Tetrahedron 65 (2009) 4471-4483

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of benzamide-C-ribonucleosides by Pd-catalyzed aminocarbonylations

Martin Štefko, Radek Pohl, Michal Hocek*

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic

ARTICLE INFO

Article history: Received 5 February 2009 Received in revised form 18 March 2009 Accepted 2 April 2009 Available online 9 April 2009

ABSTRACT

A novel modular, efficient and practical methodology for preparation of *p*- and *m*-substituted benzamide-*C*-ribonucleosides was developed. Reaction of TBS-protected 3- and 4-bromophenyl-*C*-ribonucleosides **1** and **4** with various primary and secondary amines or NH₄Cl under atmospheric pressure of carbon monoxide and in the presence of Pd(OAc)₂ and Xantphos lead to the corresponding amides **2a–j** and **5a–j** in high yields. Subsequent deprotection of silylated nucleosides by Et₃N·3HF or TFA afforded a series of free *C*-ribonucleosides **3a–j** in excellent yields (20 examples).

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

C-nucleosides are important class of stable analogues of biogenic nucleosides that find useful applications in chemical biology¹ and medicinal chemistry.² Many of the current synthetic approaches³ to these compounds are inefficient and nonselective and even the efficient procedures⁴ are not truly general. We have recently developed a new modular approach⁵ to C-nucleosides consisting in the synthesis of halogenated aryl-C-nucleosides and their follow-up functionalizations by cross-couplings, aminations, etc. and it is now applied to the synthesis of diverse classes of nucleosides.

Carboxamide derivatives of C-nucleosides are analogues of biogenic nicotinamine ribonucleoside (Fig. 1) and some of them exhibit cytostatic effect.⁶ Apart from five-membered heterocyclic carboxamides⁷ (tiazofurin and analogues), also simple benzamide-3-*C*-ribonucleoside (BR) was found⁸ to be a strong cytostatic agent inducing apoptosis in cancer cells.⁹ General mechanism of action of these compounds is their biotransformation to analogues of NAD, which then inhibit IMP dehydrogenase.¹⁰ Syntheses of these C-nucleosides are^{7,8} quite difficult and low yielding and do not allow access to large series of derivatives for SAR studies. We have envisaged a new approach to a series of analogues and positional isomers of important cytostatic BR via Pd-catalyzed aminocarbonylation of haloaryl C-nucleosides (Fig. 1).

Palladium-catalyzed aminocarbonylations of aryl halides (or halide equivalents) are a general tool¹¹ for the introduction of carboxamide function. There is only one single known example¹² of the use of aminocarbonylation in nucleoside chemistry (modification of position 7 of 7-deazapurine nucleoside) in the total synthesis

0040-4020/\$ - see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.04.006

of echiguanine B. Originally, the carbonylation reactions required higher pressure of CO and more reactive aryl iodides. Only recently, Buchwald et al.¹³ reported a highly efficient method for direct synthesis of *N*-substituted benzamides from aryl bromides under atmospheric pressure of CO in presence of Pd(OAc)₂ and Xantphos. Here we report a general and practical method for the Pd-catalyzed aminocarbonylation of easily available 3-bromophenyl-C-ribonucleoside **1** and 4-bromophenyl-C-ribonucleoside **4**¹⁴ at atmospheric pressure of CO under mild conditions, to efficiently prepare wide range of diverse *N*-substituted benzenecarboxamide C-nucleosides.

Figure 1. Structure of nicotinamide ribonucleoside, its cytostatic C-nucleoside analogues and rationale for this study.

^{*} Corresponding author. Tel.: +420 220183324; fax: +420 220183559. *E-mail address:* hocek@uochb.cas.cz (M. Hocek).

2. Results and discussion

The first target series of compounds were benzene-3-carboxamide-*C*-nucleosides. The aminocarbonylation reactions of 3-bromophenyl-*C*-ribonucleoside **1** with CO (1 atm) and amines were performed under conditions analogous to the Buchwald procedure¹³ in presence of 5 mol % of Pd(OAc)₂, Xantphos and K₃PO₄ in toluene (Scheme 1, Table 1). In all cases, short reaction times (2–4 h) were sufficient for the complete conversion of starting material. Reactions with secondary amines proceeded very smoothly to give the corresponding amides **2a–d** in excellent yields (Table 1, entry 1– 4). Dimethyl amine hydrochloride was used as a solid equivalent of gaseous dimethyl amine in the preparation of *N*,*N*-dimethylcarboxamide **2e** in 84% yield (entry 5). Reactions with primary

Scheme 1. Aminocarbonylation of 3-bromophenyl-C-ribonucleoside 1.

Table 1

Aminocarbonvlat	ion of 3-bromop	henvl-C-ribonucle	oside 1 ª

Entry	Amine	Time (h)	Aminocarbonylation product			Deprotect.
			R ¹	R ²	Yield	product (yield)
1	HN	4	-(CH ₂) ₄ -	-	2a (95%)	3a (86%)
2	HN	2	-(CH ₂) ₅ -	-	2b (92%)	3b (93%)
3	HNO	2	-(CH ₂) ₂ 0	O(CH ₂) ₂ -	2c (89%)	3c (89%)
4	$HN(n-Bu)_2$	4	n-Bu	n-Bu	2d (95%)	3d (83%)
5	HNMe ₂ ·HCl	2	Me	Me	2e (84%) ^b	3e (95%)
6	H ₂ N-	3.5	Н	c-Pr	2f (86%)	3f (89%)
7	H ₂ N-	2	Н	c-Hex	2g (84%)	3g (91%)
8	H ₂ N	4	Н	Bn	2h (79%)	3h (88%)
9	H ₂ NMe · HCl	2	Н	Me	2i (88%)	3i (93%)
10	NH ₄ Cl	3.5	Н	Н	2j (68%) ^c	3j (90%) ^d

^a Reaction conditions: 5 mol% of Pd(OAc)₂, 10 mol% Xantphos, 3 equiv amine, 4 equiv K_3PO_4 , toluene (2.5 mL/mmol), 80 °C, CO (1 atm).

^b Me₂NH HCl (2 equiv) was used.

^c Toluene/DMSO 1:1 (3 mL/mmol) was used.

d TFA/H2O 9:1, rt, 1.5 h.

amines were more sensitive to strictly anhydrous conditions and special precautions (i.e., finely grounded freshly dried K₃PO₄ and extra dry solvent) had to be applied to get good conversions. In this way, cyclopropyl, cyclohexyl and benzyl carboxamides **2f**-**h** were prepared in good yields of 86%, 84% and 79%, respectively (entries 6–8). Analogous reaction of methylamine hydrochloride gave the *N*-methylcarboxamide **2i** in 88% yield (entry 9).

Final deprotection of the silylated nucleosides **2a–i** by treatment with Et₃N·3HF at 40 °C for 2 days followed by treatment with K_2CO_3 resulted in formation of the desired free nucleosides **3a–i**. Chromatographic purification of the resulting crude nucleosides on silica gel was not practical due to significant losses of the hydrophilic products on the column. Therefore, reverse-phase flash chromatography was used for the final purification to give the free nucleosides **3a–i** in excellent yields (83–95%).

An analogous two-step procedure was used for the preparation of isomeric 4-substituted-benzamide-C-ribonucleosides. Also in this case all the amines or amine hydrochlorides generally show good reactivity under the same conditions of the aminocarbonylation to give the carboxamide nucleosides **5a**–**i** (Scheme 2, Table 2). Desilylation of the TBS-protected nucleosides **5a**–**i** by treatment with Et₃N·3HF has been performed analogously to furnish the series of free C-ribonucleosides **6a**–**i** in excellent yields (85–95%, Table 2), after purification by reversed-phase flash chromatography.

In order to prepare unsubstituted benzamide nucleoside 2i and **5i**, several sources of ammonia have been tested in the reaction of 3-bromophenyl-C-ribonucleoside 1 under analogous conditions (Table 3) using higher loading (10 mol %) of Pd(OAc)₂. When using LiHMDS (entry 1), no reaction occurred. The use of HCOONH4 resulted in the formation of an inseparable reaction mixture (entry 2), while the use of HMDS furnished desired amide 2j but in low hardly reproducible yields of 5-20% (entry 3). Finally with AcONH₄, the desired 3-(carbamoylphenyl)-C-ribonucleoside 2j was prepared in 76% yield (entry 4). As an alternative, gaseous ammonia was used as a ca. 1:1 mixture with CO and the desired amide 2i was prepared in an acceptable 62% yield (entry 5). With NH₄Cl as an ammonia surrogate, 2j was prepared in low yield of 20% but much cleaner mixture was obtained making the isolation of the product more straightforward (entry 6). Revising the former conditions lead us to the use of solvent mixture toluene/DMSO (1:1). This modification increased the yield and enabled us to reduce the reaction time or palladium loading (to 5 mol %) (entries 7 and 8). The optimized conditions then employed 5 mol % of Pd(OAc)₂ and a reaction time of 3.5 h to give 2j in 68% yield. For the aminocarbonylation of 4-bromophenyl-C-nucleoside **4** to the corresponding amide **5***j*, the use of gaseous ammonia and NH₄OAc gave good yields of the product only after 14-16 h (entries 9 and 10), while the use of

Scheme 2. Aminocarbonylation of 4-bromophenyl-C-ribonucleoside 4.

 Table 2

 Aminocarbonylation of 4-bromophenyl-C-ribonucleoside 4^a

Entry	Amine	Time (h)	Aminocarbonylation product			Deprotect.
			R ¹	R ²	Yield	product (yield
1	HN	3	-(CH ₂) ₄ -	-	5a (88%)	6a (90%)
2	HN	3	-(CH ₂) ₅ -	-	5b (92%)	6b (91%)
3	HNO	2	-(CH ₂) ₂ 0	O(CH ₂) ₂ -	5c (89%)	6c (87%)
4	HN(n-Bu) ₂	3	<i>n-</i> Bu	<i>n</i> -Bu	5d (95%)	6d (87%)
5	HNMe ₂ ·HCl	4	Me	Me	5e (87%) ^b	6e (95%)
6	H ₂ N-	3	Н	c-Pr	5f (81%)	6f (89%)
7	H ₂ N-	2	Н	c-Hex	5g (87%)	6g (85%)
8		3	Н	Bn	5h (86%)	6h (93%)
9	H ₂ NMe · HCl	3.5	Н	Me	5i (81%)	6i (90%)
10	NH₄Cl	3.5	Н	н	5j (65%) ^c	6j (90%) ^d

^a Reaction conditions: 5 mol % of Pd(OAc)₂, 10 mol % Xantphos, 3 equiv amine, 4 equiv K₃PO₄, toluene (2.5 mL/mmol), 80 °C, CO (1 atm).

^b Me₂NH·HCl (2 equiv) was used.

^c Toluene/DMSO 1:1 (3 mL/mmol) was used.

^d TFA/H₂O 9:1, rt, 1.5 h.

 NH_4Cl proved to be the best, yielding the nucleoside **5j** in 65% yield within 3.5 h (entry 11).

Attempted deprotection of amides 2j and 5j by treatment with $Et_3N \cdot 3HF$ and subsequent treatment with K_2CO_3 resulted in degradation of final products. Therefore, an acidic cleavage by TFA/ water (9:1) mixture was used. The reaction was finished within 1.5 h at room temperature and crude nucleosides were purified by reversed-phase chromatography to give free nucleosides 3j and 6j in excellent 90% yields.

Table 3

Conversion of nucleosides 1 and 4 to carboxamides 2j and 5j^a

Entry	Starting comp.	Ammonia source	Reaction time (h)	Product (yield)
1	1	LiHMDS	24	2j N.R. ^b
2	1	HCOONH ₄	24	2j N.R. ^c
3	1	HMDS	8	2j (5–20%) ^d
4	1	AcONH ₄	15	2j (76%) ^a
5	1	NH _{3 (g)}	16	2j (62%) ^e
6	1	NH ₄ Cl	8	2j (20%) ^a
7	1	NH ₄ Cl	1.5	2j (69%) ^f
8	1	NH4Cl	3.5	2j (68%) ^{f,g}
9	4	NH ₃	14	5j (69%) ^e
10	4	AcONH ₄	16	5j (60%) ^a
11	4	NH₄Cl	3.5	5i (65%) ^{f,g}

 a Reaction conditions: 10 mol % of Pd(OAc)_2, 20 mol % Xantphos, 3 equiv of ammonia source, 4 equiv K_3PO_4, toluene (2.5 mL/mmol), 80 °C, CO (1 atm).

^b No base was used.

^c Inseparable reaction mixture.

^d Yields were not reproducible.

^e 1:1 Mixture of $NH_{3(g)}$ and $CO_{(g)}$ was used.

f Toluene/DMSO 1:1 (3 mL/mmol) was used.

 $^{\rm g}~$ Pd(OAc)_2 (5 mol %), 10 mol % Xantphos.

In conclusion, the presented methodology gives a facile access to primary and secondary benzamide-*C*-ribonucleosides by Pd(OAc)₂/Xanthphos catalyzed aminocarbonylation in presence of primary or secondary amines and represents the first systematic study and application of this reaction in nucleoside chemistry. An analogous reaction using NH₄Cl gives unsubstituted benzamides in somewhat lower (but still acceptable) yields. In contrast to know cytostatic unsubstituted benzamide **3j** (BR),⁸ the *N*-substituted benzamide-*C*-ribonucleosides **3a**–**3i** and **6a**–**6i** did not exert any significant cytostatic activity. However, this powerful and efficient methodology extends the repertoire of reactions for functionalization of C-nucleosides in our modular approach⁵ and will now be used for the synthesis of heterocyclic benzamide ribonucleosides with potential biological activity.

3. Experimental

3.1. General

NMR spectra were recorded on 600 MHz (¹H at 600.1 MHz, ¹³C at 150.9 MHz) and 500 MHz (499.8 and 500.0 MHz for 1 H and 125.7 MHz for ¹³C) spectrometers. Chemical shifts (in ppm, δ scale) were referenced to TMS as internal standard. Coupling constants (1) are given in hertz. The assignment of carbons was based on C,H-HSQC and C,H-HMBC experiments. Melting points were determined on a Kofler block and are uncorrected. Mass spectra were measured using FAB (ionization by Xe, accelerating voltage 8 kV, glycerol+thioglycelor matrix) or ESI. Pd(OAc)₂, Pd(PPh₃)₄. Xantphos and all amines were purchased from commercial suppliers and used without any further treatment. All reactions were carried out in flame-dried glassware with magnetic stirring. K₃PO₄ was finely ground and dried (630 °C, 4 Torr, 1 h) prior to each use. Toluene was dried by refluxing with sodium/benzophenone and freshly distilled prior to use. DMSO was stored over molecular sieves under argon.

3.2. General procedure for aminocarbonylation

A flame-dried septum-sealed flask containing 3- or 4-bromophenyl-C-ribonucleoside **1** or **4** (1 mmol), $Pd(OAc)_2$ (0.05 mmol), Xantphos (0.1 mmol), K_3PO_4 (4 mmol) [and an amine hydrochloride (3 mmol) in cases when solid hydrochlorides were used] was evacuated and backfilled with $CO_{(g)}$. Then, toluene (2.5 mL) and an amine (3 mmol) [in cases when liquid amines were used] were added via syringe. The reaction mixture was stirred at room temperature for 5 min and then immersed into a preheated oil bath (80 °C) and vigorously stirred until the starting material had been completely consumed (TLC analysis, hexanes/EA 8:2). The reaction mixture was then allowed to cool to room temperature, diluted with Et₂O, filtered through a plug of Celite (eluting with Et₂O) and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel.

