A three-component reaction between azaarenes (phenanthridine, quinoline or isoquinoline), acetylenic esters and phenol derivatives Mahmoud Nassiri*

Faculty of Marine Science, Chabahar Maritime University, PO Box 99717-56499, Chabahar, Iran

Three component condensation reactions between azaarenes (phenanthridine, quinoline or isoquinoline) and acetylenic esters were undertaken in the presence of phenol derivatives (2,4-di-*tert*-butylphenol, 2,6-dimethylphenol, 4methylphenol and 4-chloro-3,5-dimethylphenol) for generation of *C*-arylation in good yields. The reactions proceeded smoothly at room temperature without using any catalyst.

Keywords: phenanthridine, isoquinoline, quinoline, acetylenic esters, phenol derivatives, C-arylation

Introduction

Azaarenes are a group of substituted polycyclic aromatic hydrocarbons (PAHs) where one carbon atom of the aromatic ring is replaced by a nitrogen atom.1 They are found in environmental matrices such as ambient air, lake and marine sediment, and seawater. They are also found in stack gases from coal combustion and automobile exhaust gases.²⁻⁵ The isoquinoline skeleton is found in a large number of naturally occurring and synthetic biologically active heterocyclic com-pounds.^{6,7} These compounds exhibit sedative,⁸ antidepressant⁹ and antimicrobial activities.¹⁰Quinoline is a representative nitrogen heterocyclic compounds that is commonly generated by coking plants, pharmaceutical factories, and related industries.¹¹A number of biological activities have been associated with quinoline-containing compounds such as anti-flammatory, antimalarial, antibacterial, anticancer and antiparasitic.^{12,13} Substituted phenanthridines are an important class of heterocyclic compounds in material science¹⁴ and in medicinal chemistry due to their significant biological

activities,^{15–17} including antifungal, antimicrobial and antiinflammatory.¹⁸ I now describe the reaction between azaarenes (phenanthridine, quinoline and isoquinoline) and acetylenic esters in the presence of phenol derivatives (see Scheme 1 and Table 1).

Results and discussion

The reaction between azaarenes (phenanthridine 1, isoquinoline 5 or quinoline 9) and acetylenic esters 2, 6 or 10 as a Michael acceptor¹⁹⁻²⁴ was undertaken in the presence of phenol derivatives (2,5-dimethylphenol, 2,4-di-*tert*-butylphenol, 4methylphenol and 4-chloro-3,5-dimethylphenol) at ambient temperature (see Scheme 2 and Table 1). Reactions were carried out by first mixing the phenanthridine, isoquinoline or quinoline and phenol derivatives and then the acetylenic ester was added slowly. The reactions proceeded smoothly in CH₂Cl₂ and then the whole reaction mixture solidified into yellow or brown solid within a few hours. The ¹H and ¹³C NMR spectra

Scheme 1

* Correspondent. E-mail: mdnassiri@yahoo.com

438 JOURNAL OF CHEMICAL RESEARCH 2011

Table I Reaction between azaarenes with acetylenic esters in the presence of phenoi deriva

Entry	ArH	R ₁	R_2	Z or E	Product	Yield/%
1	Me Me	Н	CO ₂ Et	E	HO Me $Me \rightarrow H_{C}R_{2}$ $H \rightarrow N^{C}R_{1}$ 4a HO Me	88%
2	Me Me	CO ₂ Et	CO ₂ Et	Z	$Me \xrightarrow{R_2 \cdot C'} H$ $H \xrightarrow{K_2 \cdot C'} R_1$ $4b$	91%
3	OH Me Me Me Me	Н	CO ₂ Me	E	H.C.R ₂ HO,H HO,H Me	90%
4	OH Me Me Me Me	CO ₂ Me	CO ₂ Me	Z	Me Me HO H HO H HO Me Me Me Me Me Me	94%
5	OH Me Me Me Me	CO ₂ Et	CO ₂ Et	Z	Me Me R2 ⁻ C ⁻ H N ⁻ C ⁻ R ₁ HO Me Me Me Me	91%
6	OH Me	CO ₂ Me	CO ₂ Me	Z	Me Me HO h C R ₁ Me R_2 12f	92%
7	OH Me CI	Н	CO ₂ Me	E	H = HO =	89%

