrcln3/ONI/NMP from the photopolymerization experimentsults.
The photolysis rate dfcln4 is nearly the same in two-component and three-corept systems
(Fig. 8 (d)). The result is in accordance with gexformance ofFcln4 based photoinitiating

systems in photopolymerization experiments.

A NMP — Ar-H + NMP' (4 (r3)
Fcins (III) + NMP — Fclns (1I) + NMP™ (r4)
NMP™ — NMP'y + H' (r5)

3. Conclusion
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Four Fc-based @-A dyes with different bridge molecules were desijnand synthesized
successfully. As deduced from the UV-Vis absorpspectra and quantum chemical calculations,
all the dyes exhibited evident ICT character. The> n* transitions red shifted as the electron
density and conjugation extent of bridge moleculeseased. These results combined with
electrochemistry results indicated tfainl andFcln2 with relatively shortt-conjugation bridge
length had more efficient charge transfer tkain3 andFcln4. All the Fclns showed nonlinear
absorption at 1064 nm, and the nonlinear absorppimperties were influenced by the ICT
character and the one-photo absorption ability @-600 nm. In addition, th&clngONI
photoinitiating systems could initiate FRP of TPGDvder blue and green LED irradiations. With
the addition of NMP, the initiation efficiency othé three-componentF¢nsONI/NMP)
photoinitiating systems was remarkably increaseel wuthe photocatalytic effect of tikelns.
The photocatalytic mechanisms were proposed amtiestby steady state photolysis and cyclic
voltammetry. Efficient photoredox catalysts thaattee abundant, low-cost, and low-toXic
derivatives are being developed continuously. Tiesent study is expected to facilitate the design

and potential application &fc derivatives.

4. Experimental details

4.1 Materials and instruments

All the reactants and solvents used in this wolk @mmercial available and without further
purification. Indan-1,3-dione, 4-bromobenzaldehydepromothiophene-2-carbaldehyde, and

N-methylpyrrolidone (NMP) were purchased from BwjjiChemical Works (Beijing, China).
20
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Ethynylferrocene, 6-bromo-9-ethyHcarbazole-3-carbaldehyde, and
7-bromo-10-ethyl-1B-phenothiazine-3-carbaldehyde were synthesizedrdiogpto the reference
method [52-54]. The catalyst Pd(RREIl, and iodonium bis (4-methylphenyl)
hexafluorophosphate (ONI) was also prepared aaogrdio the reference method [55].
Tripropylene glycol diacrylate (TPGDA, from GuangzhLihou Trading Co. Ltd, China) was
chosen as the monomer for free radical photopoligaigon.

'H NMR (400 MHz) and™C NMR (101 MHz) spectra were recorded on an NMR
spectrometer (Bruker AV400). FT-IR (KBr) spectrareieecorded on a Nicolet 5700 instrument
(Thermo Electron Corporation, Waltham, MA). Mas&dpa were measured with an LC/MSD
mass spectrometer. Melting points were measuretl ait XT-4 microscopic melting point
apparatus. The UV-vis spectra were obtained usingU%5200 (UNICO) UV-Vis
spectrophotometer. Elemental analysis was perfoonesh Elementar Vavio Elcube.

The chip on board (COB) light sources were usedttier irradiation of the photocurable
samples: blue LED (JH-100B14G30-Z1C, 460 nm) arebgrLED (JH-100G14G30-Z1C, 520

nm). The power of COB light sources is 30 W.