3.2.1. 1β-{3-[(Pyrrolidine-1-yl)carbonyl]phenyl}-1-deoxy-2,3,5tri-O-(tert-butyldimethylsilyl)-D-ribofuranose (**2a**)

According to the general procedure, a mixture of 3-bromophenyl-C-ribonucleoside **1** (0.502 mmol, 318 mg), Pd(OAc)₂ (5 mol %, 0.025 mmol, 5.6 mg), Xantphos (10 mol %, 0.050 mmol, 29.1 mg), pyrrolidine (1.51 mmol, 3 equiv, 0.13 mL), K₃PO₄ (2.01 mmol, 4 equiv, 427 mg) and toluene (1.3 mL) was heated at 80 °C for 4 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/EA 100:2 to 100:16 to provide the title compound as a colourless light oil (311 mg, 95%). HRMS (FAB) for C₃₄H₆₄NO₅Si₃: [M+H] calculated, 650.4092; found, 650.4108. ¹H NMR (600.1 MHz, CDCl₃): -0.43, -0.13, 0.09, 0.11 and 0.12 (5×s, 18H, CH₃Si), 0.80, 0.93 and 0.94

(3×s, 3×9H, (CH₃)₃C), 1.81–1.87 and 1.92–1.97 (2×m, 2×2H, CH₂pyr), 3.37 and 3.40 (2×dt, 2H, J_{gem}=10.6, J_{vic}=6.8, CH₂N-pyr), 3.63 (t, 2H, Jvic=7.0, CH₂N-pyr), 3.77 and 3.79 (2×dd, 2H, Jgem=11.1, *J*_{5',4'}=3.5, H-5'), 3.85 (dd, 1H, *J*_{2',1'}=7.9, *J*_{2',3'}=4.4, H-2'), 4.04 (td, 1H, $J_{4',5'}=3.5, J_{4',3'}=1.7, H-4'), 4.12 (dd, 1H, J_{3',2'}=4.4, J_{3',4'}=1.7, H-3'), 4.80$ (d, 1H, *J*_{1',2'}=7.9, H-1'), 7.33 (t, 1H, *J*_{5,4}=*J*_{5,6}=7.7, H-5), 7.41 (ddd, 1H, $J_{4,5}$ =7.7, $J_{4,2}$ =1.7, $J_{4,6}$ =1.4, H-4), 7.48 (ddd, 1H, $J_{6,5}$ =7.7, $J_{6,2}$ =1.7, J_{6,4}=1.4, H-6), 7.56 (t, 1H, J_{2,4}=J_{2,6}=1.7, H-2). ¹³C NMR (150.9 MHz, CDCl₃): -5.52, -5.48, -5.31, -4.50, -4.48 and -4.38 (CH₃Si), 17.93. 18.07 and 18.36 (C(CH₃)₃), 24.49 (CH₂-pyr), 25.83, 25.87 and 25.98 ((CH₃)₃C), 26.37 (CH₂-pyr), 46.06 and 49.59 (CH₂N-pyr), 63.76 (CH2-5'), 73.95 (CH-3'), 79.48 (CH-2'), 82.49 (CH-1'), 86.07 (CH-4'), 125.41 (CH-2), 126.48 (CH-4), 127.91 (CH-5), 128.33 (CH-6), 137.15 (C-3), 140.82 (C-1), 169.71 (CO). IR spectrum (CCl₄): 1636, 1607, 1587, 1485, 1472, 1463, 1446, 1409, 1390, 1361, 1343, 1308, 1255, 1218, 1163, 1111, 1095, 1081, 940, 837, 703, 671 cm⁻¹.

3.2.2. 1β -{3-[(Piperidine-1-yl)carbonyl]phenyl}-1-deoxy-2,3,5tri-O-(tert-butyldimethylsilyl)-p-ribofuranose (**2b**)

According to the general procedure, a mixture of 3-bromophenyl-C-ribonucleoside 1 (0.508 mmol, 321 mg), Pd(OAc)₂ (5 mol %, 0.025 mmol, 5.7 mg), Xantphos (10 mol %, 0.050 mmol, 29.4 mg), piperidine (1.52 mmol, 3 equiv, 0.15 mL), K₃PO₄ (2.03 mmol, 4 equiv, 432 mg) and toluene (1.3 mL) was heated at 80 °C for 2 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/EA 100:2 to 100:8 to provide the title compound as a colourless light oil (310 mg, 92%). HRMS (FAB) for: C₃₅H₆₆NO₅Si₃: [M+H] calculated, 664.4249; found, 664.4235. ¹H NMR (600.1 MHz, CDCl₂); -0.42. -0.13, 0.09, 0.11 and $0.12 (5 \times s, 18H, CH_3Si), 0.80$ and $0.93 (2 \times s, 27H, CH_3Si)$ (CH₃)₃C), 1.45–1.52 and 1.63–1.70 (2×br m, 6H, CH₂-pip), 3.63–3.69 and 3.69–3.77 (2×br m, 2×2H, CH₂N-pip), 3.77 (dd, 1H, J_{gem}=10.8, J_{5'b,4'}=4.0, H-5'b), 3.79 (dd, 1H, J_{gem}=10.8, J_{5'a,4'}=3.5, H-5'a), 3.85 (dd, 1H, $J_{2',1'}=7.8$, $J_{2',3'}=4.4$, H-2'), 4.04 (ddd, 1H, $J_{4',5'}=4.0$, 3.5, $J_{4',3'}=1.8$, H-4'), 4.12 (dd, 1H, $J_{3',2'}=4.4$, $J_{3',4'}=1.8$, H-3'), 4.79 (d, 1H, J_{1',2'}=7.8, H-1'), 7.28 (dt, 1H, J_{4.5}=7.6, J_{4.2}=J_{4.6}=1.7, H-4), 7.33 (t, 1H, J_{5,4}=J_{5,6}=7.6, H-5), 7.42 (t, 1H, J_{2,4}=J_{2,6}=1.7, H-2), 7.48 (dt, 1H, $J_{6,5}=7.6$, $J_{6,2}=J_{6,4}=1.7$, H-6). ¹³C NMR (150.9 MHz, CDCl₃): -5.52, -5.42, -5.31, -4.53, -4.48 and -4.40 (CH₃Si), 17.92, 18.06 and 18.37 (C(CH₃)₃), 24.61 and 25.57 (CH₂-pip), 25.83, 25.87 and 26.00 ((CH₃)₃C), 26.55 (CH₂-pip), 43.03 and 48.72 (CH₂N-pip), 63.76 (CH₂-5'), 73.91 (CH-3'), 79.46 (CH-2'), 82.50 (CH-1'), 86.01 (CH-4'), 125.29 (CH-2), 126.22 (CH-4), 127.98 and 127.99 (CH-5,6), 136.32 (C-3), 141.03 (C-1), 170.18 (CO). IR spectrum (CCl₄): 1636, 1607, 1587, 1485, 1472, 1463, 1446, 1409, 1390, 1361, 1343, 1308, 1255, 1218, 1163, 1111, 1095, 1081, 940, 837, 703, 671 cm⁻¹.

3.2.3. 1β -{3-[(Morpholine-4-yl)carbonyl]phenyl}-1-deoxy-2,3,5-tri-O-(tert-butyldimethylsilyl)-D-ribofuranose (**2c**)

According to the general procedure, a mixture of 3-bromophenyl-C-ribonucleoside 1 (0.576 mmol, 364 mg), Pd(OAc)₂ (5 mol %, 0.029 mmol, 6.5 mg), Xantphos (10 mol %, 0.058 mmol, 33.3 mg), morpholine (1.73 mmol, 3 equiv, 0.15 mL), K₃PO₄ (2.30 mmol, 4 equiv, 489 mg) and toluene (1.4 mL) was heated at 80 °C for 2 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/EA 100:2 to 100:16 to provide the title compound as a colourless light oil (340 mg, 89%). HRMS (FAB) for C₃₄H₆₄NO₆Si₃: [M+H] calculated, 666.4042; found, 666.4053. ¹H NMR (600.1 MHz, CDCl₃): -0.45, -0.12, 0.096, 0.098, 0.12 and 0.13 (6×s, 6×3H, CH₃Si), 0.80, 0.93 and 0.94 (3×s, 3×9H, (CH₃)₃C), 3.35–3.50, 3.53–3.67 and 3.67–3.90 (3×br m, 8H, H-morph), 3.78 (d, 2H, *J*_{5',4'}=3.6, H-5'), 3.85 (dd, 1H, *J*_{2',1'}=8.0, *J*_{2',3'}=4.4, H-2'), 4.04 (td, 1H, *J*_{4',5'}=3.6, *J*_{4',3'}=1.6, H-4'), 4.12 (dd, 1H, *J*_{3',2'}=4.4, *J*_{3',4'}=1.6, H-3'), 4.79 (d, 1H, *J*_{1',2'}=8.0, H-1'), 7.29 (dt, 1H, *J*_{4,5}=7.6, *J*_{4,2}=*J*_{4,6}=1.7, H-4), 7.35 (t, 1H, *J*_{5,4}=*J*_{5,6}=7.6, H-5), 7.46 (t, 1H, J_{2.4}=J_{2.6}=1.7, H-2), 7.51 (dt, 1H, J_{6.5}=7.6, J_{6.2}=J_{6.4}=1.7, H-

6). ¹³C NMR (150.9 MHz, CDCl₃): -5.50, -5.41, -5.34, -4.50, -4.47 and -4.37 (CH₃Si), 17.93, 18.06 and 18.36 (C(CH₃)₃), 25.83, 25.87 and 26.00 ((CH₃)₃C), 42.46 and 48.28 (CH₂N-morph), 63.79 (CH₂-5'), 66.90 (CH₂O-morph), 74.04 (CH-3'), 79.52 (CH-2'), 82.33 (CH-1'), 86.26 (CH-4'), 125.59 (CH-2), 126.44 (CH-4), 128.14 (CH-5), 128.51 (CH-6), 135.16 (C-3), 141.37 (C-1), 170.33 (CO). IR spectrum (CCl₄): 1647, 1607, 1588, 1487, 1472, 1462, 1439, 1419, 1389, 1362, 1330, 1300, 1257, 1211, 1153, 1117, 1111, 1098, 1080, 1026, 940, 888, 837, 698, 673 cm⁻¹.

3.2.4. 1β-[3-(Dibutylcarbamoyl)phenyl]-1-deoxy-2,3,5-tri-0-(tert-butyldimethyl-silyl)-D-ribofuranose (**2d**)

According to the general procedure a mixture of 3-bromophenyl-C-ribonucleoside 1 (0.237 mmol, 150 mg), Pd(OAc)₂ (5 mol %, 0.012 mmol, 2.7 mg), Xantphos (10 mol %, 0.024 mmol, 13.7 mg), dibutylamine (0.712 mmol, 3 equiv, 0.12 mL), K_3PO_4 (0.949 mmol, 4 equiv, 202 mg) and toluene (0.60 mL) was heated at 80 °C for 4 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/EA 100:2 to 100:6 to provide the title compound as a colourless light oil (158 mg, 95%). HRMS (FAB) for C₃₈H₇₄NO₅Si₃: [M+H] calculated, 708.4875; found, 708.4864. ¹H NMR (500.0 MHz, CDCl₃): -0.42, -0.13, 0.09, 0.11 and 0.12 (5×s, 18H, CH₃Si), 0.78-0.81 (br m, 3H, CH₃CH₂CH₂CH₂N), 0.81, 0.93 and 0.93 (3×s, 3×9H, (CH₃)₃C), 0.95-0.99 (br m, 3H, CH₃CH₂CH₂CH₂N), 1.08-1.16, 1.35-1.43, 1.43-1.50 and 1.59-1.67 (4×br m, 4×2H, CH₃CH₂CH₂CH₂N), 3.12-3.20 and 3.40-3.53 (2×br m, 2×2H, CH₃CH₂CH₂CH₂N), 3.76 (dd, 1H, J_{gem}=10.9, J_{5'b,4'}=4.1, H-5'b), 3.79 (dd, 1H, J_{gem}=10.9, J_{5'a,4'}=3.5, H-5'a), 3.84 (dd, 1H, $J_{2',1'}$ =7.8, $J_{2',3'}$ =4.4, H-2'), 4.04 (ddd, 1H, $J_{4',5'}$ =4.1, 3.5, *J*_{4',3'}=1.9, H-4'), 4.12 (dd, 1H, *J*_{3',2'}=4.4, *J*_{3',4'}=1.9, H-3'), 4.79 (d, 1H, *J*_{1',2'}=7.8, H-1'), 7.26 (dt, 1H, *J*_{4,5}=7.6, *J*_{4,2}=*J*_{4,6}=1.7, H-4), 7.32 (t, 1H, J_{5,4}=J_{5,6}=7.6, H-5), 7.36 (t, 1H, J_{2,4}=J_{2,6}=1.7, H-2), 7.47 (dt, 1H, $J_{6,5}=7.6, J_{6,2}=J_{6,4}=1.7, H-6$). ¹³C NMR (125.7 MHz, CDCl₃): -5.51, -5.39, -5.27, -4.54, -4.46 and -4.39 (CH₃Si), 13.70 and 13.96 (CH₃CH₂CH₂CH₂N), 17.93, 18.07 and 18.37 (C(CH₃)₃), 19.80 and 20.34 (CH₃CH₂CH₂CH₂N), 25.86, 25.89 and 26.00 ((CH₃)₃C), 29.69 and 30.87 (CH₃CH₂CH₂CH₂N), 44.45 and 48.83 (CH₃CH₂CH₂CH₂N), 63.75 (CH2-5'), 73.89 (CH-3'), 79.44 (CH-2'), 82.54 (CH-1'), 85.99 (CH-4'), 124.77 (CH-2), 125.80 (CH-4), 127.52 (CH-6), 127.97 (CH-5), 137.25 (C-3), 140.96 (C-1), 171.47 (CO). IR spectrum (CCl₄): 1638, 1607, 1588, 1487, 1471, 1463, 1421, 1389, 1379, 1362, 1308, 1257, 1211, 1152, 1110, 1098, 1082, 940, 837, 701, 673 cm⁻¹.

3.2.5. 1*β*-[3-(Dimethylcarbamoyl)phenyl]-1-deoxy-2,3,5-tri-O-(tert-butyldimethyl-silyl)-D-ribofuranose (**2e**)

According to the general procedure, a mixture of 3-bromophenyl-C-ribonucleoside 1 (0.339 mmol, 214 mg), Pd(OAc)₂ (5 mol %, 0.017 mmol, 3.8 mg), Xantphos (10 mol %, 0.034 mmol, 19.6 mg), Me₂NH·HCl (0.677 mmol, 2 equiv, 55.2 mg), K₃PO₄ (1.35 mmol, 4 equiv, 288 mg) and toluene (0.85 mL) was heated at 80 °C for 2 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/EA 100:2 to 100:10 to provide the title compound as a colourless light oil (178 mg, 84%). HRMS (FAB) for C₃₂H₆₂NO₅Si₃: [M+H] calculated, 624.3936; found, 624.3940. ¹H NMR (500.0 MHz, CDCl₃): -0.43, −0.12, 0.09, 0.11 and 0.12 (5×s, 18H, CH₃Si), 0.80, 0.931 and 0.935 $(3 \times s, 3 \times 9H, (CH_3)_3C)$, 2.90–3.02 and 3.02–3.14 $(2 \times br s, 2 \times 3H)$ CH₃N), 3.78 (d, 2H, *J*_{5',4'}=3.7, H-5'), 3.85 (dd, 1H, *J*_{2',1'}=7.8, *J*_{2',3'}=4.4, H-2'), 4.04 (td, 1H, $J_{4',5'}=3.7$, $J_{4',3'}=1.8$, H-4'), 4.12 (dd, 1H, $J_{3',2'}=4.4$, J_{3',4'}=1.8, H-3'), 4.80 (d, 1H, J_{1',2'}=7.8, H-1'), 7.31 (dt, 1H, J_{4,5}=7.6, *J*_{4,2}=*J*_{4,6}=1.7, H-4), 7.34 (td, 1H, *J*_{5,4}=*J*_{5,6}=7.6, *J*_{5,2}=0.6, H-5), 7.46 (tt, 1H, $J_{2,4}=J_{2,6}=1.7$, $J_{2,5}=J_{2,1'}=0.6$, H-2), 7.48 (dtd, 1H, $J_{6,5}=7.6$, $J_{6,2}=J_{6,4}=1.7, J_{6,1'}=0.6, H-6$). ¹³C NMR (125.7 MHz, CDCl₃): -5.50, -5.47, -5.28, -4.49, -4.46 and -4.37 (CH₃Si), 17.94, 18.08 and 18.37 (C(CH₃)₃), 25.84, 25.89 and 26.00 ((CH₃)₃C), 35.26 and 39.56 (CH₃N), 63.75 (CH₂-5'), 73.95 (CH-3'), 79.51 (CH-2'), 82.50 (CH-1'), 86.08 (CH-4'), 125.41 (CH-2), 126.43 (CH-4), 128.00 (CH-5), 128.11 (CH-6), 136.24 (C-3), 141.03 (C-1), 171.59 (CO). IR spectrum (CCl₄): 1646, 1608, 1587, 1499, 1472, 1463, 1434, 1406, 1391, 1391, 1362, 1308, 1257, 1218, 1152, 1111, 1093, 1080, 939, 837, 699, 681, 673 cm⁻¹.