of the crude products clearly indicated the formation of compounds **4a–b**, **8c–e** and **12f–g**. No product other than **4a–b**, **8c–e** and **12f–g** could be detected by NMR spectroscopy. The structures of compounds **4a–b**, **8c–e** and **12f–g** were confirmed by elemental analyses, mass, IR, ¹H NMR and ¹³C NMR spectra. The ¹H NMR 500 MHz spectrum of **4a** exhibited two signals identified as methyl ($\delta = 1.31$, 3H, t, ³J_{HH} = 7.00 Hz, OCH₂*CH*₃ and $\delta = 2.28$, 6H, s, 2Me, phenol), methylene ($\delta = 4.21$, 2H, q, ${}^{3}J_{\rm HH} = 7.00$ Hz, O*CH*₂CH₃), olefinic protons ($\delta = 5.51$ and 8.22, 2d, ${}^{3}J_{\rm HH} = 13.6$ Hz, N-*CH*=*CH*-CO₂CH₂CH₃), a sharp line at $\delta = 6.69$ ppm for the OH group, and also a sharp line for methine proton ($\delta = 9.30$ ppm, 1H, s, NCHC). Aromatic protons, along with multiplets at $\delta = 6.74$ –8.15 ppm for the phenanthridine and phenol moiety. The ¹³C NMR spectrum

of **4a** showed **26** distinct resonances in agreement with the proposed structure. In addition, product **4a** displayed ¹³C NMR resonances at $\delta = 63.14$, 109.35 and 123.90 ppm, respectively for the NCHC, N-CH=CH-CO₂CH₂CH₃, and N-CH=CH-CO₂CH₂CH₃ units.^{22–24} The carbonyl group resonance in the ¹³C NMR spectrum of **4a** appear at $\delta = 168.35$ ppm. The ¹H and ¹³C NMR spectra of compounds **4b**, **8c–e** and **12f–g** are similar to those of **4a**. The ¹H NMR of each of the isolated products **4b**, **8d–e** and **12f** exhibited a N–C=CH proton signal at

about 5.67–6.65 ppm, which is in agreement with the (Z) configuration^{25,26} for the vinyl moiety in **4b**, **8d–e** and **12f**. (see Scheme 2 and Table 1).

Briefly, I now describe a new method to access a novel class of heterocyclic derivatives. The present procedure has the advantage that not only is the reaction performed under neutral conditions, but also the reactants can be mixed without any prior activation or modification. It seems that, this procedure is very useful to functionalise azaarenes in a one-pot operation.

Scheme 2

Experimental

Melting points and IR spectra of all compounds were measured on an Electrothermal 9100 apparatus and a Shimadzu IR-460 spectrometer, respectively. The ¹H and ¹³C NMR spectra were obtained with a Bruker DRX-500 Avance instrument using CDCl₃ as applied solvent and TMS as internal standard at 500.1 and 125.8 MHz respectively. In addition, the mass spectra were recorded on a GCMS-QP5050A mass spectrometer operating at an ionisation potential of 70 eV. Elemental analyses for C, H and N were performed using a Heraeus CHN-O-Rapid analyser. All the chemicals used in this work were purchased from Fluka (Buchs, Switzerland) and were used without further purification.

