2002 Vol. 4, No. 20 3481-3484

Pd-Catalyzed *N*-Arylation of Heteroarylamines

Jingjun Yin,* Matthew M. Zhao, Mark A. Huffman, and James M. McNamara

Department of Process Research, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065

jingjun_yin@merck.com

Received July 23, 2002

ABSTRACT

$$\begin{array}{c} R_3 & A-A \\ HN & N \end{array} \\ \begin{array}{c} R_1 \\ N \end{array} \\ \begin{array}{c} R_3 & A-A \\ N \end{array} \\ \begin{array}{c} R_1 \\ N \end{array} \\ \begin{array}{c}$$

The palladium-catalyzed N-(hetero)arylation of a number of heteroarylamines including 2-aminopyridines, 2-aminothiazoles, and their analogues has been realized using Xantphos as the ligand. Weak bases such as Cs_2CO_3 , Na_2CO_3 , and K_3PO_4 were used in most cases to allow for the introduction of functional groups. Choice of the base and solvent was critical for the success of these reactions.

Pd-catalyzed arylation of amines has attracted great attention in the past few years.¹ A wide range of aryl halides can be coupled with primary and secondary amines or anilines under mild conditions with excellent functional group compatibility. However, few examples of Pd-catalyzed *N*-arylation of heteroarylamines have been reported.^{2,3} Pd-catalyzed *N*-arylation of aminopyridines^{2a–d} and 3-aminothiophenes^{2e} has been achieved by using DPPP, BINAP, DPPF, or P(*t*-Bu)₃ as ligand.⁴ However, the use of NaO-*t*-Bu as a strong base limited the scope of these reactions. Recently, the arylation

(1) (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc.

Chem. Res. 1998, 31, 805. (b) Hartwig, J. F. Angew. Chem., Int. Ed. 1998,
37, 2046. (c) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852. (d) Yang, B.
H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125. (e) Muci, A. R.;
Buchwald, S. L. Practical Palladium Catalysts for C—N and C—O Bond
Formation. In Topics in Current Chemistry; Miyaura, N., Ed.; Springerin the

Verlag: Berlin, 2002; Vol. 219, p 133.
(2) (a) Wagaw, S.; Buchwald, S. L. J. Org. Chem. 1996, 61, 7240. (b) Iwaki, T.; Yasuhara, A.; Sakamoto, T. J. Chem. Soc., Perkin Trans. 1 1999, 1505. (c) Khan, M. M.; Ali, H.; van Lier, J. E. Tetrahedron Lett. 2001, 42, 1615. (d) Yang, J.-S.; Lin, Y.-H.; Yang, C.-S. Org. Lett. 2002, 4, 777. (e) Ogawa, K.; Radke, K. R.; Rothstein, S. D.; Rasmussen, S. C. J. Org. Chem. 2001, 66, 9067. For an example of Ni- or Cu-catalyzed couplings between a protected 5-iodouracil and heteroarylamines, see: (f) Arterburn, J. B.; Pannala, M.; Gonzalez, A. M. Tetrahedron Lett. 2001, 42, 1475.

(3) (a) Jonckers, T. H. M.; Maes, B. U. W.; Lemière, G. L. F.; Dommisse, R. *Tetrahedron* **2001**, *57*, 7027. (b) Košmrlj, J.; Maes, B. U. W.; Lemière, G. L. F.; Haemers, A. *Synlett* **2000**, 1581.

of aminopyridines and analogous heteroarylamines using BINAP and K₂CO₃ has been reported, but a large excess (5–20 equiv) of the weak base was required.³ The scope of the Pd-catalyzed *N*-arylation of heteroarylamines has been mostly limited to aminopyridines and analogues, and no examples with functional groups on the aryl halide or the heteroarylamine have been reported. In addition, Pd-catalyzed arylation of 2-aminothiazoles and analogues^{5,6} is previously unreported despite the important biological activities of 2-arylaminothiazoles.^{5,7} Here, we wish to report our progress in the Pd-catalyzed C–N bond-forming reactions between

(6) For a Cu-catalyzed example, see ref 2f.