3.2.6. 1β-[3-(Cyclopropylcarbamoyl)phenyl]-1-deoxy-2,3,5-tri-O-(tert-butyldimethyl-silyl)-D-ribofuranose (**2f**)

According to the general procedure a mixture of 3-bromophenyl-C-ribonucleoside 1 (0.185 mmol, 120 mg), Pd(OAc)₂ (5 mol %, 0.009 mmol, 2.1 mg), Xantphos (10 mol %, 0.018 mmol, 11.0 mg), cyclopropylamine (0.57 mmol, 3 equiv, 0.04 mL), K₃PO₄ (0.76 mmol, 4 equiv, 161 mg) and toluene (0.46 mL) was heated at 80 °C for 3.5 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/EA 25:1 to 8:1 to provide the title compound as a white foam (100 mg, 86%). HRMS (ESI) for C₃₃H₆₁NO₅Si₃Na: [M+Na] calculated, 658.3756; found, 658.3748. ¹H NMR (600.1 MHz, CDCl₃): -0.53, -0.14, 0.097, 0.102, 0.12 and 0.13 (6×s, 6×3H, CH₃Si), 0.58-0.62 (m, 2H, CH₂-cycloprop), 0.82-0.92 (s, 9H, (CH₃)₃C), 0.87 (m, 2H, CH₂-cycloprop), 0.93 and 0.94 (2×s, 2×9H, (CH₃)₃C), 2.89 (ttd, 1H, J=7.3, 3.9, 2.5, CH-cycloprop), 3.77-3.82 (m, 3H, H-2',5'), 4.05 (td, 1H, J_{4',5'}=3.2, J_{4',3'}=1.5, H-4'), 4.12 (dd, 1H, J_{3',2'}=4.5, J_{3',4'}=1.5, H-3'), 4.80 (d, 1H, J_{1',2'}=8.3, H-1'), 6.20 (d, 1H, J=2.5, NH), 7.38 (t, 1H, J_{5,4}=J_{5,6}=7.7, H-5), 7.59 (ddd, 1H, J_{6,5}=7.7, $J_{6,2}=1.8, J_{6,4}=1.3, H-6$), 7.62 (t, 1H, $J_{2,4}=J_{2,6}=1.8, H-2$), 7.73 (ddd, 1H, *J*_{4,5}=7.7, *J*_{4,2}=1.8, *J*_{4,6}=1.3, H-4). ¹³C NMR (150.9 MHz, CDCl₃): -5.57, -5.53, -5.38, -4.48 and -4.35 (CH₃Si), 6.67 and 6.82 (CH₂-cvcloprop), 17.91, 18.06 and 18.31 (C(CH₃)₃), 23.04 (CH-1cycloprop), 25.80, 25.88 and 25.95 ((CH₃)₃C), 63.77 (CH₂-5'), 74.14 (CH-3'), 79.45 (CH-2'), 82.06 (CH-1'), 86.59 (CH-4'), 124.43 (CH-2), 126.89 (CH-4), 128.49 (CH-5), 129.83 (CH-6), 134.15 (C-3), 141.01 (C-1), 168.79 (CO). IR spectrum (CCl₄): 3454, 3346, 3094, 3011, 1678, 1663, 1608, 1588, 1524, 1504, 1472, 1463, 1436, 1425, 1406, 1389, 1362, 1305, 1285, 1257, 1218, 1152, 1112, 1098, 1081, 940, 837, 711, 688, 671 cm⁻¹.

3.2.7. 1β-[3-(Cyclohexylcarbamoyl)phenyl]-1-deoxy-2,3,5-tri-O-(tert-butyldimethyl-silyl)-*D*-ribofuranose (**2g**)

According to the general procedure, a mixture of 3-bromophenyl-C-ribonucleoside 1 (0.392 mmol, 248 mg), Pd(OAc)₂ (5 mol %, 0.019 mmol, 4.4 mg), Xantphos (10 mol %, 0.039 mmol, 22.7 mg), cyclohexylamine (1.18 mmol, 3 equiv, 0.14 mL), K₃PO₄ (1.57 mmol, 4 equiv, 333 mg) and toluene (1.0 mL) was heated at 80 °C for 2 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/EA 50:1 to 8:1 to provide the title compound as a white foam (224 mg, 84%). HRMS (ESI) for C₃₆H₆₇NO₅Si₃Na: [M+Na] calculated, 700.4225; found, 700.4219. ¹H NMR (600.1 MHz, CDCl₃): -0.55, -0.13, 0.10, 0.11, 0.12 and 0.13 (6×s, 6×3H, CH₃Si), 0.79, 0.93 and 0.95 (3×s, 3×9H, (CH₃)₃C), 1.15–1.27, 1.38–1.47, 1.63–1.69, 1.71–1.79 and 1.99– 2.07 (5×m, 10H, H-2,3,4,5,6-cyclohex), 3.80 (d, 2H, *J*_{5',4'}=3.8, H-5'), 3.81 (dd, 1H, *J*_{2',1'}=8.3, *J*_{2',3'}=4.4, H-2'), 3.98 (tdt, 1H, *J*=10.8, 8.2, 3.9, H-1-cyclohex), 4.05 (td, 1H, J_{4',5'}=3.8, J_{4',3'}=1.4, H-4'), 4.12 (dd, 1H, $J_{3',2'}=4.4, J_{3',4'}=1.4, H-3'$), 4.81 (d, 1H, $J_{1',2'}=8.3, H-1'$), 5.92 (d, 1H, J=8.2, NH), 7.39 (t, 1H, J_{5,4}=J_{5,6}=7.7, H-5), 7.60-7.63 (m, 2H, H-2,6), 7.73 (ddd, 1H, J_{4.5}=7.7, J_{4.2}=1.8, J_{4.6}=1.3, H-4). ¹³C NMR (150.9 MHz, CDCl₃): -5.56, -5.53, -5.34, -4.48 and -4.36 (CH₃Si), 17.92, 18.07 and 18.33 (C(CH₃)₃), 24.98 and 25.58 (CH₂-3,4,5-cyclohex), 25.84, 25.89 and 25.97 ((CH₃)₃C), 33.27 and 33.30 (CH₂-2,6-cyclohex), 48.65 (CH-1-cyclohex), 63.77 (CH2-5'), 74.11 (CH-3'), 79.43 (CH-2'), 82.14 (CH-1'), 86.53 (CH-4'), 124.57 (CH-2), 126.88 (CH-4), 128.49 (CH-5), 129.44 (CH-6), 134.75 (C-3), 140.96 (C-1), 166.51 (CO). IR spectrum (CCl₄): 3389, 3347, 3347, 2930, 2858, 1669, 1608, 1589, 1507, 1480, 1472, 1463, 1451, 1435, 1406, 1389, 1373, 1361, 1351, 1320, 1308, 1257, 1218, 1152, 1113, 1092, 1082, 940, 838, 672 cm⁻¹.

3.2.8. 1*β*-[3-(Benzylcarbamoyl)phenyl]-1-deoxy-2,3,5-tri-0-

(tert-butyldimethyl-silyl)-D-ribofuranose (2h)

According to the general procedure, a mixture of 3-bromophenyl-C-ribonucleoside 1 (0.783 mmol, 495 mg), Pd(OAc)₂ (5 mol %, 0.039 mmol, 8.8 mg), Xantphos (10 mol%, 0.078 mmol, 45.3 mg), benzylamine (2.35 mmol, 3 equiv, 0.25 mL), K₃PO₄ (3.13 mmol, 4 equiv. 665 mg) and toluene (2.1 mL) was heated at 80 °C for 4 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/EA 100:2 to 100:10 to provide the title compound as a white foam (377 mg, 79%). HRMS (FAB) for C₃₇H₆₄NO₅Si₃: [M+H] calculated, 686.4092; found, 686.4087. ¹H NMR (499.8 MHz, CDCl₃): -0.52, -0.14, 0.09 and 0.10 (4×s, 18H, CH₃Si), 0.77, 0.91 and 0.94 (3×s, 3×9H, (CH₃)₃C), 3.78 (d, 2H, $J_{5',4'}=3.5$, H-5'), 3.81 (dd, 1H, $J_{2',1'}=8.3$, $J_{2',3'}=4.4$, H-2'), 4.04 (td, 1H, $J_{4',5'}=3.5$, $J_{4',3'}=1.4$, H-4'), 4.11 (dd, 1H, $J_{3',2'}=4.4$, $J_{3',4'}=1.4$, H-3'), 4.61 (dd, 1H, J_{gem}=14.7, J_{vic}=5.5, CH_aH_bPh), 4.68 (dd, 1H, J_{gem}=14.7, J_{vic}=5.8, CH_aH_bPh), 6.36 (br dd, 1H, J_{vic}=5.8, 5.5, NH), 4.80 (d, 1H, J_{1',2'}=8.3, H-1'), 7.28–7.32 (m, 1H, H-p-Ph), 7.33–7.37 (m, 4H, H-o,m-Ph), 7.40 (t, 1H, *J*_{5,4}=*J*_{5,6}=7.7, H-5), 7.62 (dddd, 1H, *J*_{6,5}=7.7, *J*_{6,2}=1.8, *J*_{6,4}=1.2, *J*_{6,1'}=0.4, H-6), 7.71 (t, 1H, *J*_{2,4}=*J*_{2,6}=1.8, H-2), 7.78 (ddd, 1H, J_{4,5}=7.7, J_{4,2}=1.8, J_{4,6}=1.2, H-4). ¹³C NMR (125.7 MHz, CDCl₃): -5.56, -5.53, -5.43, -5.34, -4.50 and -4.35 (CH₃Si), 17.89, 18.05 and 18.30 (C(CH₃)₃), 25.78, 25.88 and 25.94 ((CH₃)₃C), 44.12 (CH₂Ph), 63.76 (CH2-5'), 74.12 (CH-3'), 79.48 (CH-2'), 82.07 (CH-1'), 86.55 (CH-4'), 124.74 (CH-2), 126.92 (CH-4), 127.60 (CH-p-Ph), 127.97 (CH-o-Ph), 128.51 (CH-5), 128.75 (CH-m-Ph), 129.99 (CH-6), 134.09 (C-3), 138.15 (C-i-Ph), 141.15 (C-1), 167.23 (CO). IR spectrum (CCl₄): 3459, 3357, 1673, 1607, 1588, 1538, 1511, 1500, 1481, 1472, 1463, 1456, 1436, 1406, 1389, 1361, 1307, 1288, 1253, 1218, 1153, 1112, 1097, 1080, 1030, 940, 923, 837, 698, 671 cm⁻¹.

3.2.9. 1β-[3-(Methylcarbamoyl)phenyl]-1-deoxy-2,3,5-tri-O-(tert-butyldimethyl-silyl)-D-ribofuranose (**2i**)

According to the general procedure a mixture of 3-bromophenyl-C-ribonucleoside **1** (0.549 mmol, 347 mg), Pd(OAc)₂ (5 mol %, 0.027 mmol, 6.2 mg), Xantphos (10 mol %, 0.055 mmol, 31.8 mg), MeNH₂·HCl (1.65 mmol, 3 equiv, 112 mg), K₃PO₄ (2.20 mmol, 4 equiv, 466 mg) and toluene (1.4 mL) was heated at 80 °C for 2 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/AcOH 25:1 to 13:1 to provide the title compound as a white foam (295 mg, 88%). HRMS (ESI) for C₃₁H₆₀NO₅Si₃: [M+H] calculated, 610.3774; found, 610.3764. ¹H NMR (499.8 MHz, CDCl₃): -0.52, -0.14, 0.098, 0.102, 0.12 and 0.13 (6×s, 6×3H, CH₃Si), 0.79, 0.93 and 0.94 (3×s, 3×9H, (CH₃)₃C), 3.00 (d, 3H, J=4.9, CH₃N), 3.79 (dd, 1H, *J*_{gem}=10.9, *J*_{5'b,4'}=3.2, H-5'b), 3.81 (dd, 1H, *J*_{gem}=10.9, *J*_{5'a,4'}=3.7, H-5'a), 3.82 (dd, 1H, J_{2',1'}=8.3, J_{2',3'}=4.4, H-2'), 4.05 (ddd, 1H, $J_{4',5'}=3.7, 3.2, J_{4',3'}=1.4, H-4'$), 4.12 (dd, 1H, $J_{3',2'}=4.4, J_{3',4'}=1.4, H-4'$) 3'), 6.11 (br q, 1H, J=4.9, NH), 4.81 (d, 1H, J_{1',2'}=8.3, H-1'), 7.39 (t, 1H, *J*_{5,4}=*J*_{5,6}=7.7, H-5), 7.58 (dddd, 1H, *J*_{6,5}=7.7, *J*_{6,2}=1.8, *J*_{6,4}=1.2, $J_{6,1'}=0.5, H-6$), 7.70 (t, 1H, $J_{2,4}=J_{2,6}=1.8, H-2$), 7.74 (ddd, 1H, $J_{4,5}=7.7, J_{4,2}=1.8, J_{4,6}=1.2, H-4$). ¹³C NMR (125.7 MHz, CDCl₃): -5.52, -5.45, -4.50, -4.49 and -4.34 (CH₃Si), 17.91, 18.06 and 18.33 (C(CH₃)₃), 25.79, 25.88 and 25.94 ((CH₃)₃C), 26.75 (CH₃N), 63.82 (CH2-5'), 74.17 (CH-3'), 79.54 (CH-2'), 82.14 (CH-1'), 86.55 (CH-4'), 124.53 (CH-2), 126.85 (CH-4), 128.45 (CH-5), 129.89 (CH-6), 134.43 (C-3), 141.05 (C-1), 168.15 (CO). IR spectrum (CCl₄): 3476, 3363, 2955, 2897, 1677, 1608, 1588, 1519, 1485, 1472, 1463, 1436, 1419, 1389, 1362, 1308, 1288, 1256, 1219, 1154, 1113, 1095, 1080, 998, 940, 924, 813, 727, 691, 671 cm⁻¹.

3.2.10. 1β -{4-[(Pyrrolidine-1-yl)carbonyl]phenyl}-1-deoxy-2,3,5-tri-O-(tert-butyldimethylsilyl)-p-ribofuranose (**5a**)

According to the general procedure, a mixture of 4-bromophenyl-C-ribonucleoside **4** (0.223 mmol, 141 mg), $Pd(OAc)_2$ (5 mol%, 0.011 mmol, 2.5 mg), Xantphos (10 mol%, 0.022 mmol,

13 mg), pyrrolidine (0.669 mmol, 3 equiv, 0.06 mL), K₃PO₄ (0.893 mmol, 4 equiv, 189 mg) and toluene (0.5 mL) was heated at 80 °C for 3 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/EA 100:2 to 100:16 to provide the title compound as a colourless light oil (128 mg, 88%). HRMS (FAB) for C₃₄H₆₄NO₅Si₃: [M+H] calculated, 650.4092; found, 650.4108. ¹H NMR (600.1 MHz, CDCl₂); -0.43. -0.12, 0.09, 0.12 and 0.13 (5×s, 18H, CH₃Si), 0.80, 0.935 and 0.941 (3×s, 3×9H, (CH₃)₃C), 1.84–1.86 and 1.92–1.98 (2×m, 2×2H, CH₂pyr), 3.37 and 3.40 (2×dt, 2H, Jgem=10.8, Jvic=6.8, CH₂N-pyr), 3.64 (t, 2H, Jvic=7.0, CH₂N-pyr), 3.78 (dd, 1H, Jgem=11.0, J_{5'b,4'}=2.9, H-5'b), 3.82 (dd, 1H, J_{gem}=11.0, J_{5'a,4'}=3.9, H-5'a), 3.85 (dd, 1H, J_{2',1'}=7.6, $J_{2',3'}=4.4$, H-2'), 4.04 (ddd, 1H, $J_{4',5'}=3.9$, 2.9, $J_{4',3'}=2.0$, H-4'), 4.13 $(dd, 1H, J_{3',2'}=4.4, J_{3',4'}=2.0, H-3'), 4.80 (d, 1H, J_{1',2'}=7.6, H-1'), 7.47 (s, 10.1)$ 4H, H-2,3,5,6). ¹³C NMR (150.9 MHz, CDCl₃): -5.52, -5.43, -5.33, -4.50, -4.46 and -4.43 (CH₃Si), 17.94, 18.06 and 18.35 (C(CH₃)₃), 24.47 (CH₂-pyr), 25.84, 25.87 and 25.98 ((CH₃)₃C), 26.42 (CH₂-pyr), 46.18 and 49.56 (CH₂N-pyr), 63.58 (CH₂-5'), 73.78 (CH-3'), 79.64 (CH-2'), 82.64 (CH-1'), 85.98 (CH-4'), 126.63 (CH-2,6), 126.94 (CH-3,5), 136.49 (C-4), 142.68 (C-1), 169.73 (CO). IR spectrum (CCl₄): 2955, 2930, 2896, 2885, 2858, 1634, 1614, 1574, 1513, 1485, 1472, 1463, 1463, 1420, 1405, 1392, 1362, 1343, 1257, 1227, 1213, 1186, 1153, 1112, 1112, 1095, 1081, 1020, 939, 838, 681, 672, 637 cm⁻¹.