General procedure

Ethyl-(2E)-3-[6-(4-hydroxy-3,5-dimethylphenyl)phenanthridin-5(6H)-yl] acrylate (4a): To a magnetically stirred solution of phenanthridine (0.18 g, 1 mmol) and 2,6-dimethylphenol (0.12 g, 1 mmol) in CH₂Cl₂ (10 mL) was added, dropwise, a mixture of ethyl propiolate (1 mmol) in CH2Cl2 (5 mL) at -10°C over 10 min. After 5 hours stirring at ambient temperature, the whole reaction mixture solidified into a brown solid, the solvent was then removed under reduced pressure and product washed with cold diethyl ether (2×5 mL). Then the product was recrystallised from a mixture of acetonitrile and acetone. Brown powder, yield 88%, 0.35g, m.p. 88–90 °C, IR (v_{max}, cm⁻¹): 1740 (C=O), 3200 (OH). MS, m/z (%) = 399 (M, 9), 370 (M-Et, 83), 326 (M-CO₂Et, 37), 179 (C13H9N, 100). Anal. Calcd for C26H25NO3 (399.49): C, 78.17; H, 6.31; N, 3.50. Found: C, 78.01; H, 6.39; N, 3.61%. ¹H NMR (500.1 MHz, CDCl₃), $\delta_{\rm H}$ 1.31 (3H, t, ³ $J_{\rm HH}$ = 7.00 Hz, OCH₂CH₃), 2.28 (6H, s, 2CH₃, phenol), 4.21 (2H, q, ${}^{3}J_{HH} = 7.00$ Hz, OCH₂CH₃), 5.51 (1H, d, ${}^{3}J_{HH} = 13.6$ Hz, N–CH=CH–CO₂Et), 6.69 (1H, s, OH), 6.74–8.15 $(11H_{aro})$, phenanthridine and phenol), 8.22 (1H, d, ${}^{3J}_{HH} = 13.6$ Hz, N– CH=CH-CO₂Et), 9.30 (1H, s, NCHC). ¹³C NMR (125.8 MHz, CDCl₃), 13.30 (OCH₂CH3), 28.17 (2CH₃), 58.29 (OCH₂CH₃), 63.14 (NCHC), 109.35 (N-C=CH-CO₂CH₂CH₃), 123.90 (N-C=CH-CO₂CH₂CH₃), 124.80, 127.37, 127.45, 127.90, 128.13, 128.56, 129.00, 129.17, 131.29, 131.82, 132.02, 133.41, 135.31, 141.07 and 152.60 (18C, phenanthridine and phenol), 168.35 (C=O, ester).

Diethyl 2-[6-(4-hydroxy-3,5-dimethylphenyl)phenanthridin-5(6H)-yl] maleate (4b): Yellow powder, yield 91%, 0.43g, m.p. 92-94 °C, IR $(v_{max}, \text{ cm}^{-1})$: 1720 and 1654 (C=O), 3280 (OH). MS, m/z (%) = 471 (M, 12), 426 (M-OEt, 46), 398 (M-CO₂Et, 71), 350 (M-C₈H₉O, 100), 179 (C13H0N, 86), 121 (C8H0O, 25). Anal. Calcd for C29H29NO5 (471.55): C, 73.87; H, 6.20; N, 2.97. Found: C, 73.98; H, 6.11; N, 3.09%. ¹H NMR (500.1 MHz, CDCl₃), δH 0.79 and 0.98 (6H, 2t, ${}^{3}J_{\text{HH}} = 7.1 \text{ Hz}, 20\text{CH}_{2}CH_{3}), 2.35 \text{ (6H, s, 2Me, phenol)}, 3.70 \text{ and } 3.81$ (4H, 2m, 2ABX3system, 2OCH2CH3), 5.29 (1H, s, OH), 6.65 (1H, s, N-C=CH-CO₂CH₂CH₃), 6.72-8.08 (10H_{aro}, m, phenanthridine and phenol).¹³C NMR (125.8 MHz, CDCl₃), 14.13 and 14.73 (2OCH₂CH₃), 27.50 (2CH₃, phenol), 57.12 and 60.51(2OCH₂CH₃), 65.13 (NCHC), 120.20 (1C, N-C=CH-CO₂CH₂CH₃), 123.19 (1C, N-C=CH-CO₂C(CH₃)₃), 123.59, 123.91, 124.26, 124,36, 125.75, 127.11, 127.36, 127.94, 128.34, 128.53, 129.71, 130.25, 141.61, 144.31, 151.89 and 152. 80 (18 C_{aro} , phenanthridine and phenol), 165.82 and 167.70 (2C=O, ester).

Methyl-(2*E*) 3-[1-(3,5-di-tert-butyl-2-hydroxyphenyl]isoquinolin-2(1*H*)-yl)acrylate (**8c**): Brown powder, yield 90%, 0.38g, m.p. 113–115 °C, IR (v_{max} , cm⁻¹): 1646 (C=O), 3197 (OH). MS, *m/z* (%) = 419 (M, 6), 388 (M-OMe, 63), 360 (M-CO₂Me, 47), 214 (M-C₁₄H₂₁O, 17), 205 (C₁₄H₂₁O, 25), 129 (C₉H₇N, 73), 85 (C₄H₅O₂, 41). Anal. Calcd for C₂₇H₃₃NO₃ (419.56): C, 77.30; H, 7.93; N, 3.34. Found: C, 77.10; H, 8.06; N, 3.30%. ¹H NMR (500.1 MHz, CDCl₃), δ H 1.12 and 1.35 (18H, 2s, 2CMe₃), 3.83 (3H, s, OMe), 5.63 (1H, d, ³J_{HH} = 13.4 Hz, N–CH=CH–CO₂Me), 5.76 (1H, s, OH), 6.63 (1H, s, NCHC), 6.95-8.65 (9H_{aro}, m, isoquinoline and phenol). ¹³C NMR (125.8 MHz, CDCl₃), δ C 27.34 (2CMe₃), 33.91 and 34.18 (2CMe₃), 51.76 (2OCH₃), 57.14 (NCHC), 93.16 (N–CH=CH–CO₂Me), 123.14 (N–CH=CH–CO₂Me), 125.15, 125.55, 126.32, 126.83, 127.20, 127.91, 128.38, 128.45, 129.35 132.46, 133.11, 141.71, 142.45 and 152.51 (14C, isoquinoline and phenol), 166.51 (C=O, ester).