(7) Kim, K. S.; Kimball, D.; Cai, Z.-w.; Rawlins, D. B.; Misra, R. N.; Poss, M. A.; Webster, K. R.; Hunt, J. T.; Ham, W.-C. U.S. Patent 6262096, 2001.

⁽⁴⁾ DPPP = 1,3-bis(diphenylphosphino)propane; BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl; DPPF = 1,1'-bis(diphenylphosphino)-ferrocene.

⁽⁵⁾ Direct reaction of 2-aminothiazoles with highly activated aryl halides in refluxing PhOH or EtOH has been very limited in scope and often resulted in low yields in the absence of a 4-substituent on the thiazole. For examples, see: (a) Sarkar, B. R.; Pathak, B.; Dutta, S.; Lahiri, S. C. *J. Ind. Chem. Soc.* 1984, 61, 151. (b) Forlani, L.; Guastadisegni, G.; Raffellini, L.; Todesco, P. E.; Foresti, E. *Gazz. Chim. Ital.* 1990, 120, 493. (c) Chauhan, P. M. S.; Pratap, R.; Sharma, S. *Ind. J. Chem.* 1985, 15B, 1154. (d) El-Bayouki, K. A. M.; Basyouni, W. M. *Bull. Chem. Soc. Jpn.* 1988, 61, 3794. (e) Pande, A.; Pramilla, S.; Saxena, V. K.; Khan, M. N. A. A.; Verma, H. N. *Acta Pharm. Jugosl.* 1984, 34, 61.

(hetero)aryl halides and heteroarylamines including 2-aminopyridines, 2-aminothiazoles, and their analogues.

The reaction between 2-aminopyridine and electron-neutral 5-bromo-*m*-xylene was first studied to establish the most effective conditions (Table 1). In addition to DPPF and

Table 1. Optimization of Conditions^a

entry	% Pd	ligand	base	conv (%)	\mathbf{B}/\mathbf{A}^b
1	4	Xantphos	NaO-t-Bu	$100^{c,d}$	0
2	8	Xantphos	K_3PO_4	100	0.30
3	8	Xantphos	Cs_2CO_3	100	0.30
4	8	DPPF	Cs_2CO_3	46^c	0.05
5	8	DPPF	Cs_2CO_3	67	0.04
6	8	BINAP	Cs_2CO_3	67	0.19
7	8	BINAP	Cs_2CO_3	74^e	0.14
8	4	Xantphos	Cs_2CO_3	100	0.12
9	4	Xantphos	Cs_2CO_3	100^f	0.08
10	1	Xantphos	Cs_2CO_3	100^f	0.01

^a Reaction conditions: 1.0 mmol of ArBr, 1.05 mmol of Ar'NH₂, L/Pd = 1.5, 1.2−1.4 equiv of base, 2.0−2.5 mL of dioxane, 100 °C, 15−20 h. ^b Uncorrected LC ratio. ^c Toluene as the solvent. ^d 1.2 mmol of ArBr and 1.0 mmol of Ar'NH₂ were used. ^e L/Pd = 1.1 fL/Pd = 1.1.

BINAP, which were typically used in previous reports for this type of reaction,^{2,3} Xantphos⁸ was also tested as the ligand. With Xantphos as the ligand and NaO-*t*-Bu as a strong base, the reaction went smoothly without any formation of the undesired 2-anilinopyridine (**B**) (Table 1, entry 1).