3.2.11. 1β -{4-[(Piperidine-1-yl)carbonyl]phenyl}-1-deoxy-2,3,5-tri-O-(tert-butyldimethyl-silyl)-p-ribofuranose (**5b**)

According to the general procedure, a mixture of 4-bromophenyl-C-ribonucleoside **4** (0.701 mmol, 443 mg), Pd(OAc)₂ (5 mol %, 0.035 mmol, 7.9 mg), Xantphos (10 mol %, 0.070 mmol, 40.6 mg), piperidine (2.10 mmol, 3 equiv, 0.21 mL), K₃PO₄ (2.80 mmol, 4 equiv, 595 mg) and toluene (1.8 mL) was heated at 80 °C for 3 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/EA 100:2 to 100:8 to provide the title compound as a colourless light oil (431 mg, 92%). HRMS (FAB) for C₃₅H₆₆NO₅Si₃: [M+H] calculated, 664.4267; found, 664.4249. ¹H NMR (499.8 MHz, CDCl₃): -0.42, -0.11, 0.09, 0.11 and 0.13 (5×s, 18H, CH₃Si), 0.80, 0.936 and 0.939 (3×s, 3×9H, (CH₃)₃C), 1.44-1.52 and 1.64-1.70 (2×br m, 6H, CH₂pip), 3.25-3.35 and 3.64-3.76 (2×br m, 2×2H, CH₂N-pip), 3.78 (dd, 1H, *J*_{gem}=10.9, *J*_{5'b,4'}=2.9, H-5'b), 3.82 (dd, 1H, *J*_{gem}=10.9, *J*_{5'a,4'}=3.9, H-5'a), 3.85 (dd, 1H, $J_{2',1'}$ =7.6, $J_{2',3'}$ =4.4, H-2'), 4.04 (ddd, 1H, *J*_{4',5'}=3.9, 2.9, *J*_{4',3'}=2.1, H-4'), 4.13 (dd, 1H, *J*_{3',2'}=4.4, *J*_{3',4'}=2.1, H-3'), 4.80 (d, 1H, J_{1',2'}=7.6, H-1'), 7.32-7.35 (m, 2H, H-3,5), 7.45-7.49 (m, 2H, H-2,6). ¹³C NMR (125.7 MHz, CDCl₃): -5.53, -5.45, -5.38, -4.49, -4.46 and -4.43 (CH₃Si), 17.94, 18.06 and 18.34 (C(CH₃)₃), 24.61 and 25.62 (CH₂-pip), 25.82, 25.87 and 25.97 ((CH₃)₃C), 26.48 (CH₂-pip), 43.13 and 48.75 (CH₂N-pip), 63.56 (CH₂-5'), 73.75 (CH-3'), 79.67 (CH-2'), 82.66 (CH-1'), 85.95 (CH-4'), 126.61 (CH-3,5), 126.80 (CH-2,6), 135.76 (C-4), 142.23 (C-1), 170.34 (CO). IR spectrum (CCl₄): 2951, 2930, 2897, 2887, 2858, 1638, 1615, 1574, 1512, 1472, 1463, 1454, 1443, 1429, 1410, 1389, 1370, 1362, 1352, 1310, 1288, 1273, 1258, 1219, 1187, 1153, 1110, 1095, 1080, 1029, 1021, 1003, 939, 885, 852, 838, 696, 671, 635 cm⁻¹.

3.2.12. 1β -{4-[(Morpholine-4-yl)carbonyl]phenyl}-1-deoxy-2,3,5-tri-O-(tert-butyldimethyl-silyl)-D-ribofuranose (**5c**)

According to the general procedure, a mixture of 4-bromophenyl-*C*-ribonucleoside **4** (0.752 mmol, 475 mg), $Pd(OAc)_2$ (5 mol %, 0.038 mmol, 8.4 mg), Xantphos (10 mol %, 0.075 mmol, 43.5 mg), morpholine (2.26 mmol, 3 equiv, 0.19 mL), K₃PO₄ (3.00 mmol, 4 equiv, 638 mg) and toluene (1.9 mL) was heated at 80 °C for 2 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/EA 100:2 to 100:16 to provide the title compound as a colourless light oil (448 mg, 89%). HRMS (FAB) for C₃₄H₆₄NO₆Si₃: [M+H] calculated, 666.4042; found, 666.4023. ¹H NMR (499.8 MHz, CDCl₃): -0.44,

-0.11, 0.09, 0.12 and 0.13 (5×s, 18H, CH₃Si), 0.80, 0.937 and 0.940 (3×s, 3×9H, (CH₃)₃C), 3.33-3.49, 3.52-3.68 and 3.68-3.82 (3×br m, 8H, H-morph), 3.78 (dd, 1H, J_{gem} =11.0, $J_{5'b,4'}$ =2.9, H-5'b), 3.82 (dd, 1H, J_{gem} =11.0, $J_{5'a,4'}$ =3.8, H-5'a), 3.85 (dd, 1H, $J_{2',1'}$ =7.7, $J_{2',3'}$ =4.4, H-2'), 4.05 (ddd, 1H, $J_{4',5'}$ =3.8, 2.9, $J_{4',3'}$ =1.9, H-4'), 4.13 (dd, 1H, $J_{3',2'}$ =4.4, $J_{3',4'}$ =1.9, H-3'), 4.80 (d, 1H, $J_{1',2'}$ =7.7, H-1'), 7.34-7.38 (m, 2H, H-3,5), 7.48-7.52 (m, 2H, H-2,6). ¹³C NMR (125.7 MHz, CDCl₃): -5.53, -5.45, -5.38, -4.50, -4.47 and -4.43 (CH₃Si), 17.93, 18.05 and 18.34 (C(CH₃)₃), 25.81, 25.86 and 25.97 ((CH₃)₃C), 42.64 and 48.26 (CH₂N-morph), 63.56 (CH₂-5'), 66.85 (CH₂O-morph), 73.79 (CH-3'), 79.68 (CH-2'), 82.54 (CH-1'), 86.07 (CH-4'), 126.93 (CH-3,5), 126.97 (CH-2,6), 134.50 (C-4), 142.94 (C-1), 170.46 (CO). IR spectrum (CCl₄): 3930, 2957, 2897, 2858, 1645, 1615, 1574, 1509, 1482, 1462, 1456, 1423, 1408, 1389, 1362, 1300, 1280, 1258, 1219, 1187, 1154, 1118, 1110, 1095, 1080, 1026, 1018, 1011, 939, 894, 839, 698, 671 cm⁻¹.

3.2.13. 1β -[4-(Dibutylcarbamoyl)phenyl]-1-deoxy-2,3,5-tri-O-(tert-butyldimethyl-silyl)-D-ribofuranose (**5d**)

According to the general procedure a mixture of 4-bromophenyl-C-ribonucleoside 4 (0.627 mmol, 396 mg), Pd(OAc)₂ (5 mol %, 0.031 mmol, 7.0 mg), Xantphos (10 mol %, 0.063 mmol, 36.3 mg), dibutylamine (1.88 mmol, 3 equiv, 0.32 mL), K₃PO₄ (2.51 mmol, 4 equiv, 532 mg) and toluene (1.6 mL) was heated at 80 °C for 3 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/EA 100:2 to 100:6 to provide the title compound as a colourless light oil (422 mg, 95%). HRMS (FAB) for C₃₈H₇₄NO₅Si₃: [M+H] calculated, 708.4875: found, 708.4865. ¹H NMR (499.8 MHz, CDCl₃): -0.44. -0.11, 0.090, 0.092, 0.12 and 0.13 (6×s, 6×3H, CH₃Si), 0.77-0.82 (br m, 3H, CH₃CH₂CH₂CH₂N), 0.81, 0.935 and 0.940 (3×s, 3×9H, (CH₃)₃C), 0.95-0.99 (br m, 3H, CH₃CH₂CH₂CH₂N), 1.07-1.15, 1.37-1.43, 1.43–1.50 and 1.60–1.68 (4×br m, 4×2H, CH₃CH₂CH₂CH₂N), 3.16 and 3.47 (2×br m, 2×2H, CH₃CH₂CH₂CH₂N), 3.78 (dd, 1H, Jgem=11.0, J_{5'b,4'}=2.8, H-5'b), 3.82 (dd, 1H, Jgem=11.0, J_{5'a.4'}=3.8, H-5'a), 3.85 (dd, 1H, *J*_{2',1'}=7.6, *J*_{2',3'}=4.4, H-2'), 4.04 (ddd, 1H, *J*_{4',5'}=3.8, 2.8, J_{4',3'}=1.9, H-4'), 4.13 (dd, 1H, J_{3',2'}=4.4, J_{3',4'}=1.9, H-3'), 4.80 (d, 1H, J_{1',2'}=7.6, H-1'), 7.37-7.32 (m, 2H, H-3,5), 7.44-7.48 (m, 2H, H-2,6). ¹³C NMR (125.7 MHz, CDCl₃): -5.54, -5.45, -5.31, -4.48, -4.47 and -4.44 (CH₃Si), 13.75 and 13.94 (CH₃CH₂CH₂CH₂N), 17.91, 18.06 and 18.33 (C(CH₃)₃), 19.79 and 20.33 (CH₃CH₂CH₂CH₂N), 25.83, 25.87 and 25.97 ((CH₃)₃C), 29.65 and 30.91 (CH₃CH₂CH₂CH₂N), 44.51 and 48.82 (CH₃CH₂CH₂CH₂N), 63.58 (CH2-5'), 73.81 (CH-3'), 79.59 (CH-2'), 82.63 (CH-1'), 85.98 (CH-4'), 126.21 (CH-3,5), 126.75 (CH-2,6), 136.68 (C-4), 141.80 (C-1), 171.62 (CO). IR spectrum (CCl₄): 2958, 2897, 1637, 1615, 1573, 1512, 1471, 1463, 1423, 1408, 1389, 1379, 1362, 1307, 1257, 1221, 1188, 1152, 1110, 1097, 1080, 1021, 939, 838, 700, 682, 672, 635 cm⁻¹.

3.2.14. 1β-[4-(Dimethylcarbamoyl)phenyl]-1-deoxy-2,3,5-tri-O-(tert-butyldimethyl-silyl)-D-ribofuranose (**5e**)

According to the general procedure a mixture of 4-bromophenyl-*C*-ribonucleoside **4** (0.287 mmol, 181 mg), Pd(OAc)₂ (5 mol %, 0.014 mmol, 3.2 mg), Xantphos (10 mol %, 0.029 mmol, 16.6 mg), Me₂NH·HCl (0.573 mmol, 2 equiv, 46.8 mg), K₃PO₄ (1.15 mmol, 4 equiv, 243 mg) and toluene (0.8 mL) was heated at 80 °C for 4 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/EA 100:2 to 100:16 to provide the title compound as a colourless light oil (155 mg, 87%). HRMS (FAB) for C₃₂H₆₂NO₅Si₃: [M+H] calculated, 624.3936; found, 624.3945. ¹H NMR (499.8 MHz, CDCl₃): -0.42, -0.11, 0.07, 0.09, 0.12 and 0.13 (6×s, 6×3H, CH₃Si), 0.80, 0.936 and 0.940 (3×s, 3×9H, (CH₃)₃C), 2.90–3.05 and 3.05–3.15 (2×br s, 2×3H, CH₃N), 3.78 (dd, 1H, J_{gem} =11.0, $J_{5'b,4'}$ =2.9, H-5′b), 3.82 (dd, 1H, J_{gem} =11.0, $J_{5'a,4'}$ =3.8, H-5′a), 3.86 (dd, 1H, $J_{2',1'}$ =7.6, $J_{2',3'}$ =4.4, H-2′), 4.04 (ddd, 1H, $J_{4',5'}$ =3.8, 2.9, $J_{4',3'}$ =2.0, H-4′), 4.13 (dd, 1H, $J_{3',2'}$ =4.4,

 $J_{3',4'}=2.0, H-3'$), 4.80 (d, 1H, $J_{1',2'}=7.6, H-1'$), 7.35–7.39 (m, 2H, H-3,5), 7.46–7.49 (m, 2H, H-2,6). ¹³C NMR (125.7 MHz, CDCl₃): –5.52, -5.44, –5.34, –4.49, –4.46 and –4.43 (CH₃Si), 17.94, 18.06 and 18.35 (C(CH₃)₃), 25.83, 25.88 and 25.98 ((CH₃)₃C), 35.37 and 39.53 (CH₃N), 63.59 (CH₂-5'), 73.80 (CH-3'), 79.67 (CH-2'), 82.63 (CH-1'), 86.00 (CH-4'), 126.75 (CH-2,6), 126.92 (CH-3,5), 135.57 (C-4), 142.44 (C-1), 171.65 (CO). IR spectrum (CCl₄): 2956, 2897, 1644, 1616, 1574, 1513, 1489, 1472, 1463, 1406, 1390, 1390, 1362, 1308, 1258, 1217, 1187, 1153, 1111, 1095, 1077, 1020, 939, 838, 701, 671, 634 cm⁻¹.

3.2.15. 1β -[4-(Cyclopropylcarbamoyl)phenyl]-1-deoxy-2,3,5-tri-O-(tert-butyldimethyl-silyl)-D-ribofuranose (**5f**)

According to the general procedure, a mixture of 4-bromophenyl-C-ribonucleoside **4** (0.548 mmol, 346 mg), Pd(OAc)₂ (5 mol %, 0.027 mmol, 6.1 mg), Xantphos (10 mol %, 0.055 mmol, 31.7 mg), cyclopropylamine (1.64 mmol, 3 equiv, 0.11 mL), K₃PO₄ (2.19 mmol, 4 equiv, 465 mg) and toluene (1.5 mL) was heated at 80 °C for 3 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/EA 100:2 to 100:12 to provide the title compound as a white foam (283 mg, 81%). HRMS (FAB) for C₃₃H₆₂NO₅Si₃: [M+H] calculated, 636.3936; found, 636.3951. ¹H NMR (500.0 MHz, CDCl₃): -0.49, -0.13, 0.089, 0.092, 0.12 and 0.13 (6×s, 6×3H, CH₃Si), 0.62–0.66 (m, 2H, CH₂-cycloprop), 0.80 (s, 9H, (CH₃)₃C), 0.85–0.87 (m, 2H, CH₂-cycloprop), 0.93 and 0.94 (2×s, 2×9H, (CH₃)₃C), 2.90 (ttd, 1H, *J*=7.0, 3.9, 2.9, CH-cycloprop), 3.78 (dd, 1H, Jgem=11.0, J5'b,4'=2.8, H-5'b), 3.82 (dd, 1H, Jgem=11.0, $J_{5'a,4'}=3.7$, H-5'a), 3.85 (dd, 1H, $J_{2',1'}=7.9$, $J_{2',3'}=4.4$, H-2'), 4.04 (ddd, 1H, *J*_{4',5'}=3.7, 2.8, *J*_{4',3'}=1.7, H-4'), 4.12 (dd, 1H, *J*_{3',2'}=4.4, *J*_{3',4'}=1.7, H-3'), 4.80 (d, 1H, J_{1',2'}=7.9, H-1'), 6.24 (br d, 1H, J=2.9, NH), 7.47-7.51 (m, 2H, H-2,6), 7.67–7.71 (m, 2H, H-3,5). ¹³C NMR (125.7 MHz, CDCl₃): -5.54, -5.41, -5.38, -4.50, -4.48 and -4.41 (CH₃Si), 6.76 (CH₂-cycloprop), 17.89, 18.05 and 18.35 (C(CH₃)₃), 23.09 (CH-1cycloprop), 25.82, 25.86 and 25.98 ((CH₃)₃C), 63.63 (CH₂-5'), 73.97 (CH-3'), 79.55 (CH-2'), 82.33 (CH-1'), 86.27 (CH-4'), 126.54 (CH-3,5), 126.96 (CH-2,6), 133.43 (C-4), 144.64 (C-1), 168.63 (CO). IR spectrum (CCl₄): 3457, 3346, 3094, 3011, 2956, 2897, 1678, 1662, 1615, 1575, 1533, 1520, 1487, 1472, 1463, 1424, 1407, 1389, 1362, 1308, 1288, 1258, 1214, 1186, 1153, 1112, 1095, 1081, 1019, 939, 838, 684, 671, 638 cm⁻¹.