Dimethyl 2-[1-(3,5-di-tert-butyl-2-hydroxyphenyl)isoquinolin-2(1H)-yl] maleate (**8d**): Brown powder, yield 94%, 0.45g, m.p. 96–98 °C, IR (ν_{max} , cm⁻¹): 1783 and 1722 (C=O), 3230 (OH). MS, *m/z* (%) = 477 (M, 6), 446 (M-OMe, 40), 418 (M-CO₂Me, 50), 359 (M-2CO₂Me, 48), 272 (M-C₁₄H₂₁O, 15), 205 (C₁₄H₂₁O, 22), 129 (C₉H₇N, 100). Anal. Calcd for C₂₉H₃₅NO₅ (477.59): C, 72.93; H, 7.38; N, 2.93. Found: C,

72.98; H, 7.31; N, 2.85%. ¹H NMR (500.1 MHz, CDCl₃), δ H 1.19 and 1.45 (18H, 2s, 2OC*Me*₃), 3.61 and 3.93 (6H, 2s, 2OMe), 5.35 (1H, s, OH), 5.86 (1H, s, N–C=CH–CO₂Me), 6.13 (1H, d, ^{3J}_{HH} = 7.8 Hz, N–CH=CH, isoquinoline), 6.47 (1H, s, NCHC), 6.57 (1H, d, ^{3J}_{JHH} = 7.8 Hz, N–CH=CH, isoquinoline), 7.03–8.52 (7H_{aro}, m, isoquinoline and phenol). ¹³C NMR (125.8 MHz, CDCl₃), 30.35 and 31.52 (2C*Me*₃), 34.23 and 34.35 (2CMe₃), 51.01 and 52.32 (2CO₂*Me*), 91.13 (NCHC), 105.84 (1C, N–C=CH–CO₂Me), 122.97 and 123.57 (2C, isoquinoline and phenol), 124.89 (1C, N–C=CH–CO₂Me), 126.85, 127.46, 127.63, 128.81, 129.75, 130.47, 131.83, 134.90, 142.99 and 148.05 (12C, isoquinoline and phenol), 166.38 and 169.45 (2C=O, ester).

Diethyl 2-[1-(3,5-di-tert-butyl-2-hydroxyphenyl)isoquinolin-2(1H)-yl] maleate (8e): Brown powder, yield 91%, 0.46g, m.p. 115-117 °C, IR (v_{max}, cm^{-1}) : 1632 and 1741 (C=O), 3240 (OH). MS, m/z (%) = 505 (M, 7), 460 (M-OEt, 41), 432 (M-CO2Et, 24), 300 (M-C14H21O, 67), 205 (C₁₄H₂₁O, 19), 129 (C₉H₇N, 100) . Anal. Calcd for C₃₁H₃₉NO₅ (505.65): C, 73.64; H, 7.77; N, 2.77. Found: C, 73.50; H, 7.85; N, 2.86%. ¹H NMR (500.1 MHz, CDCl₃), $\delta_{\rm H}$ 1.15 (3H, t, ³ $J_{\rm HH}$ = 7.0 Hz, OCH_2CH_3 , 1.28 (9H, s, CMe_3), 1.33 (3H, t, ${}^{3}J_{HH} = 7.0$ Hz, OCH_2CH_3), 1.40 (9H, s, CMe₃), 4.28 (4H, m, 2ABX3system, 2OCH₂CH₃), 5.39 (1H, s, OH), 5.74 (1H, s, N–C=CH–CO₂CH₂CH₃), 6.12 (1H, d, ${}^{3}J_{HH}$ = 7.2 Hz, N-CH=CH, isoquinoline), 6.24 (1H,s, NCHC), 6.41 (1H, d, ${}^{3}J_{\rm HH}$ = 7.2 Hz, N–CH=CH, isoquinoline), 6.66–8.55 (7H_{aro}, m, isoquinoline and phenol). ¹³C NMR (125.8 MHz, CDCl₃), 13.87 and 14.20 (2OCH₂CH₃), 27.68 and 29.03 (2CMe₃), 56.80 and 57.11 (20CH₂CH₃), 63.17 (NCHC), 94.45 (1C, N-C=CH-CO₂CH₂CH₃), 122.35 and 122.49 (2C, isoquinoline and phenol), 123.18 (1C, N-C=CH-CO₂CH₂CH₃), 125.10, 126.31, 127.37, 128.21, 128.39, 129.53, 130.11, 131.34, 133.60, 143.19, 145.56 and 151.36 (12C, isoquinoline and phenol), 169.17 and 171.65 (2C=O, ester).