However, when weaker bases such as K_3PO_4 and Cs_2CO_3 were used for potential functional group compatibility (Table 1, entries 2 and 3), significant amounts of byproduct $\bf B$ formed. The amount of undesired aryl group transfer product $\bf B$ decreased with decreasing amounts of Xantphos (Table 1, entries 3 and 8–10). We were pleased to find that the reaction went to completion in 15 h with just 1% of Pd and 1.1% of Xantphos, limiting the byproduct to \sim 1% (Table 1, entry 10). On the other hand, even with 8% of Pd and 12%

of DPPF or BINAP, the reaction only reached 67% conversion in the same amount of time (Table 1, entries 5 and 6), showing that Xantphos is a much better ligand for this reaction. ^{10,11}

Using the above optimized conditions, i.e., Xantphos as the ligand, Cs₂CO₃ as the base, and dioxane as the solvent, a variety of heteroarylamines was reacted with (hetero)aryl halides (Table 2). The amino group attached to a pyridine,

Table 2. N-Arylation of 2-Aminopyridines and Others^a

			13			
entry	ArX	Ar'NH ₂	product	mol%Pd	time(h)) yld(%)
1	Me	\longrightarrow Br H ₂ N \longrightarrow N	Me H N N N N N N N N N N N N N N N N N N	1	15	95
2		-N-CI	N	1 (4)	15) (15)	94 ^b (67) ^c
3		Me Me Br H ₂ N	Me Me H N	a	23	95
4	онс	Br H ₂ N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	OHC H N=	1	15	90
5		OMe Br	OMe H N= N- N-	2	15	91
6		$ \stackrel{\text{Me}}{\longrightarrow} \text{Br } H_2 N \stackrel{=}{\longrightarrow} N $	Me H N- N-) 2	20	98
Ме 7	O ₂ C		e H N=		20	86
8		$-N$ CI H_2N N Et	N N N	N 2	16	91 ^d
9	<u> </u>	EtO ₂ C	EtO ₂ C	1	23	85
10	N:	Br HN N	Me N= N-N-N-	2	20	91
11	N_		N N-N-N-N-	2	! 16	83 ^{d,e}

 a Reaction conditions: 1.0 mmol of aryl halide, 1.05−1.4 equiv of Ar'NH₂, 1.4 equiv of Cs₂CO₃, 0.5−2 mol % of Pd₂(dba)₃ (1 mol % of Pd refers to 0.5 mol % of Pd₂(dba)₃), 1.1−4.4 mol % of Xantphos (L/Pd = 1.1), 4 mL (2 mL for entries 1, 2, 4, and 5) 1,4-dioxane, 100 °C, 15−23 h. Isolated yields are reported. b 1 mol % of BINAP was used as ligand. c Values in parentheses are from Xantphos. LC yield is given (82% conversion). d L/Pd = 1.5. e 1.0 equiv of KO- t -Bu was added to neutralize the HCl salt of 4-chloropyridine; 1.4 equiv of K₃PO₄ was used instead of Cs₂CO₃.

pyrimidine, pyrazine, triazine, pyrazole, or thiophene ring could be arylated with electron-neutral (Table 2, entries 1 and 9) and electron-rich aryl bromides (Table 2, entry 5) as well as 2-, 3-, or 4-halopyridines. An ortho-substituted aryl bromide (2-bromotoluene) was also coupled with amino-

3482 Org. Lett., Vol. 4, No. 20, 2002

⁽⁸⁾ First developed by van Leeuwen: (a) Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Organometallics 1995, 14, 3081. For previous examples using Xantphos in Pd-catalyzed C-N bond forming reactions, see: (b) Guari, Y.; van Es, D. S.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Tetrahedron Lett. 1999, 40, 3789. (c) Harris, M. C.; Geis, O.; Buchwald, S. L. J. Org. Chem. 1999, 64, 6019. (d) Yang, B. H.; Buchwald, S. L. Org. Lett. 1999, 1, 35. (e) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 10251. (f) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101. (g) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043. (h) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Zappia, G. Org. Lett. 2001, 3, 2539. (i) Artamkina, G. A.; Sergeev, A. G.; Beletskaya, I. P. Tetrahedron Lett. 2001, 42, 4381. (j) Browning, R. G.; Mahmud, H.; Badarinarayana, V.; Lovely, C. J. Tetrahedron Lett. 2001, 42, 7155. (k) Anbazhagan, M.; Stephens, C. E.; Boykin, D. W. Tetrahedron Lett. 2002, 43, 4221.