3.2.16. 1β -[4-(Cyclohexylcarbamoyl)phenyl]-1-deoxy-2,3,5-tri-O-(tert-butyldimethyl-silyl)-p-ribofuranose (**5**g)

According to the general procedure, a mixture of 4-bromophenyl-C-ribonucleoside 4 (0.653 mmol, 413 mg), Pd(OAc)₂ (5 mol %, 0.033 mmol, 7.3 mg), Xantphos (10 mol %, 0.065 mmol, 37.8 mg), cyclohexylamine (1.96 mmol, 3 equiv, 0.22 mL), K₃PO₄ (2.61 mmol, 4 equiv, 555 mg) and toluene (1.6 mL) was heated at 80 °C for 2 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/EA 100:2 to 100:8 to provide the title compound as a white foam (385 mg, 87%). HRMS (FAB) for $C_{36}H_{68}NO_5Si_3$: [M+H] calculated, 678.4405; found, 678.4419. ¹H NMR (600.1 MHz, CDCl₃): -0.46, -0.13, 0.090, 0.092, 0.12 and 0.13 (6×s, 6×3H, CH₃Si), 0.81, 0.936 and 0.943 (3×s, 3×9H, (CH₃)₃C), 1.18-1.22, 1.23-1.27, 1.39-1.48, 1.63-1.69, 1.73-1.79 and 2.02–2.08 (6×m, 10H, H-2,3,4,5,6-cyclohex), 3.78 (dd, 1H, Jgem=11.0, J_{5'b,4'}=2.9, H-5'b), 3.82 (dd, 1H, J_{gem}=11.0, J_{5'a,4'}=3.8, H-5'a), 3.85 (dd, 1H, J_{2',1'}=7.7, J_{2',3'}=4.4, H-2'), 3.98 (tdt, 1H, J=10.7, 8.1, 4.0, H-1cyclohex), 4.04 (td, 1H, J_{4',5'}=3.8, 2.9, J_{4',3'}=1.8, H-4'), 4.13 (dd, 1H, $J_{3',2'}=4.4, J_{3',4'}=1.8, H-3'$, 4.81 (d, 1H, $J_{1',2'}=7.7, H-1'$), 5.94 (d, 1H, J=8.1, NH), 7.47–7.51 (m, 2H, H-2,6), 7.68–7.71 (m, 2H, H-3,5). ¹³C NMR (150.9 MHz, CDCl₃): -5.52, -5.39, -5.31, -4.49, -4.46 and -4.41 (CH₃Si), 17.90, 18.06 and 18.36 (C(CH₃)₃), 24.93 and 25.59 (CH2-3,4,5-cyclohex), 25.83, 25.87 and 25.99 ((CH3)3C), 33.27 (CH2-2,6-cyclohex), 48.65 (CH-1-cyclohex), 63.61 (CH₂-5'), 73.88 (CH-3'), 79.54 (CH-2'), 82.45 (CH-1'), 86.12 (CH-4'), 126.52 (CH-3,5), 126.91 (CH-2,6), 134.15 (C-4), 144.36 (C-1), 166.36 (CO). IR spectrum (CCl₄): 3451, 3347, 2953, 2930, 2898, 2858, 1667, 1614, 1574, 1538, 1520, 1493, 1472, 1463, 1451, 1407, 1389, 1362, 1351, 1320, 1304, 1283, 1257, 1216, 1187, 1152, 1112, 1095, 1081, 1018, 939, 838, 699, 670, 638 $\rm cm^{-1}.$

3.2.17. 1β-[4-(Benzylcarbamoyl)phenyl]-1-deoxy-2,3,5-tri-O-(tert-butyldimethyl-silyl)-p-ribofuranose (**5h**)

According to the general procedure, a mixture of 4-bromophenvl-C-ribonucleoside **4** (0.641 mmol, 405 mg), Pd(OAc)₂ (5 mol%, 0.032 mmol, 7.2 mg), Xantphos (10 mol%, 0.064 mmol, 37.1 mg), benzylamine (1.92 mmol, 3 equiv, 0.21 mL), K₃PO₄ (2.56 mmol, 4 equiv, 544 mg) and toluene (1.6 mL) was heated at 80 °C for 3 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/EA 100:2 to 100:10 to provide the title compound as a white foam (378 mg, 86%). HRMS (FAB) for C₃₇H₆₄NO₅Si₃: [M+H] calculated, 686.4092; found, 686.4097. ¹H NMR (600.1 MHz, CDCl₃): -0.48, -0.13, 0.09, 0.10, 0.12 and 0.13 (6×s, 6×3H, CH₃Si), 0.81 and 0.94 (2×s, 27H, (CH₃)₃C), 3.78 (dd, 1H, J_{gem}=11.0, J_{5'b,4'}=2.8, H-5'b), 3.81 (dd, 1H, $J_{gem}=11.0, J_{5'a,4'}=3.7, H-5'a), 3.86 (dd, 1H, J_{2',1'}=7.8, J_{2',3'}=4.4, H-2'),$ 4.04 (ddd, 1H, *J*_{4',5'}=3.7, 2.8, *J*_{4',3'}=1.7, H-4'), 4.13 (dd, 1H, *J*_{3',2'}=4.4, J_{3',4'}=1.7, H-3'), 4.62 and 4.64 (2×dd, 2H, J_{gem}=14.6, J_{vic}=5.6, CH₂Ph), 4.81 (d, 1H, J_{1',2'}=7.8, H-1'), 6.50 (br t, 1H, J_{vic}=5.6, NH), 7.28-7.32 (m, 1H, H-p-Ph), 7.34-7.38 (m, 4H, H-o,m-Ph), 7.48-7.52 (m, 2H, H-2,6), 7.73-7.77 (m, 2H, H-3,5). ¹³C NMR (150.9 MHz, CDCl₃): -5.56, -5.42, -5.38, -4.52, -4.50 and -4.43 (CH₃Si), 17.86, 18.02 and 18.32 (C(CH₃)₃), 25.80, 25.84 and 25.96 ((CH₃)₃C), 44.09 (CH₂Ph), 63.60 (CH₂-5'), 73.92 (CH-3'), 79.54 (CH-2'), 82.34 (CH-1'), 86.20 (CH-4'), 126.67 (CH-3,5), 126.98 (CH-2,6), 127.55 (CH-p-Ph), 127.97 (CH-o-Ph), 128.73 (CH-m-Ph), 133.40 (C-4), 138.19 (C-i-Ph), 144.70 (C-1), 167.11 (CO). IR spectrum (CCl₄): 3460, 3356, 3089, 3067, 3033. 2956, 2897, 2887, 1672, 1657, 1614, 1575, 1523, 1514, 1472, 1455, 1407, 1389, 1362, 1305, 1295, 1289, 1263, 1257, 1217, 1152, 1113, 1095, 1080, 1031, 1019, 939, 838, 698, 672, 638 cm⁻¹.

3.2.18. 1β -[4-(Methylcarbamoyl)phenyl]-1-deoxy-2,3,5-tri-O-(tert-butyldimethyl-silyl)-*D*-ribofuranose (**5i**)

According to the general procedure, a mixture of 4-bromophenyl-C-ribonucleoside **4** (0.211 mmol, 133 mg), Pd(OAc)₂ (5 mol%, 0.011 mmol, 2.4 mg), Xantphos (10 mol%, 0.021 mmol, 12.2 mg), MeNH₂·HCl (0.634 mmol, 3 equiv, 42.8 mg), K₃PO₄ (0.845 mmol, 4 equiv, 180 mg) and toluene (0.52 mL) was heated at 80 °C for 3.5 h. The crude product mixture was purified by flash column chromatography on silica gel in gradient hexane/AcOH 83:1 to 13:1 to provide the title compound as a white foam (208 mg, 81%). HRMS (ESI) for $C_{31}H_{60}NO_5\text{: }[M\text{+}H]$ calculated, 610.3774; found, 610.3771. ¹H NMR (499.8 MHz, CDCl₃): -0.49, -0.13, 0.091, 0.094, 0.12 and 0.13 (6×s, 6×3H, CH₃Si), 0.80, 0.936 and 0.942 (3×s, 3×9H, (CH₃)₃C), 3.02 (d, 3H, J=4.9, CH₃N), 3.78 (dd, 1H, *J*_{gem}=10.9, *J*_{5'b,4'}=2.9, H-5'b), 3.82 (dd, 1H, *J*_{gem}=10.9, *J*_{5'a,4'}=3.8, H-5'a), 3.85 (dd, 1H, $J_{2',1'}=7.8$, $J_{2',3'}=4.4$, H-2'), 4.04 (ddd, 1H, *J*_{4',5'}=3.8, 2.9, *J*_{4',3'}=1.7, H-4'), 4.13 (dd, 1H, *J*_{3',2'}=4.4, *J*_{3',4'}=1.7, H-3'), 4.81 (d, 1H, *J*_{1',2'}=7.8, H-1'), 6.14 (br q, 1H, *J*=4.9, NH), 7.48–7.52 (m, 2H, H-2,6), 7.69–7.73 (m, 2H, H-3,5). ¹³C NMR (125.7 MHz, CDCl₃): -5.52, -5.41, -5.40, -4.49, -4.46 and -4.40 (CH₃Si), 17.91, 18.06 and 18.36 (C(CH₃)₃), 25.83, 25.88 and 25.99 ((CH₃)₃C), 26.80 (CH₃N), 63.66 (CH₂-5'), 74.00 (CH-3'), 79.62 (CH-2'), 82.36 (CH-1'), 86.27 (CH-4'), 126.54 (CH-3,5), 127.02 (CH-2,6), 135.75 (C-4), 144.50 (C-1), 168.01 (CO). IR spectrum (CCl₄): 3477, 3357, 2956, 2897, 1675, 1662, 1615, 1574, 1547, 1530, 1500, 1472, 1463, 1414, 1407, 1389, 1362, 1303, 1290, 1274, 1257, 1216, 1187, 1152, 1113, 1095, 1080, 1066, 939, 838, 699, 671, 638 cm⁻¹.

3.3. General procedure for the preparation of unsubstituted benzamide nucleosides 2j and 5j using AcONH₄—method A

A flame-dried septum-sealed flask containing 3- or 4-bromophenyl-C-ribonucleoside 1 or 4 (1 mmol), Pd(OAc)₂ (10 mol%, 0.1 mmol), Xantphos (20 mol %, 0.2 mmol), AcONH₄ (3 mmol) (AcONH₄ was not dried prior to use) and K₃PO₄ (4 mmol) was evacuated and backfilled with $CO_{(g)}$. Then, toluene (2.5 mL) was added via syringe. The reaction mixture was stirred at room temperature for 5 min and then immersed into a preheated oil bath (80 °C) and vigorously stirred until the starting material had been completely consumed (TLC analysis, Hexanes/EA/AcOH 7:2:1). The reaction mixture was then allowed to cool to room temperature, diluted with Et₂O, filtered through a plug of Celite (eluting with Et₂O) and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel.

3.4. General procedure for the preparation of unsubstituted benzamide nucleosides 2j and 5j using NH₄Cl—method B

A flame-dried septum-sealed flask containing 3- or 4-bromophenyl-C-ribonucleoside **1** or **4** (1 mmol), $Pd(OAc)_2$ (5 mol%, 0.05 mmol), Xantphos (10 mol%, 0.1 mmol), NH₄Cl (3 mmol) (NH₄Cl was not dried prior to use) and K₃PO₄ (4 mmol) was evacuated and backfilled with $CO_{(g)}$. Then, toluene/DMSO 1:1 (3 mL) was added via syringe. The reaction mixture was stirred at room temperature for 5 min and then immersed into a preheated oil bath (80 °C) and vigorously stirred until the starting material had been completely consumed (TLC analysis, Hexanes/EA/AcOH 7:2:1). The reaction mixture was then allowed to cool to room temperature, diluted with Et₂O, filtered through a plug of Celite (eluting with Et₂O) and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel.

3.5. General procedure for the preparation of unsubstituted benzamide nucleosides 2j and 5j using $NH_{3(g)}$ —method C

A flame-dried septum-sealed flask containing 3- or 4-bromophenyl-*C*-ribonucleoside **1** or **4** (1 mmol), $Pd(OAc)_2$ (10 mol%, 0.1 mmol), Xantphos (20 mol%, 0.2 mmol) was evacuated and backfilled with $CO_{(g)}/NH_{3(g)}$ mixture (approx. ratio 1:1). Then, toluene (2.5 mL) was added via syringe. The reaction mixture was stirred at room temperature for 5 min and then immersed into a preheated oil bath (80 °C) and vigorously stirred until the starting material had been completely consumed (TLC analysis, Hexanes/EA/AcOH 7:2:1). The reaction mixture was then allowed to cool to room temperature, diluted with Et₂O, filtered through a plug of Celite (eluting with Et₂O) and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel.

3.5.1. 1*β*-[3-(Carbamoyl)phenyl]-1-deoxy-2,3,5-tri-O-(tert-butyldimethyl-silyl)-*D*-ribofuranose (**2***j*)

Prepared according to the general procedure, method A. Starting from **1** (104 mg, 0.165 mmol) using Pd(OAc)₂ (10 mol %, 0.016 mmol, 3.7 mg), Xantphos (20 mol%, 0.033 mmol, 19 mg), AcONH₄ (0.494 mmol, 3 equiv, 38 mg), K₃PO₄ (0.658 mmol, 4 equiv, 140 mg) and toluene (0.41 mL). Reaction time 15 h. Flash chromatography in gradient hexane/AcOH 25:1 to 25:2 gave 2j as colourless light oil (74 mg, 76%). HRMS (FAB) for C₃₀H₅₇NO₅Si₃Na: [M+Na] calculated, 618.3436; found, 618.3438.¹H NMR (499.8 MHz, CDCl₃): -0.51, -0.14, 0.10, 0.11, 0.12 and 0.14 (6×s, 6×3H, CH₃Si), 0.79, 0.94 and 0.95 (3×s, 3×9H, (CH₃)₃C), 3.79 (dd, 1H, J_{gem}=10.9, J_{5'b.4'}=3.3, H-5'b), 3.82 (dd, 1H, J_{gem}=10.9, J_{5'a,4'}=3.7, H-5'a), 3.84 (dd, 1H, $J_{2',1'}=8.3, J_{2',3'}=4.4, H-2'$, 4.05 (ddd, 1H, $J_{4',5'}=3.7, 3.3, J_{4',3'}=1.5, H-10$ 4'), 4.13 (dd, 1H, J_{3',2'}=4.4, J_{3',4'}=1.5, H-3'), 4.82 (d, 1H, J_{1',2'}=8.3, H-1'), 5.80-6.00 and 6.00-6.20 (2 \times br s, 2H, NH₂), 7.41 (td, 1H, *J*_{5,4}=*J*_{5,6}=7.7, *J*_{5,2}=0.5, H-5), 7.64 (dt, 1H, *J*_{6,5}=7.7, *J*_{6,2}=*J*_{6,4}=1.7, H-6), 7.76-7.80 (m, 2H, H-2,4). ¹³C NMR (125.7 MHz, CDCl₃): -5.56, -5.43, -5.44, -4.51, -4.49 and -4.34 (CH₃Si), 17.90, 18.05 and 18.33 (C(CH₃)₃), 25.78, 25.87 and 25.95 ((CH₃)₃C), 63.81 (CH₂-5'), 74.18 (CH-3'), 79.56 (CH-2'), 82.05 (CH-1'), 86.61 (CH-4'), 125.44 (CH-2), 127.12 (CH-4), 128.46 (CH-5), 130.47 (CH-6), 133.07 (C-3), 141.21 (C-1), 169.29 (CO). IR spectrum (CCl₄): 3538, 3506, 3421, 3352, 3295, 3166, 2955, 2847, 1685, 1609, 1587, 1472, 1463, 1438, 1407, 1389, 1379, 1361, 1308, 1257, 1257, 1218, 1153, 1112, 1095, 1082, 940, 926, 838, 692, 672 cm⁻¹.

Prepared according to the general procedure, *method B*. Starting from **1** (337 mg, 0.5333 mmol) using $Pd(OAc)_2$ (5 mol %, 0.027 mmol, 6.0 mg), Xantphos (10 mol %, 0.053 mmol, 31.0 mg), NH₄Cl (1.60 mmol, 3 equiv, 95.6 mg), K₃PO₄ (2.13 mmol, 4 equiv 453 mg) and toluene/DMSO 1:1 mixture (1.9 mL). Reaction time 3.5 h. Flash chromatography in gradient hexane/AcOH 25:1 to 25:2 gave **2j** as colourless light oil (216 mg, 68%).