4.2 Synthesis of the Fclns

General procedurefor the synthesis of the Fclns

A mixture of 0.31g (Immol)FcCHO1, 0.22g (1.5mmol) indan-1,3-dione were dissolved in
toluene/methanol (6mL, 1:1, v/v), then 0.1 mL pigere was added. The mixture was stirred for
4h at 80°C. After completion of the reaction (TL&)e mixture was cooled down to the room
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temperature. The solid precipitate was collected porified by silica gel with petroleum
ether/ethyl acetate (5:1, v/v) as eluent to affohrk red solidclnl. Yield: 75%. Following the
above procedure and usifgCHO2, FcCHO3, and FcCHO4 instead ofFcCHO1 obtained
Fcln2, Fcln3, andFcln4, respectively.
2-(4-(ferrocenyl-ethynyl)benzylidene)-1H-indene-1,3(2H)-dione (Fclnl) [30]

Dark red solid. Yield: 75%. Mp: 253-25€. '"H NMR (400 MHz, CDC}J) & (ppm) 8.46 (d,) = 8.2
Hz, 2H), 8.05 — 7.97 (m, 1H), 7.86 (s, 1H), 7.84.77 (m, 1H), 7.59 (d] = 8.2 Hz, 2H), 4.57 (s,
2H), 4.32 (s, 2H), 4.28 (s, 5H)’C NMR (101 MHz, CDGJ)) & (ppm) 190.28, 189.13, 145.88,
142.59, 140.13, 135.41, 135.23, 134.19, 132.12,4831129.17, 128.99, 123.35, 123.33, 94.05,
86.19, 71.86, 70.29, 69.56, 64.60. IR (KBr,(cm")): 3083, 3056 (Ar-H), 2197 €T), 1729,
1682 (C=0), 1618, 1585 (Ar), 1420, 1206, 1190 (Ga) (Cp-H), 498 (C-Fe). HRMS (EShvz
calculated for GH,gFeQy 442.0656 [M]; found 443.3324 [M + H. Anal. Calcd. for GgH,gFeO:
C 76.04, H 4.10, Fe 12.63, O 7.23; found: C 76:84,03, O 7.34.
2-((5-(ferrocenyl-ethynyl)thiophen-2-yl)methylene)-1H-indene-1,3(2H)-dione (Fcl n2)

Dark red solid. Yield: 72%. Mp: > 35@. 'H NMR (400 MHz, CDC}) § (ppm) 7.98 (m, 2H),
7.92 (s, 1H), 7.84 (s, 1H), 7.79 (m, 2H), 4.582d), 4.36 (s, 2H), 4.30 (s, 5H)°C NMR (101
MHz, CDCk) & (ppm) 190.29, 189.55, 142.37, 142.29, 140.55,287135.54, 135.15, 134.97,
131.81, 124.62, 123.09, 123.01, 106.05, 100.5%07F1.90, 70.43, 69.95. IR (KB (cmb)):
3076 (Ar-H), 2197 (€C), 1716, 1677 (C=0), 1596, 1579 (Ar), 1419, 120898 (Cp), 810
(Cp-H), 483 (C-Fe). HRMS (ESIm/z calculated for GHiFeQ:S 448.0220 [M]; found
449.3021 [M + H]. Anal. Calcd. for GeHigFeQS: C 69.66, H 3.60, Fe 12.46, O 7.14, S 7.15;
found: C 68.96, H 3.26, O 7.24, S 7.21.
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398

399  2-((9-ethyl-6-(ferrocenyl-ethynyl)-9H-car bazol-3-yl)methylene)-1H-indene-1,3(2H)-dione

400 (FcIn3)