⁽⁹⁾ It formed likely via exchange between the aryl group of ArBr bound to Pd and the phenyl group of Xantphos. For similar observations, see: (a) Hamann, B. C.; Hartwig, J. F. *J. Am. Chem. Soc.* **1998**, *120*, 3694–3703. (b) Reference 8f,g,i. For a mechanistic study, see: (c) Goodson, F. E.; Wallow, T. I.; Novak, B. M. *J. Am. Chem. Soc.* **1997**, *119*, 12441.

⁽¹⁰⁾ For other examples where the use of Xantphos provides better results than the use of BINAP or DPPF, see ref 8e-j.

⁽¹¹⁾ For discussions of its unique *trans*-coordination to Pd, see: (a) Reference 8g. (b) Guari, Y.; van Strijdonck, G. P. F.; Boele, M. D. K.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. *Chem. Eur. J.* **2001**, 7, 475. (c) Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. *Acc. Chem. Res.* **2001**, *34*, 895.

Table 3. N-Arylation of 2-Aminothiazoles and Analogues^a

entry	ArX	Ar'NH ₂	product	mol%Pd	conc(M)	base/equiv	yield(%)
1	CI	$H_2N \longrightarrow S$		5	0.20	Na ₂ CO ₃ /1.4	75 ^b
2	⟨_N CI			2	0.25	K ₃ PO ₄ /1.4	96 ^c
3	O_2N —CI		O_2N N N N N N N	4	0.25	Na ₂ CO ₃ /1.2	91 ^b
4	≪_N—CI	$H_2N \longrightarrow N \longrightarrow Me$	N H N Me	4	0.25	Na ₂ CO ₃ /1.4	87 ^b
5	CI	H_2N N Ph CO_2Et	H N Ph	4	0.25	Na ₂ CO ₃ /1.2	98
6	CI	$H_2N \longrightarrow N - N$		8	0.125	Na ₂ CO ₃ /1.4	64 ^c
7	Me,	H_2N	Me.	6	0.167	Na ₂ CO ₃ /1.4	89
8	Br		H N S	2	0.25	NaOtBu/2.0	84
9	Me' Me Br	H ₂ N N	Me H N Me	8	0.167	NaOtBu/2.0	74 ^d

^a Reaction conditions: 1.0 mmol of aryl halide, 1.05–1.4 equiv of Ar'NH₂, 1.1–2.4 equiv of base, 1–4 mol % of Pd₂(dba)₃, 3–12 mol % of Xantphos (L/Pd = 1.5), toluene (4–8 mL/mmol ArX), 100 °C, 15–16 h. Isolated yields are reported. ^b 1.0 equiv of H₂O was added. ^c 1,4-Dioxane as the solvent. ^d L/Pd = 1.1.

pyrazine (Table 2, entry 6) and even 2-amino-3-methyl-pyridine (Table 2, entry 3). Relatively low levels of catalyst loading (1–2% of Pd except for the hindered substrates in entry 3) were required, which was also important to lower the amounts of the undesired *N*-phenyl heteroarylamines when inactivated aryl halides were used. With the use of just 1.4 equiv of Cs₂CO₃ as a weak base, functional groups such as aldehyde and methyl/ethyl ester groups are tolerated (Table 2, entries 4, 7, and 9). A secondary aminopyridine (2-methylaminopyridine) also underwent the cross-coupling reactions using the weak base. Interestingly, BINAP was a better ligand for the reaction between 2-aminopyridine and 2-chloropyridine (Table 2, entry 2).¹²

Unfortunately, under the above optimized conditions, the reactions between 2-chloropyridines and 2-aminothiazoles gave very little products. In addition, reactions between 2-chloropyridine and 2-aminothiazole/2-aminobenzothiazole did not proceed at all under previously reported conditions (EtOH, NEt₃, 100 °C, 16 h) for direct nucleophilic attack of 2-aminothiazoles to highly activated aryl halides without catalysts. ^{5c,d} After an extensive screening of reaction variables including the base, solvent, additive, and ligand, we found Xantphos was still the best ligand among those commonly used for Pd-catalyzed aminations. The key to the success of these reactions, however, was to use Na₂CO₃ or K₃PO₄

instead of Cs_2CO_3 as the base and toluene as the solvent in many cases. The results of arylation of 2-aminothiazoles and analogues are summarized in Table $3.^{13}$