Prepared according to the general procedure, *method C*. Reaction mixture containing **1** (107 mg, 0.1693 mmol), $Pd(OAc)_2$ (10 mol %, 0.017 mmol, 3.8 mg), Xantphos (20 mol %, 0.034 mmol, 20 mg), K₃PO₄ (0.677 mmol, 4 equiv 144 mg) was evacuated and backfilled with $CO_{(g)}/NH_3$ (ca. 1:1 mixture). Then toluene (0.42 mL) was added and reaction mixture was stirred for 16 h. Flash chromatography in gradient hexane/AcOH 25:1 to 25:2 gave **2j** as colourless light oil (63 mg, 62%).

3.5.2. 1β-[4-(Carbamoyl)phenyl]-1-deoxy-2,3,5-tri-O-(tert-butyldimethyl-silyl)-p-ribofuranose (**5j**)

Prepared according to the general procedure, method A. Starting from 4 (126 mg, 0.200 mmol) using Pd(OAc)₂ (10 mol %, 0.02 mmol, 4.5 mg), Xantphos (20 mol%, 0.04 mmol, 23 mg), AcONH₄ (0.598 mmol, 46 mg, 3 equiv), K₃PO₄ (0.797 mmol, 169 mg, 4 equiv) and toluene (0.5 mL). Reaction time 16 h. Flash chromatography in gradient hexane/AcOH 25:1 to 25:2 gave 5i as colourless light oil (72 mg, 60%). HRMS (ESI) for C₃₀H₅₈NO₅Si₃: [M+H] calculated, 596.3592; found, 596.3617. ¹H NMR (500.0 MHz, CDCl₃): -0.48, -0.13, 0.09, 0.10, 0.12 and 0.13 (6×s, 6×3H, CH₃Si), 0.81, 0.939 and 0.943 (3×s, 3×9H, (CH₃)₃C), 3.78 (dd, 1H, J_{gem}=11.0, J_{5'b,4'}=2.8, H-5′b), 3.82 (dd, 1H, *J_{gem}*=11.0, *J_{5′a,4′}*=3.7, H-5′a), 3.86 (dd, 1H, *J_{2′,1′}*=7.9, $J_{2',3'}=4.4$, H-2'), 4.05 (ddd, 1H, $J_{4',5'}=3.7$, 2.8, $J_{4',3'}=1.7$, H-4'), 4.13 (dd, 1H, *J*_{3',2'}=4.4, *J*_{3',4'}=1.7, H-3'), 4.82 (d, 1H, *J*_{1',2'}=7.9, H-1'), 5.55-5.57 and 5.90-6.20 (2×br s, 2H, NH2); 7.51-7.55 (m, 2H, H-2,6), 7.75-7.78 (m, 2H, H-3,5). ¹³C NMR (125.7 MHz, CDCl₃): -5.52, -5.41, -4.49, -4.46 and -4.39 (CH₃Si), 17.91, 18.06 and 18.36 (C(CH₃)₃), 25.83, 25.88 and 25.99 ((CH₃)₃C), 63.66 (CH₂-5'), 74.02 (CH-3'), 79.64 (CH-2'), 82.33 (CH-1'), 86.33 (CH-4'), 127.08 (CH-2,6), 127.11 (CH-3,5), 132.38 (C-4), 145.34 (C-1), 169.08 (CO). IR spectrum (CCl₄): 3539, 3507, 3422, 3352, 3291, 3212, 3163, 2956, 2897, 1615, 1604, 1583, 1575, 1513, 1472, 1463, 1416, 1407, 1388, 1377, 1361, 1304, 1257, 1215, 1187, 1153, 1113, 1095, 1080, 1018, 939, 838, 672, 642 cm⁻¹.

Prepared according to the general procedure, *method B*. Starting from **4** (312 mg, 0.494 mmol) using $Pd(OAc)_2$ (5 mol %, 0.025 mmol, 5.5 mg), Xantphos (10 mol %, 0.050 mmol, 27 mg), NH₄Cl (1.48 mmol, 79 mg, 3 equiv), K₃PO₄ (1.98 mmol, 419 mg, 4 equiv) and toluene/DMSO 1:1 mixture (1.8 mL). Reaction time 3.5 h. Flash chromatography in gradient hexane/AcOH 25:1 to 25:2 gave **5j** as colourless light oil (192 mg, 65%).

Prepared according to the general procedure, *method C*. Reaction mixture containing **4** (128 mg, 0.203 mmol), $Pd(OAc)_2$ (10 mol %, 0.020 mmol, 4.5 mg), Xantphos (20 mol %, 0.041 mmol, 23 mg), K₃PO₄ (0.810 mmol, 172 mg, 4 equiv) was evacuated and backfilled with $CO_{(g)}/NH_3$ (ca. 1:1 mixture). Then toluene (0.50 mL) was added and reaction mixture was stirred for 14 h. Flash chromatography in gradient hexane/AcOH 25:1 to 25:2 gave **5**j as colourless light oil (93 mg, 69%).

3.6. General procedure for the deprotection of TBDMSgroup—method A

 $Et_3N \cdot 3HF$ (163 µL, 1.00 mmol, 10 equiv) was added to the solution of silylated compound **2a**-i or **5a**-i (0.10 mmol) in THF

(1.00 mL) and the resulting mixture was stirred at 40 °C for 2 days. After the reaction was complete (monitored by TLC eluted in CHCl₃/ MeOH 8:2), solvent was removed under reduced pressure, the crude product was dissolved in water and solid K₂CO₃ was added until basic pH. Solvents were removed under reduced pressure and crude product purified by reversed-phase chromatography (H₂O/ MeOH as a eluent) to obtain free *C*-ribonucleosides **3a–i** and **6a–i**.

3.7. General procedure for the deprotection of TBDMSgroup—method B

Mixture of CF₃COOH/H₂O 9:1 (0.75 mL) was added to silylated compounds **2j** or **5j** (0.10 mmol) and resulting homogeneous mixture was stirred for 1.5 h at room temperature. After the reaction was complete (monitored by TLC, eluted in CHCl₃/MeOH 8:2) solvents were removed under reduced pressure and the crude product was co-evaporated with 3×50 mL of toluene. Subsequent purification by reversed-phase chromatography afforded desired nucleoside **3j** and **6j**.

3.7.1. 1β-{3-[(Pyrrolidine-1-yl)carbonyl]phenyl}-1-deoxy-D-ribofuranose (**3a**)

Compound 3a was prepared from 2a (306 mg, 0.471 mmol) according to general procedure, method A, in 86% yield, as a colourless oil, which after lyophylization furnished white powder, mp 115–118 °C. HRMS (FAB) for $C_{16}H_{22}NO_5$: [M+H] calculated, 308.1498; found, 308.1506. ¹H NMR (500.0 MHz, DMSO-*d*₆): 1.79 and 1.86 (2×p, 2×2H, J_{vic}=6.8, CH₂-pyr), 3.33-3.39 (m, 2H, CH₂Npyr), 3.45 (t, 2H, J_{vic} =6.8, CH₂N-pyr), 3.52 and 3.57 (2×br ddd, 2H, $J_{gem}=11.4, J_{5',OH}=5.5, J_{5',4'}=4.4, H-5'$, 3.67 (br ddd, 1H, $J_{2',1'}=7.3$, $J_{2',OH}=7.0, J_{2',3'}=5.1, H-2'), 4.82$ (td, 1H, $J_{4',5'}=4.4, J_{4',3'}=3.1, H-4'),$ 3.89 (br ddd, 1H, J_{3',2'}=5.1, J_{3',OH}=4.5, J_{3',4'}=3.1, H-3'), 4.59 (d, 1H, J_{1',2'}=7.3, H-1'), 4.87 (t, 1H, J_{OH,5'}=5.5, OH-5'), 4.97 (d, 1H, J_{OH,3'}=4.5, OH-3'), 5.04 (d, 1H, J_{OH,2'}=7.0, OH-2'), 7.38 (br dd, 1H, J_{5,4}=8.4, $J_{5.6}=6.6, H-5$), 7.41 (br dt, 1H, $J_{4.5}=8.4, J_{4.2}=J_{4.6}=2.0, H-4$), 7.46 (br dt, 1H, $J_{6.5}=6.6$, $J_{6.2}=J_{6.4}=2.0$, H-6), 7.52 (br t, 1H, $J_{2.4}=J_{2.6}=2.0$, H-2). ¹³C NMR (125.7 MHz, DMSO-d₆): 24.19 and 26.23 (CH₂-pyr), 46.17 and 49.19 (CH₂N-pyr), 62.23 (CH₂-5'), 71.67 (CH-3'), 78.01 (CH-2'), 82.78 (CH-1'), 85.51 (CH-4'), 124.98 (CH-2), 126.19 (CH-4), 127.80 (CH-5), 128.13 (CH-6), 137.18 (C-3), 141.78 (C-1), 168.53 (CO). IR spectrum (KBr): 3386, 3252, 1632, 1613, 1600, 1578, 1491, 1465, 1458, 1451, 1422, 1342, 1337, 1313, 1220, 1170, 1128, 1090, 1059, 1050, 1043, 1000, 877, 806, 704 cm⁻¹. $[\alpha]_D^{20}$ –29.5 (*c* 3.69, MeOH). Anal. Calcd for C₁₆H₂₁NO₅·0.5H₂O: C, 60.75; H, 7.01; N, 4.43. Found: C, 60.44; H, 6.87; N, 4.22.

3.7.2. 1β -{3-[(Piperidine-1-yl)carbonyl]phenyl}-1-deoxy- $_{D}$ -ribofuranose (**3b**)

Compound **3b** was prepared from **2b** (291 mg, 0.438 mmol) according to general procedure, method A, in 93% yield, as a colourless oil, which after lyophylization furnished white hygroscopic powder. HRMS (FAB) for C₁₇H₂₄NO₅: [M+H] calculated, 322.1654; found, 322.1650. ¹H NMR (500.0 MHz, DMSO-*d*₆): 1.41–1.49, 1.49– 1.56 and 1.56–1.64 (3×br m, 3×2H, CH₂-pip), 3.21–3.31 (br m, 2H, CH₂N-pip), 3.52 (ddd, 1H, J_{gem}=11.7, J_{5'b,OH}=5.5, J_{5'b,4'}=4.7, H-5'b), 3.56 (ddd, 1H, *J_{gem}*=11.7, *J*_{5'a,4'}=5.5, *J*_{5'a,4'}=4.4, H-5'a), 3.53–3.58 (br m, 2H, CH₂N-pip), 3.67 (ddd, 1H, *J*_{2',1'}=7.3, *J*_{2',OH}=7.1, *J*_{2',3'}=5.4, H-2'), $3.82 (ddd, 1H, J_{4',5'}=4.7, 4.4, J_{4',3'}=3.1, H-4'), 3.82 (ddd, 1H, J_{3',2'}=5.4, J_{4',3'}=3.1, H-4')$ $J_{3',OH}=4.7, J_{3',4'}=3.1, H-3_{\prime}$, 4.58 (d, 1H, $J_{1',2'}=7.3, H-1'$), 4.87 (t, 1H, J_{OH,5'}=5.5, OH-5'), 4.97 (d, 1H, J_{OH,3'}=4.7, OH-3'), 5.05 (d, 1H, *J*_{OH,2'}=7.1, OH-2'), 7.24 (dt, 1H, *J*_{4,5}=7.6, *J*_{4,2}=*J*_{4,6}=1.5, H-4), 7.37 (t, 1H, J_{2,4}=J_{2,6}=1.5, H-2), 7.38 (t, 1H, J_{5,4}=J_{5,6}=7.6, H-5), 7.44 (dt, 1H, J_{6.5}=7.6, J_{6.2}=J_{6.4}=1.5, H-6). ¹³C NMR (125.7 MHz, DMSO-d₆): 24.32, 25.52 and 26.25 (CH2-pip), 42.54 and 48.27 (CH2N-pip), 62.26 (CH2-5'), 71.72 (CH-3'); 78.02 (CH-2'), 82.73 (CH-1'), 85.54 (CH-4'), 124.52 (CH-2), 125.81 (CH-4), 127.38 (CH-6), 128.34 (CH-5), 136.45 (C-3), 141.98 (C-1), 169.19 (CO). IR spectrum (KBr): 3435, 1696, 1632, 1620, 1602, 1584, 1492, 1445, 1432, 1369, 1350, 1287, 1210, 1114, 1075, 1052, 1028, 887, 853, 806, 701 cm⁻¹. $[\alpha]_D^{20}$ –24.1 (*c* 4.10, MeOH). Anal. Calcd for C₁₇H₂₃NO₅ · 0.5H₂O: C, 61.80; H, 7.32; N, 4.24. Found: C, 61.59; H, 7.25; N, 4.14.

3.7.3. 1β-{3-[(Morpholine-4-yl)carbonyl]phenyl}-1-deoxy-Dribofuranose (**3c**)

Compound 3c was prepared from 2c (180 mg, 0.270 mmol) according to general procedure, method A, in 89% yield, as a colourless oil, which after lyophylization furnished white hygroscopic powder. HRMS (FAB) for C₁₆H₂₂NO₆: [M+H] calculated, 324.1447; found, 324.1443. ¹H NMR (500.0 MHz, DMSO-*d*₆): 3.31–3.35 (br m, 2H, CH₂N-morph); 3.53 and 3.56 (2×ddd, 2H, *J_{gem}*=11.8, *J_{5',OH}*=5.5, J_{5',4'}=4.6, H-5'), 3.56-3.66 (br m, 6H, CH₂N-morph and CH₂Omorph), 3.67 (ddd, 1H, $J_{2',1'}=7.3$, $J_{2',0H}=7.1$, $J_{2',3'}=5.4$, H-2'), 3.83 (dt, 1H, $J_{4',5'}=4.6$, $J_{4',3'}=2.8$, H-4'), 3.89 (ddd, 1H, $J_{3',2'}=5.4$, $J_{3',0H}=4.8$, *J*_{3',4'}=2.8, H-3'), 4.59 (d, 1H, *J*_{1',2'}=7.3, H-1'), 4.87 (t, 1H, *J*_{OH,5'}=5.5, OH-5'), 4.97 (d, 1H, J_{OH,3'}=4.8, OH-3'), 5.05 (d, 1H, J_{OH,2'}=7.1, OH-2'), 7.30 (dt, 1H, J_{4,5}=7.5, J_{4,2}=J_{4,6}=1.5, H-4), 7.38 (dd, 1H, J_{5,6}=7.7, J_{5,4}=7.5, H-5), 7.42 (t, 1H, J_{2,4}=J_{2,6}=1.5, H-2), 7.47 (dt, 1H, J_{6,5}=7.7, J_{6,2}=J_{6,4}=1.5, H-6). ¹³C NMR (125.7 MHz, DMSO-*d*₆): 42.26 and 47.95 (CH₂N-morph), 62.22 (CH2-5'), 66.33 (CH2O-morph), 71.69 (CH-3'), 78.03 (CH-2'), 82.69 (CH-1'), 85.53 (CH-4'), 124.96 (CH-2), 126.24 (CH-4), 127.71 (CH-6), 128.39 (CH-5), 135.45 (C-3), 142.09 (C-1), 169.40 (CO). IR spectrum (KBr): 3435, 1631, 1620, 1601, 1585, 1491, 1463, 1433, 1389, 1389, 1362, 1338, 1303, 1279, 1264, 1210, 1113, 1068, 1054, 889 cm⁻¹. $[\alpha]_{D}^{20}$ –29.5 (*c* 3.86, MeOH). Anal. Calcd for C₁₆H₂₁NO₆·0.5H₂O: C, 57.82; H, 6.67; N, 4.21. Found: C, 58.21; H, 6.68; N, 3.90.