401  Red solid. Yield: 82%. Mp: 243-24€ "H NMR (400 MHz, CDC)) & (ppm) 9.63 (s, 1H), 8.55 (d,
402 J=8.6 Hz, 1H), 8.41 (s, 1H), 8.10 (s, 1H), 8.04)¢ 5.8 Hz, 1H), 8.00 (d] = 5.6 Hz, 1H), 7.80
403 (s, 2H), 7.65 (dJ = 8.1 Hz, 1H), 7.47 (d] = 8.6 Hz, 1H), 7.39 (d] = 8.2 Hz, 1H), 4.59 (s, 2H),
404  4.40 (d,J = 7.1 Hz, 2H), 4.32 (s, 5H), 4.29 (s, 2H), 1.49 6.9 Hz, 3H);*C NMR (101 MHz,
405 CDCl) 8 (ppm) 191.14, 189.87, 148.59, 143.53, 142.46,QB40L39.90, 134.97, 134.72, 133.96,
406  130.17, 128.50, 125.87, 125.30, 124.28, 123.41,392322.98, 122.96, 116.11, 109.12, 108.90,
407  87.07, 86.43, 71.50, 70.26, 68.97, 38.15, 13.93.(KBr, ¥ (cm")): 3080 (Ar-H), 2970
408  (CHs-CHy), 1718, 1673 (C=0), 1575, 1553 (Ar), 1387, 1104 98p), 816 (Cp-H), 485 (C-Fe).
409  HRMS (ESI):mVz calculated for gH,sFeNQ, 559.1235 [M]; found 560.3612 [M + H. Anal.
410 Calcd. for GgHosFeNG,: C 77.29, H 4.50, Fe 9.98, N 2.50, O 5.72; foundi649, H 4.61, N
411  2.42,05.68.

412  2-((10-ethyl-7-(ferrocenyl-ethynyl)-10H-phenothiazin-3-yl)methylene)-1H-indene-1,3(2H)-di

413  one(Fcin4)

414  Dark red solid. Yield: 56%. Mp: 209-27Z. 'H NMR (400 MHz, CDC}) & 8.36 (d,J = 1.7 Hz,
415  1H), 8.29 (ddJ = 8.6, 1.6 Hz, 2H), 8.02 — 7.93 (m, 2H), 7.81 #47(m, 2H), 7.69 (s, 1H), 7.24
416  (dd,J= 8.5, 1.6 Hz, 1H), 7.19 (d,= 1.6 Hz, 1H), 6.89 (d] = 8.7 Hz, 1H), 6.80 (d] = 8.5 Hz,
417 1H), 4.49 (s, 2H), 4.24 (s, 7H), 3.98 (= 6.9 Hz, 2H), 1.47 () = 6.9 Hz, 3H);*C NMR (101
418  MHz, CDCk) & (ppm) 190.74, 189.49, 148.57, 145.35, 142.43,83}1140.03, 135.65, 135.04,
419  134.82, 132.88, 130.63, 129.86, 127.98, 126.60,082323.03, 123.02, 122.73, 119.22, 115.01,
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114.29, 88.93, 84.62, 71.37, 69.99, 68.86, 65.2Z2 12.74. IR (KBr,i (cm?)): 3092 (Ar-H),
2979 (CH-CH,), 2206 (GC), 1721, 1681 (C=0), 1595, 1563 (Ar), 1396, 118287 (Cp), 818
(Cp-H), 483 (C-Fe). HRMS (ESImz calculated for GH,sFeNG,S 591.0955 [M]; found
591.3336 [M]. Anal. Calcd. for GsH,sFeNQS: C 73.10, H 4.26, Fe 9.44, N 2.37, 0 5.41, S 5.42;

found: C 72.38, H 4.18, N 2.29, O 5.36, S 5.00.

4.3 Electrochemical measurements

The electrochemical measurements were carriechadithloromethane (DCM) using a CHI760E
electrochemical workstation using cyclic voltammet€V) methods with tetrabutylammonium
hexafluorophosphate (0.1 M) as a supporting elgt&oThe concentration of thHeclns were 1 x
10° M. Glassy carbon, Ag/AgN©electrode and a platinum wire were used as thekingr
reference, and auxiliary electrode, respectivedyrétenec) was used as a reference. The glassy
carbon electrode was polished with alumina slufr@.05 um on a polish cloth before use. The
platinum wire was immersed in HNGolution for 30min at 80C to remove metal impurities
prior to use. All the solutions were purged withg&s for 10 min before measuring and an Ar gas

blanket was maintained over the solution duringetkgeriments.