Dimethyl 2-[2-(2-hydroxy-5-methylphenyl)quinolin-1(2H)-yl] maleate (**12f**): Brown powder, yield 92%, 0.35g, m.p. 102–104 °C, IR (v_{max} , cm⁻¹): 1634 and 1729 (C=O), 3180 (OH). MS, *m/z* (%) = 379 (M, 8), 320 (M-CO₂Me, 40), 272 (M-C₇H₇O, 54), 261 (M-2CO₂Me, 32), 143 (C₆H₇O₄, 26), 129 (C₉H₇N, 100), 107 (C₇H₇O, 18). Anal. Calcd for C₂₂H₂₁NO₅ (379.40): C, 69.65; H, 5.58; N, 3.69. Found: C, 69.69; H, 5.65; N, 3.81%. ¹H NMR (500.1 MHz, CDCl₃), 8H 2.29 (3H, s, Me), 3.66 and 3.72 (6H, 2s, 2OMe), 5.39 (1H, s, OH), 5.67 (1H, s, N-C=CH-CO₂Me), 655 (1H, s, NCHC), 6.61–8.33 (10Haro, m, quinoline and phenol). ¹³C NMR (125.8 MHz, CDCl₃), δ C 14.15 (Me), 51.83 and 52.11 (2OMe), 67.31 (NCHC), 73.97 (N-C=CH-CO₂CH₃), 114.12., 115.15, 116.15, 118.43, 121.07 and 121.13 (6C, quinoline and phenol), 124.14 (N-C=CH-CO₂CH₃), 125.86, 126.48, 128.96, 130.30, 141.67 and 151.80 (8C, quinoline and phenol), 167.53 and 169.80 (2C=O, ester).

Methyl (2*E*)-3-[2-(3-chloro-6-hydroxy-2,4-dimethylphenyl)quinolin-1(2*H*)-yl]acrylate (**12g**): Brown powder, yield 89%, 0.33g, m.p. 140– 142 °C, IR (v_{max} , cm⁻¹): 1732 (C=O), 3385 (OH). MS, *m/z* (%) = 369 (M, 8), 354 (M-Me, 50), 338 (M-OMe, 12), 310 (M-CO₂Me, 14), 129 (C₉H₇N, 100), 120 (C₈H₈O, 39). Anal. Calcd for C₂₁H₂₀ClNO₃ (369.89): C, 68.19; H, 5.45; N, 3.78. Found: C, 68.19; H, 5.46; N, 3.74%. ¹H NMR (500.1 MHz, CDCl₃), $\delta_{\rm H}$ 2.27 and 2.36 (6H, 2Me, phenol), 3.80 (3H, OMe), 5.30 (1H,d, ^{3/}_{HH} = 13. 3 Hz, N-CH=CH-CO₂Me), 6.59 (1H, s, OH), 6.83 (1H, s, NCHC), 6.98–8.24 (8Haro. quinoline and phenol), 8.28 (1H, d, ^{3/}_{HH} = 13.3 Hz, N-CH=CH-CO₂Me). ¹³C NMR (125.8 MHz, CDCl₃), 15.11 (Me), 51.31 (OMe), 65.48 (NCHC), 79.31 (1C, N-CH=CH-CO₂Me), 114.95, 117.37, 117.60, 118.69, 120.57 and 122.85 (6C, quinoline and phenol), 123.28 (1C, N-CH=CH-CO₂Me), 125.16, 127.31, 128.42, 132.96, 141.38, 143.19 and 152.13 (8C, quinoline and phenol), 169.99 (C=O, ester).