2-Aminothiazoles with various substituents reacted with 2-chloropyridines, 2-chloropyrimidine, chloropyrazine, 2-chloroquinoline, and 4-nitrochlorobenzene in good to excellent yields (Table 3, entries 1–5). No 4-substituents on the thiazole were required for a successful reaction (Table 3, entries 1–3).⁵ Functional groups such as nitro and ester groups were tolerated. 2-Amino-1,3,4-thiadiazole and 2-aminobenzothiazole also reacted with 2-chloropyridine under these conditions (Table 3, entries 6 and 7). In a few reactions, 0.5–1 equiv of H₂O was added to help push the reaction to completion (Table 3, entries 1, 3, and 4).¹⁴ Relatively higher levels of catalyst loading (2–8% of Pd) were required, and it was necessary to run these reactions at lower concentrations

Org. Lett., Vol. 4, No. 20, 2002

⁽¹²⁾ In this work, we found that BINAP was a better ligand only for reactions between 2-halopyridines and 2-aminopyridine/pyrimidines.

⁽¹³⁾ **Typical Procedure** (Table 3, Entry 4). A re-sealable Schlenk tube was charged with $Pd_2(dba)_3$ (18.4 mg, 0.02 mmol, 4 mol % Pd), Xantphos (34.7 mg, 0.06 mmol), 2-amino-4-methylthiazole (140 mg, 1.2 mmol), Na_2 -CO₃ (*fine powder*, 149 mg, 1.4 mmol), chloropyrazine (0.091 mL, 1.0 mmol), and degassed toluene (4 mL). While the mixture was being stirred, H_2O (18 mg, 1.0 mmol) was added dropwise. The Schlenk tube was capped and carefully subjected to three cycles of evacuation—backfilling with N_2 . It was then sealed and immersed into a 100 °C oil bath. After 15 h, the mixture was cooled, diluted with THF, filtered, concentrated, and chromatographed on an SiO_2 flash column to give a crude product. It was then sonicated in 3 mL of toluene—hexanes (1:1), filtered, and dried to give the pure product as a white solid (167 mg, 87%).

⁽¹⁴⁾ The exact role of water is unclear. One possibility is that it helped solubilize the inorganic base to increase the reaction rate.

(4–8 mL of solvent/mmol ArX).¹⁵ When an electron-neutral aryl halide was used, 2-aminothiazole itself failed to give the desired reaction under various conditions, but 2-aminobenzothiazole and 2-amino-1-methylbenzimidazole were arylated using NaO-*t*-Bu as the base (Table 3, entries 8 and 9).

In summary, we have developed a protocol for the *N*-(hetero)arylation of a number of heteroarylamines including 2-aminopyridines and their analogues using Xantphos as the ligand, Cs₂CO₃ as the base, and dioxane as the solvent. Aryl halides with various electronic and steric properties could be used, and functional groups were well tolerated. The first Pd-catalyzed arylation of 2-aminothiazoles and

(15) For a discussion of the concentration effect, see ref 8g.

analogues was also accomplished with the use of Xantphos as the ligand. Na₂CO₃ and K₃PO₄ had to be used instead of Cs₂CO₃ for the reactions with activated (hetero)aryl halides, and NaO-*t*-Bu was required for inactivated aryl halides.

Acknowledgment. We thank Bob Reamer for NMR assistance.

Supporting Information Available: Experimental procedures and characterization data for arylation products (Tables 2 and 3). This material is available free of charge via the Internet at http://pubs.acs.org.

OL0265923

3484 Org. Lett., Vol. 4, No. 20, 2002