4.4 Computational details

Quantum chemical calculations were carried out WithGaussian 09 package. All the molecular

structures of interest were first optimized in tp@und state by the density functional theory
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(DFT) method at a B3LYR&enecp (Fe with SDD basis set and C, H, N, O, anitl&6-31G (d,

p) basic set) level of theory without any symmetsgtraint. The first 50 spin-allowed singlet—
singlet excitations for the dyads were calculatgdidging time dependent density functional theory
(TD-DFT) at a B3LYP/Genecp (Fe with SDD basis set and C, H, N, O, andtls6-31G (d, p)
basic set) (cpcm, solvent=dichloromethane) levelttedory. The frontier molecular orbitals
properties and electronic absorption data wereyaadl and visualized using GaussView 5.0

software.

4.5 Z-scan measurement

The third-order nonlinear optical properties of tRelns were measured at 1064 nm in
tetrahydrofuran (THF) by using the open-aperturecdn method. The method can provide the
nonlinear absorption coefficient of samples. Theydas were placed in 1mm cuvettes and then
irradiated by plane-polarized 25ps laser pulsesfep Q-switched Nd:YAG laser (PL2210A,
EKSPLA). The laser pulse energy was @B7The laser beam was divided into two parts. One
was used as the intensity reference and the otherused for transmittance measurement. The
laser beam was focused by passing throughfler200 mm) and the beam focal spot radiug) (
was about 4om. The position of the sample cell could be vaadzhg the laser-beam direction
(z-axis). Assuming a Gaussian bean profile, thdimear absorption coefficierft can be obtained

by curve fitting to the observed open-apertureesagithequation (1) [56, 57]:

_ 1 Bly(1—e b
T@) = 1= @z (1)

25



464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

where o is the linear absorption coefficierit,is the sample length, angy = kw3/2 is the
Rayleigh length.k = 2nt/A is the wave vectorj} is the laser wavelength; is the on-axis

irradiance at the focug € 0). Whemygl <« 1,equation (1) can be simplified as equation (2):

o4 Byl
T@ =1~ semn @

The two photo absorption cross section (in unitd®W = 1 x 10°%m/s) can be determined by

utilizing o = hy8l (N4 d x 10%), wherehv is the excitation energy and N, is the Avogadro

constantd is the concentration of the samples (2 £ M).

4.6 Photopolymerization experiments

The free radical photopolymerization (FRP) expentesewere carried out under laminated
conditions. The two-component photoinitiating systeare based on dclnsgONI (0.1/2.0%

wiw) for FRP. The weight percent of the photoinitig system is calculated from the monomer
content. Tripropylene glycol diacrylate (TPGDA, itdGuangzhou Lihou Trading Co. Ltd, China)
was chosen as the monomer for FRP. Fbens’ONI/monomer photosensitive formulations were
photocured in 0.6 mm thick plastic molds with a Brmiameter center. The molds were clamped
between two glass slides and placed under theiatrad sources. The distance between
irradiation sources and formulations is 1.5 cm. Fpecimens were irradiated at different time
intervals by controlling the curing light. The neairared spectra of uncured monomer were
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obtained immediately after each exposure interval using a Fourier transform infrared
spectrometer (Nicolet 5700, 4000—7000 cmavelength range). With the addition of NMP, the
three-component photoinitiating systems are baseahéclns/ONI/NMP (0.1/2.0/4.0% w/w) for
FRP. The double bond conversion profiles were ¢afed from the decay of the absorption
intensities located at 6165 chas described by Stansbury and Dickens [58]. Thebleéobond

conversion was calculated using the following eigmat3):

Conversion% = [1 — S;/S,] X 100% (3)

where$§ is the area of the C=C characteristic absorbara& pnds, is the initial area of the C=C

characteristic absorbance peak.
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» Four ferrocene-indanone organometallic dyes are designed and synthesized.

» All the dyes exhibit effective intramolecular charge transfer characters and show good

nonlinear absorption properties at 1064 nm.

» A good correlation of the structure changes with experimental and theoretical results is

established.

» The synthesized dyes can be used as novel photoredox catalysts in photopolymerization under

soft visible LED irradiations.