3.7.4. 1β -[3-(Dibutylcarbamoyl)phenyl]-1-deoxy-Dribofuranose (**3d**)

Compound 3d was prepared from 2d (258 mg, 0.364 mmol) according to general procedure, method A, in 83% yield, as a colourless oil, which after lyophylization furnished a colourless oil. HRMS (ESI) for C₂₀H₃₂NO₅: [M+H] calculated, 366.2275; found, 366.2264. ¹H NMR (499.8 MHz, DMSO- d_6): 0.71 and 0.93 (2×bt, 2×3H, J_{vic} =7.1, CH₃CH₂CH₂CH₂N), 1.02-1.10, 1.28-1.38, 1.39-1.44 and 1.50-1.60 $(4 \times br m, 4 \times 2H, CH_3CH_2CH_2CH_2N)$, 3.10 and 3.38 $(2 \times br t, 2 \times 2H, CH_3CH_2CH_2N)$ Jvic=7.6, CH₃CH₂CH₂CH₂N), 3.55 (ddd, 1H, Jgem=11.7, J_{5'b,OH}=5.5, J_{5'b,4'}=4.5, H-5'b), 3.55 (ddd, 1H, J_{gem}=11.7, J_{5'a,4'}=5.5, J_{5'a,4'}=4.5, H-5'a), 3.65 (td, 1H, $J_{2',1'}=J_{2',OH}=7.2$, $J_{2',3'}=5.4$, H-2'), 3.82 (td, 1H, $J_{4',5'}=4.5, J_{4',3'}=3.4, H-4')$, 3.88 (ddd, 1H, $J_{3',2'}=5.4, J_{3',OH}=4.9$, J_{3',4'}=3.4, H-3'), 4.58 (d, 1H, J_{1',2'}=7.2, H-1'), 4.83 (t, 1H, J_{0H,5'}=5.5, OH-5'), 4.95 (d, 1H, J_{OH.3'}=4.9, OH-3'), 5.00 (d, 1H, J_{OH.2'}=7.2, OH-2'), 7.19 (ddd, 1H, *J*_{4,5}=7.5, *J*_{4,2}=1.8, *J*_{4,6}=1.3, H-4), 7.32 (tt, 1H, *J*_{2,4}=*J*_{2,6}=1.8, *J*_{2,5}=*J*_{2,1'}=0.5, H-2), 7.40 (ddd, 1H, *J*_{5,6}=7.7, *J*_{5,4}=7.5, *J*_{5,2}=0.5, H-5), 7.43 (dddd, 1H, $J_{6,5}=7.7$, $J_{6,2}=1.8$, $J_{6,4}=1.3$, $J_{6,1'}=0.6$, H-6). ¹³C NMR (125.7 MHz, DMSO-d₆): 13.62 and 14.07 (CH₃CH₂CH₂CH₂N), 19.42, 19.95, 29.47 and 30.44 (CH₃CH₂CH₂CH₂N), 43.95 and 48.23 (CH₃CH₂CH₂CH₂N), 62.21 (CH₂-5'), 71.62 (CH-3'), 78.01 (CH-2'), 82.73 (CH-1'), 85.44 (CH-4'), 123.89 (CH-2), 125.34 (CH-4), 126.87 (CH-6), 128.25 (CH-5), 137.27 (C-3), 141.86 (C-1), 170.62 (CO). IR spectrum (KBr): 3351, 1633, 1614, 1603, 1585, 1493, 1428, 1378, 1310, 1204, 1166, 1111, 1076, 1054, 806, 706 cm⁻¹. $[\alpha]_D^{20}$ –34.4 (c 3.37, MeOH). Anal. Calcd for C₂₀H₃₁NO₅·0.5H₂O: C, 64.45; H, 8.61; N, 3.74. Found: C, 64.52; H, 8.42; N, 3.76.

3.7.5. 1β-[3-(Dimethylcarbamoyl)phenyl]-1-deoxy-Dribofuranose (**3e**)

Compound **3e** was prepared from **2e** (134 mg, 0.215 mmol) according to general procedure, method A, in 95% yield, as a colourless oil, which after lyophylization furnished white powder, mp 122–125 °C. HRMS (FAB) for C₁₄H₂₀NO₅: [M+H] calculated, 282.1341; found, 282.1338. ¹H NMR (500.0 MHz, DMSO-*d*₆): 2.80–2.92 and 2.92–3.04 (2×br s, 2×3H, CH₃N), 3.53 and 3.56 (2×ddd,

2H, J_{gem} =11.7, $J_{5',OH}$ =5.5, $J_{5',4'}$ =4.4, H-5'), 3.68 (ddd, 1H, $J_{2',1'}$ =7.2, $J_{2',OH}$ =7.1, $J_{2',3'}$ =5.4, H-2'), 3.82 (td, 1H, $J_{4',5'}$ =4.4, $J_{4',3'}$ =3.4, H-4'), 3.89 (ddd, 1H, $J_{3',2'}$ =5.4, $J_{3',OH}$ =4.8, $J_{3',4'}$ =3.4, H-3'), 4.58 (d, 1H, $J_{1',2'}$ =7.2, H-1'), 4.83 (t, 1H, $J_{OH,5'}$ =5.5, OH-5'), 4.93 (d, 1H, $J_{OH,3'}$ =4.8, OH-3'), 5.01 (d, 1H, $J_{OH,2'}$ =7.1, OH-2'), 6.60 (ddd, 1H, $J_{4,5}$ =7.6, $J_{4,2}$ =1.8, $J_{4,6}$ =1.3, H-4), 7.38 (dd, 1H, $J_{5,6}$ =7.7, $J_{5,4}$ =7.6, H-5), 7.41 (tt, 1H, $J_{2,4}$ = $J_{2,6}$ =1.8, $J_{2,5}$ = $J_{2,1'}$ =0.6, H-2), 7.45 (dddd, 1H, $J_{6,5}$ =7.7, $J_{6,2}$ =1.8, $J_{6,4}$ =1.3, $J_{6,1'}$ =0.7, H-6). ¹³C NMR (125.7 MHz, DMSO- d_6): 34.90 and 39.16 (CH₃N), 62.18 (CH₂-5'), 71.61 (CH-3'), 77.91 (CH-2'), 82.73 (CH-1'), 85.47 (CH-4'), 124.77 (CH-2), 126.00 (CH-4), 127.33 (CH-6), 128.11 (CH-5), 136.38 (C-3), 141.81 (C-1), 170.35 (CO). IR spectrum (KBr): 3362, 3252, 3175, 1623, 1606, 1585, 1512, 1479, 1432, 1412, 1400, 1310, 1222, 1164, 1131, 1098, 1081, 1053, 1046, 804, 700 cm⁻¹. [α] $_{10}^{20}$ –28.4 (*c* 3.49, MeOH). Anal. Calcd for C₁₄H₁₉NO₅·0.4H₂O: C, 58.28; H, 6.92; N, 4.85. Found: C, 58.58; H, 6.69; N, 4.48.

3.7.6. 1β -[3-(Cyclopropylcarbamoyl)phenyl]-1-deoxy-D-ribofuranose (**3f**)

Compound 3f was prepared from 2f (283 mg, 0.445 mmol) according to general procedure, method A, in 89% yield, as a colourless oil, which after lyophylization furnished white hygroscopic powder. HRMS (ESI) for C₁₅H₂₀NO₅: [M+H] calculated, 294.1336; found, 294.1336. ¹H NMR (500.0 MHz, DMSO-*d*₆): 0.54–0.58 and 0.66–0.72 (2×m, 2×2H, CH₂-cycloprop), 2.83 (tq 1H, *J*=7.3, 4.0, CHcycloprop), 3.54 (ddd, 1H, J_{gem}=11.7, J_{5'b,OH}=5.6, J_{5'b,4'}=4.8, H-5'b), 3.58 (ddd, 1H, Jgem=11.7, J_{5'a,OH}=5.6, J_{5'a,4'}=4.5, H-5'a), 3.70 (ddd, 1H, $J_{2',1'}=7.1, J_{2',0H}=6.8, J_{2',3'}=5.4, H-2'), 3.82$ (ddd, 1H, $J_{4',5'}=4.8, 4.5,$ $J_{4',3'}=3.7$, H-4'), 3.89 (ddd, 1H, $J_{3',2'}=5.4$, $J_{3',OH}=4.8$, $J_{3',4'}=3.7$, H-3'), 4.59 (d, 1H, *J*_{1',2'}=7.1, H-1'), 4.83 (t, 1H, *J*_{OH,5'}=5.6, OH-5'), 4.93 (d, 1H, J_{OH,3'}=4.8, OH-3'), 5.01 (d, 1H, J_{OH,2'}=6.8, OH-2'), 7.39 (dd, 1H, J_{5,4}=7.8, J_{5,6}=7.6, H-5), 7.54 (dddd, 1H, J_{6,5}=7.6, J_{6,2}=1.7, J_{6,4}=1.3, *J*_{6,1′}=0.6, H-6), 7.68 (ddd, 1H, *J*_{4,5}=7.8, *J*_{4,2}=1.7, *J*_{4,6}=1.3, H-4), 7.78 (t, 1H, J_{2.4}=J_{2.6}=1.7, H-2), 8.41 (d, 1H, J=4.0, NH). ¹³C NMR (125.7 MHz, DMSO-d₆): 5.98 and 6.00 (CH₂-cycloprop), 23.28 (CH-cycloprop), 62.23 (CH₂-5'), 71.58 (CH-3'), 77.73 (CH-2'), 83.04 (CH-1'), 85.42 (CH-4'), 125.42 (CH-2), 126.30 (CH-4), 128.16 (CH-5), 129.11 (CH-6), 134.52 (C-3), 141.71 (C-1), 167.91 (CO). IR spectrum (KBr): 3351, 3092, 3012, 1642, 1607, 1584, 1534, 1482, 1424, 1303, 1205, 1113, 1072, 1050, 813, 698 cm⁻¹. [α]²⁰_D –29.1 (*c* 2.51, MeOH). Anal. Calcd for C₁₅H₁₉NO₅ · 0.5H₂O: C, 59.59; H, 6.67; N, 4.63. Found: C, 59.81; H, 6.41; N, 4.29.

3.7.7. 1β-[3-(Cyclohexylcarbamoyl)phenyl]-1-deoxy-*D*-ribofuranose (**3g**)

Compound 3g was prepared from 2g (190 mg, 0.280 mmol) according to general procedure, method A, in 91% yield, as a colourless oil, which after crystallization from EA furnished white cotton-like crystals, mp 189-191 °C. HRMS (ESI) for C18H24NO5: [M–H] calculated, 334.1649; found, 334.1650. ¹H NMR (500.0 MHz, DMSO-d₆): 1.07-1.17, 1.23-1.37, 1.57-1.64, 1.57-1.64 and 1.77-1.85 (5×m, 10H, H-2,3,4,5,6-cyclohex), 3.54 (ddd, 1H, *J_{gem}*=11.7, $J_{5'b,OH}$ =5.6, $J_{5'b,4'}$ =4.8, H-5'b), 3.58 (ddd, 1H, J_{gem} =11.7, $J_{5'a,4'}$ =5.6, $J_{5'a,4'}=4.5, H-5'a), 3.71 (ddd, 1H, J_{2',1'}=7.0, J_{2',OH}=6.8, J_{2',3'}=5.4, H-2'),$ 3.71-3.79 (br m, 1H, H-1-cyclohex), 3.83 (ddd, 1H, J_{4',5'}=4.8, 4.5, $J_{4',3'}=3.7$, H-4'), 3.90 (ddd, 1H, $J_{3',2'}=5.4$, $J_{3',OH}=4.9$, $J_{3',4'}=3.7$, H-3'), 4.60 (d, 1H, $J_{1',2'}=7.0$, H-1'), 4.81 (t, 1H, $J_{OH,5'}=5.6$, OH-5'), 4.91 (d, 1H, J_{OH.3'}=4.9, OH-3'), 5.00 (d, 1H, J_{OH.2'}=6.8, OH-2'), 7.39 (t, 1H, *J*_{5,4}=*J*_{5,6}=7.7, H-5), 7.54 (dt, 1H, *J*_{6,5}=7.7, *J*_{6,2}=*J*_{6,4}=1.5, H-6), 7.71 (dt, 1H, $J_{4,5}$ =7.7, $J_{4,2}$ = $J_{4,6}$ =1.5, H-4), 7.79 (t, 1H, $J_{2,4}$ = $J_{2,6}$ =1.5, H-2), 8.15 (d, 1H, J=8.0, NH). ¹³C NMR (125.7 MHz, DMSO- d_6): 25.16, 25.47 and 32.63 (CH₂-2,3,4,5,6-cyclohex), 48.50 (CH-1-cyclohex), 62.17 (CH₂-5'), 71.51 (CH-3'), 77.67 (CH-2'), 83.07 (CH-1'), 85.34 (CH-4'), 125.56 (CH-2), 126.36 (CH-4), 128.04 (CH-5), 128.86 (CH-6), 134.94 (C-3), 141.62 (C-1), 165.66 (CO). IR spectrum (KBr): 3410, 3299, 3264, 2935, 2854, 1635, 1612, 1587, 1542, 1486, 1449, 1441, 1369, 1350,

1337, 1320, 1301, 1210, 1129, 1087, 1063, 815, 703, 695 cm $^{-1}$. $[\alpha]_D^{20}$ -11.0 (c 3.18, MeOH). Anal. Calcd for $C_{18}H_{25}NO_5\cdot 1H_2O$: C, 61.17; H, 7.70; N, 3.96. Found: C, 61.27; H, 7.47; N, 3.96.

3.7.8. 1β -[3-(Benzylcarbamoyl)phenyl]-1-deoxy-*D*-ribofuranose (**3h**)

Compound **3h** was prepared from **2h** (210 mg, 0.306 mmol) according to general procedure, method A, in 88% vield, as a colourless oil, which after crystallization from EA furnished white crystals, mp 135-137 °C. HRMS (ESI) for C₁₉H₂₀NO₅: [M-H] calculated, 342.1336; found, 342.1340. ¹H NMR (600.1 MHz, DMSO-*d*₆): 3.55 and 3.58 (2×ddd, 2×1H, Jgem=11.6, J_{5',OH}=5.6, J_{5',4'}=4.6, H-5'), 3.71 (ddd, 1H, $J_{2',1'}=7.1$, $J_{2',OH}=6.9$, $J_{2',3'}=5.4$, H-2'), 3.83 (td, 1H, $J_{4',5'}=4.6$, $J_{4',3'}=3.7, H-4'$), 3.90 (ddd, 1H, $J_{3',2'}=5.4, J_{3',OH}=4.9, J_{3',4'}=3.7, H-3'$), 4.48 (d, 2H, J=6.0, CH₂Ph), 4.61 (d, 1H, J_{1',2'}=7.1, H-1'), 4.83 (t, 1H, J_{OH.5'}=5.6, OH-5'), 4.94 (d, 1H, J_{OH.3'}=4.9, OH-3'), 5.03 (d, 1H, J_{OH,2'}=6.9, OH-2'), 7.22–7.26 (m, 1H, H-p-Ph), 7.30–7.35 (m, 4H, Ho,m-Ph), 7.43 (dd, 1H, J_{5,4}=7.7, J_{5,6}=7.6, H-5), 7.58 (dddd, 1H, J_{6,5}=7.6, $J_{6,2}=1.8$, $J_{6,4}=1.3$, $J_{6,1'}=0.5$, H-6), 7.79 (ddd, 1H, $J_{4,5}=7.7$, $J_{4,2}=1.8$, $J_{4,6}=1.3, H-4$), 7.87 (tt, 1H, $J_{2,4}=J_{2,6}=1.8, J_{2,5}=J_{2,1'}=0.6, H-2$), 9.04 (t, 1H, J=6.0, NH). ¹³C NMR (150.9 MHz, DMSO-*d*₆): 42.81 (CH₂Ph), 62.24 (CH2-5'), 71.61 (CH-3'), 77.75 (CH-2'), 82.99 (CH-1'), 85.45 (CH-4'), 125.49 (CH-2), 126.37 (CH-4), 126.95 (CH-p-Ph), 127.40 (CH-o-Ph), 128.28 (CH-5), 128.51 (CH-m-Ph), 129.33 (CH-6), 134.39 (C-3), 139.94 (C-i-Ph), 141.85 (C-1), 166.51 (CO). IR spectrum (KBr): 3420, 3370, 3292, 1642, 1620, 1607, 1581, 1542, 1496, 1480, 1451, 1430, 1317, 1317, 1292, 1219, 1170, 1126, 1079, 1054, 1028, 812, 704, 693 cm⁻¹. $[\alpha]_{D}^{20}$ -21.9 (c 3.19, MeOH). Anal. Calcd for C₁₉H₂₁NO₅: C, 66.46; H, 6.16; N, 4.08. Found: C. 66.13: H. 6.19: N. 3.93.