We gratefully acknowledge financial support from the Research Council of the Chabahar Maritime University.

Received 4 May 2011; accepted 12 July 2011 Paper 1100683 doi: 10.3184/174751911X13128171741972 Published online: 29 August 2011

References

- 1 M. Blumer, T. Dorsey and J. Sass, Science, 1977, 195, 283.
- 2 E.A.J. Bleeker, S. Wiegmann, P.D. Voogt, M. Kraak, H.A. Leslie, E.D.
- Haas and W. Admiraal, Rev. Environ. Contam. Toxicol., 2002, 173, 39.
- 3 H.Y. Chen and M.R. Preston, Environ. Sci. Technol., 1998, 32, 577.

- 4 J. Neuwoehner, A.K. Reineke, J. Hollender and A. Eisentraeger, Ecotoxicol. *Environ. Safety*, 2009, **72**, 819.
 K. Minomo, N. Ohtsuka, K. Nojiri, Y. Kurata, M. Karaushi and Y. Isobe,
- J. Mate.r Cycles Waste Manag., 2009, 11, 73.
 J.D. Scott and R.M. Williams, *Chem. Rev.*, 2002, 102, 1669.
 M. Anary Abbasinejad, M.H. Mosslemin, A. Fazlinia and H. Esfandiari,
- Synth Commun., 2010, 40, 385.
- 8 E. Lukevics, I. Segal, A. Zablotskaya and S. Germane, *Molecules.*, 1997, 2, 180
- 9 B.E. Maryanoff, D.F. Mccomsey, J.F. Gardocki, R.P. Shank, M.J. Costanzo, S.O. Nortey, C.R. Schneider and P.E. Setler, J. Med. Chem., 1987, 30, 1433.
- 10 L.F. Tietze, N. Rackehmann and I. Miller, Chem. Eur. J., 2004, 10, 2722. Y. Bai, Q. Sun, C. Zhao, D. Wen and X. Tang, Appl Microbiol Biotechnol., 11
- 2009, 82, 963.
- 12 M. Ahmed, R. Sharma, D.P. Nagda, J.L. Jat and G.L. Talesara, Arkivoc, 2006, (xi), 66.
- 13 I. Yavari, A. Mirzaei, L. Moradi and N. Hosseini, Tetrahedron Lett., 2008, 49, 2355.
- 14 J. Zhang and J.R. Lakowicz, J. Phys. Chem., 2005, 109, 8701.

- 15 G.J. Atwell, B.C. Baguley and W.A. Denny, J. Med. Chem., 1988, 31, 774.
- 16 T.N. Le, S.G. Gang and W.J. Cho, Tetrahedron Lett., 2004, 45, 2763.
- 17 M.E. Buden and R.A. Rossi, Tetrahedron Lett., 2007, 48, 8739.
- 18 Z. Dvorak, I. Sovadinova, L. Blaha, J.P. Giesy and J. Ulrichova, Food Chem. Toxicol., 2006, 44, 1466.
- 19 V. Nair, S. Devipriya and E. Suresh, Tetrahedron, 2008, 64, 3567.
- 20 J.S. Yadav, B.V.S. Reddy, N.N. Yadav and M.K. Gupta, Tetrahedron Lett., 2008, 49, 2815.
- I. Yavari, M. Adib and L. Hojabri, Tetrahedron, 2001, 57, 7537. 21
- 22 M. Nassiri, M.T. Maghsoodlou, R. Heydari and S.M. Habibi-Khorassani, Mol Divers., 2008, 12, 111.
- 23 M. Nassiri, R. Heydari, N. Hazeri, S.M. Habibi-Khorassani, M.T. Maghsoodlou and F. Jalili Milani, Arkivoc, 2010, (ii), 61.
- 24 M. Nassiri, R. Heydari, N. Hazeri, S.M. Habibi-Khorassani, M.T. Maghsoodlou and F. Jalili Milani, J. Chem. Res., 2010, 34, 365
- 25 I. Yavari, A.R. Alboezi, B. Mohtat and F. Nourmohammadian, Synth Commun., 2008, 38, 703.
- 26 E.L. Eliel and S.H. Wilen, Stereochemistry of organic compounds. Wiley, New York, 1994, p. 1142.