3.7.9. 1β -[3-(Methylcarbamoyl)phenyl]-1-deoxy-Dribofuranose (**3i**)

Compound **3i** was prepared from **2i** (250 mg, 0.410 mmol) according to general procedure, method A, in 93% yield, as a colourless oil, which after lyophylization furnished white hygroscopic powder. HRMS (ESI) for $C_{13}H_{18}NO_5$: [M+H] calculated, 268.1179; found, 268.1185. ¹H NMR (600.1 MHz, DMSO-*d*₆): 2.78 (d, 3H, *J*=4.6, CH₃), 3.54 (ddd, 1H, J_{gem}=11.6, J_{5'b,OH}=5.6, J_{5'b,4'}=4.7, H-5'b), 3.58 (ddd, 1H, J_{gem}=11.6, J_{5'a,4'}=5.6, J_{5'a,4'}=4.5, H-5'a), 3.69 (ddd, 1H, $J_{2',1'}=7.2, J_{2',OH}=6.9, J_{2',3'}=5.4, H-2')$, 3.83 (ddd, 1H, $J_{4',5'}=4.7, 4.5, J_{2',1'}=7.2, J_{2',OH}=6.9, J_{2',3'}=5.4, H-2')$ $J_{4',3'}=3.5, H-4'$, 3.89 (ddd, 1H, $J_{3',2'}=5.4, J_{3',0H}=4.5, J_{3',4'}=3.7, H-3'$), 4.59 (d, 1H, J_{1',2'}=7.2, H-1'), 4.83 (t, 1H, J_{OH,5'}=5.6, OH-5'), 4.94 (d, 1H, $J_{OH,3'}$ =4.9, OH-3'), 5.03 (d, 1H, $J_{OH,2'}$ =6.9, OH-2'), 7.41 (t, 1H, $J_{5,4}=J_{5,6}=7.7, H-5$), 7.54 (dddd, 1H, $J_{6,5}=7.7, J_{6,2}=1.8, J_{6,4}=1.3, J_{6,1'}=0.6$, H-6), 7.70 (ddd, 1H, $J_{4,5}$ =7.7, $J_{4,2}$ =1.8, $J_{4,6}$ =1.3, H-4), 7.80 (t, 1H, $J_{2,4}$ = $J_{2,6}$ =1.8, H-2), 8.41 (q, 1H, J=4.6, NH). ¹³C NMR (150.9 MHz, DMSO-d₆): 26.48 (CH₃), 62.25 (CH₂-5'), 71.62 (CH-3'), 77.76 (CH-2'), 82.99 (CH-1'), 85.45 (CH-4'), 125.25 (CH-2), 126.16 (CH-4), 128.22 (CH-5), 129.09 (CH-6), 134.62 (C-3), 141.78 (C-1), 166.97 (CO). IR spectrum (KBr): 3412, 1639, 1607, 1585, 1549, 1484, 1434, 1412, 1325, 1307, 1307, 1217, 1158, 1115, 1075, 1052, 814, 698 cm⁻¹. $[\alpha]_{D}^{20}$ -10.9 (*c* 2.87, MeOH). Anal. Calcd for C₁₃H₁₇NO₅·0.5H₂O: C, 56.51; H, 6.57; N, 5.07. Found: C, 56.48; H, 6.64; N, 4.85.

3.7.10. 1β-[3-(Carbamoyl)phenyl]-1-deoxy-D-ribofuranose (3j)

Compound **3j** was prepared from **2j** (350 mg, 0.587 mmol) according to general procedure, method B, in 90% yield, as a colourless oil, which after lyophylization furnished white hygroscopic powder. HRMS (ESI) for C₁₂H₁₆NO₅: [M+H] calculated, 254.1023; found, 254.1024. ¹H NMR (600.1 MHz, DMSO-*d*₆): 3.54 (ddd, 1H, J_{gem} =12.0, $J_{5'b,OH}$ =5.7, $J_{5'b,4'}$ =4.7, H-5'b), 3.58 (ddd, 1H, J_{gem} =12.0, $J_{5'a,4'}$ =4.5, H-5'a), 3.70 (ddd, 1H, $J_{2',1'}$ =7.2, $J_{2',OH}$ =6.9, $J_{2',3'}$ =5.4, H-2'), 3.82 (ddd, 1H, $J_{4',5'}$ =4.7, 4.5, $J_{4',3'}$ =3.5, H-4'), 3.89 (ddd, 1H, $J_{3',2'}$ =5.4, $J_{3',OH}$ =4.8, $J_{3',4'}$ =3.5, H-3'), 4.59 (d, 1H, $J_{1',2'}$ =7.2, H-1'), 4.83 (t, 1H, $J_{OH,5'}$ =5.7, OH-5'), 4.94 (d, 1H, $J_{OH,3'}$ =4.8, OH-3'), 5.03 (d, 1H, $J_{OH,2'}$ =6.9, OH-2'), 7.36 (br s, 1H, NH_aH_b), 7.40 (t, 1H, $J_{5,4}$ = $J_{5,6}$ =7.7,

H-5), 7.55 (dddd, 1H, $J_{6,5}$ =7.7, $J_{6,2}$ =1.8, $J_{6,4}$ =1.3, $J_{6,1'}$ =0.5, H-6), 7.76 (ddd, 1H, $J_{4,5}$ =7.7, $J_{4,2}$ =1.8, $J_{4,6}$ =1.3, H-4), 7.85 (t, 1H, $J_{2,4}$ = $J_{2,6}$ =1.8, H-2), 7.95 (br s, 1H, NH_aH_b). ¹³C NMR (150.9 MHz, DMSO- d_6): 62.25 (CH₂-5'), 71.63 (CH-3'), 77.78 (CH-2'), 83.01 (CH-1'), 85.47 (CH-4'), 125.68 (CH-2), 126.61 (CH-4), 128.16 (CH-5), 129.37 (CH-6), 134.32 (C-3), 141.71 (C-1), 168.21 (CO). IR spectrum (KBr): 3419, 1659, 1617, 1607, 1582, 1486, 1397, 1217, 1114, 1072, 1050, 695 cm⁻¹. [α]_D²⁰ – 25.6 (c 1.29, MeOH). Anal. Calcd for C₂₁H₁₅NO₅·0.5H₂O: C, 54.96; H, 6.15; N, 5.34. Found: C, 54.56; H, 6.15; N, 5.12.

3.7.11. 1β -{4-[(Pyrrolidine-1-yl)carbonyl]phenyl}-1-deoxy-*D*-ribofuranose (**6a**)

Compound **6a** was prepared from **5a** (258 mg, 0.397 mmol) according to general procedure, method A, in 90% yield, as a colourless oil, which after lyophylization furnished white hygroscopic powder. HRMS (ESI) for C₁₆H₂₀NO₅: [M-H] calculated, 306.1336; found, 306.1342. ¹H NMR (500.0 MHz, DMSO-*d*₆): 1.76–1.83 and 1.83–1.90 (2×m, 2×2H, CH₂-pyr), 3.38 (t, 2H, J=6.6, CH₂N-pyr), 3.45 (t, 2H, J=6.9, CH₂N-pyr), 3.53 and 3.56 (2×br dd, 2×1H, J_{gem}=12.1, J_{5',4'}=4.5, H-5'), 3.68 (dd, 1H, J_{2',1'}=7.2, J_{2',3'}=5.3, H-2'), 3.83 (td, 1H, $J_{4',5'}=4.5, J_{4',3'}=3.4, H-4'$, 3.90 (dd, 1H, $J_{3',2'}=5.3, J_{3',4'}=3.4, H-3'$), 4.59 (d, 1H, J_{1',2'}=7.2, H-1'), 4.83 (br s, 1H, OH-5'), 5.01 (br s, 1H, OH-3'), 5.05 (br s, 1H, OH-2'), 7.42-7.46 (m, 2H, H-2,6), 7.46-7.48 (m, 2H, H-3,5). ¹³C NMR (125.7 MHz, DMSO-*d*₆): 24.11 and 26.17 (CH₂-pyr), 46.10 and 49.13 (CH₂N-pyr), 62.23 (CH₂-5'), 71.70 (CH-3'), 77.89 (CH-2'), 82.75 (CH-1'), 85.46 (CH-4'), 126.07 (CH-2,6), 127.02 (CH-3,5), 136.33 (C-4), 143.30 (C-1), 168.35 (CO). IR spectrum (KBr): 3341, 2969, 2925, 2877, 1606, 1565, 1516, 1482, 1462, 1444, 1444, 1405, 1340, 1304, 1253, 1230, 1209, 1184, 1113, 1113, 1078, 1054, 1018, 835, 687, 635 cm⁻¹. $[\alpha]_{D}^{20}$ –37.9 (*c* 2.82, MeOH). Anal. Calcd for C₁₆H₂₁NO₅·4/ 5H₂O: C, 59.73; H, 7.08; N, 4.35. Found: C, 59.58; H, 6.91; N, 4.26.

3.7.12. 1β -{4-[(Piperidine-1-yl)carbonyl]phenyl}-1-deoxy-D-ribofuranose (**6b**)

Compound **6b** was prepared from **5b** (308 mg, 0.464 mmol) according to general procedure, method A, in 91% yield, as a colourless oil, which after lyophylization furnished white hygroscopic powder. HRMS (ESI) for C₁₇H₂₄NO₅: [M+H] calculated, 322.1649; found, 322.1650. ¹H NMR (500.0 MHz, DMSO-d₆): 1.41-1.49, 1.49-1.57 and 1.58–1.64 (3×br m, 3×2H, CH₂-pip), 3.21–3.31 (br m, 2H, CH₂N-pip), 3.50-3.60 (br m, 4H, H-5' and CH₂N-pip), 3.69 (dd, 1H, *J*_{2',1'}=7.3, *J*_{2',3'}=5.3, H-2'), 3.83 (td, 1H, *J*_{4',5'}=4.5, *J*_{4',3'}=3.4, H-4'), 3.90 $(dd, 1H, J_{3',2'}=5.3, J_{3',4'}=3.4, H-3'), 4.58 (d, 1H, J_{1',2'}=7.3, H-1'), 4.83$ (br s, 1H, OH-5'), 4.98 (br s, 1H, OH-3'), 5.04 (br s, 1H, OH-2'), 7.29-7.33 (m, 2H, H-3,5), 7.43-7.46 (m, 2H, H-2,6). ¹³C NMR (125.7 MHz, DMSO-*d*₆): 24.25 and 25.74 (CH₂-pip), 42.49 and 48.25 (CH₂N-pip), 62.24 (CH2-5'), 71.72 (CH-3'), 77.88 (CH-2'), 82.72 (CH-1'), 85.48 (CH-4'), 126.31 (CH-2,6), 126.60 (CH-3,5), 135.63 (C-4), 142.84 (C-1), 169.07 (CO). IR spectrum (KBr): 3393, 2935, 2858, 1632, 1606, 1569, 1515, 1470, 1445, 1407, 1368, 1352, 1288, 1277, 1113, 1113, 1075, 1055, 1027, 1018, 1004, 888, 854, 835, 684, 634 cm⁻¹. $[\alpha]_D^{20}$ –28.2 (*c* 2.87, MeOH). Anal. Calcd for C₁₇H₂₃NO₅·2/3H₂O: C, 61.14; H, 7.36; N, 4.19. Found: C, 61.14; H, 7.26; N, 4.07.

3.7.13. 1β -{4-[(Morpholine-4-yl)carbonyl]phenyl}-1-deoxy-*D*-ribofuranose (**6***c*)

Compound **6c** was prepared from **5c** (317 mg, 0.480 mmol) according to general procedure, method A, in 87% yield, as a colourless oil, which after lyophylization furnished white hygroscopic powder. HRMS (ESI) for C₁₆H₂₂NO₆: [M+H] calculated, 324.1442; found, 324.1442. ¹H NMR (500.0 MHz, DMSO-*d*₆): 3.33–3.37 (br m, 2H, CH₂N-morph), 3.50–3.70 (br m, 6H, CH₂N+CH₂O-morph), 3.53 and 3.56 (2×ddd, 2×1H, *J*_{gem}=11.7, *J*_{5',OH}=5.5, *J*_{5',4'}=4.5, H-5'), 3.69 (ddd, 1H, *J*_{2',1'}=7.3, *J*_{2',OH}=7.1, *J*_{2',3'}=5.3, H-2'), 3.83 (td, 1H, *J*_{4',5'}=4.5, *J*_{4',3'}=3.4, H-4'), 3.90 (dddd, 1H, *J*_{3',2'}=5.3, *J*_{3',OH}=4.8, *J*_{3',4'}=3.4, *J*_{3',1'}=0.4, H-3'), 4.59 (d, 1H, *J*_{1',2'}=7.3, H-1'), 4.82 (t, 1H, *J*_{OH,5'}=5.5, OH-

5'), 4.94 (d, 1H, $J_{OH,3'}$ =4.8, OH-3'), 5.01 (d, 1H, $J_{OH,2'}$ =7.1, OH-2'), 7.35–7.38 (m, 2H, H-3,5), 7.44–7.48 (m, 2H, H-2,6). ¹³C NMR (125.7 MHz, DMSO- d_6): 42.50 and 48.00 (CH₂N-morph), 62.21 (CH₂-5'), 66.28 (CH₂O-morph), 71.70 (CH-3'), 77.89 (CH-2'), 82.67 (CH-1'), 85.47 (CH-4'), 126.31 (CH-2,6), 127.02 (CH-3,5), 134.63 (C-4), 143.26 (C-1), 169.27 (CO). IR spectrum (KBr): 3401, 2965, 2921, 2858, 1611, 1569, 1513, 1463, 1436, 1436, 1407, 1389, 1362, 1331, 1302, 1280, 1260, 1221, 1184, 1158, 1114, 1114, 1066, 1052, 1026, 1012, 895, 834, 688, 634 cm⁻¹. [α]₂^D $_{2}$ -27.5 (*c* 4.21, MeOH). Anal. Calcd for C₁₆H₂₁NO₆·0.5H₂O: C, 57.82; H, 6.67; N, 4.21. Found: C, 57.67; H, 6.57; N, 4.17.

3.7.14. 1β -[4-(Dibutylcarbamoyl)phenyl]-1-deoxy-Dribofuranose (**6d**)

Compound 6d was prepared from 5d (220 mg, 0.310 mmol) according to general procedure, method A, in 87% yield, as a colourless oil, which after lyophylization furnished colourless oil. HRMS (FAB) for C₂₀H₃₂NO₅: [M+H] calculated, 366.2280; found, 366.2275. ¹H NMR (500.0 MHz, DMSO-*d*₆): 0.71 and 0.92 (2×br t, 2×3H, Jvic=7.1, CH₃CH₂CH₂CH₂N), 1.00–1.10, 1.26–1.38, 1.38-1.49 and 1.49-1.60 (4×br m, 4×2H, CH₃CH₂CH₂CH₂N), 3.14 and 3.38 (2×br t, 2×2H, J_{vic}=7.1, CH₃CH₂CH₂CH₂N), 3.53 (ddd, 1H, Jgem=11.7, J_{5'b,OH}=5.5, J_{5'b,4'}=4.9, H-5'b), 3.56 (ddd, 1H, Jgem=11.7, $J_{5'a,4'}=5.5, J_{5'a,4'}=4.4, H-5'a), 3.67 (td, 1H, J_{2',1'}=J_{2',0H}=7.1, J_{2',3'}=5.4,$ H-2'), 3.82 (ddd, 1H, *J*_{4',5'}=4.9, 4.4, *J*_{4',3'}=3.2, H-4'), 3.89 (ddd, 1H, $J_{3',2'}=5.4$, $J_{3',OH}=4.8$, $J_{3',4'}=3.2$, H-3'), 4.58 (d, 1H, $J_{1',2'}=7.1$, H-1'), 4.85 (t, 1H, J_{OH,5'}=5.5, OH-5'), 4.98 (d, 1H, J_{OH,3'}=4.8, OH-3'), 5.04 (d, 1H, J_{OH,2'}=7.1, OH-2'), 7.17-7.31 (m, 2H, H-3,5), 7.38-7.48 (m, 2H. H-2.6). ¹³C NMR (125.7 MHz. DMSO-d₆): 13.70 and 14.11 (CH₃CH₂CH₂CH₂N). 19.45. 19.98. 29.50 and 30.47 (CH₃CH₂CH₂CH₂N), 43.92 and 48.26 (CH₃CH₂CH₂CH₂N), 62.24 (CH2-5'), 71.66 (CH-3'), 77.97 (CH-2'), 82.86 (CH-1'), 85.45 (CH-4'), 126.27 and 126.31 (CH-2,3,5,6), 136.51 (C-4), 142.50 (C-1), 170.59 (CO). IR spectrum (KBr): 3399, 3334, 3278, 1619, 1568, 1512, 1430, 1405, 1381, 1307, 1210, 1179, 1119, 1103, 1080, 1047, 1018, 839, 682, 638 cm⁻¹. $[\alpha]_D^{20}$ –34.2 (*c* 3.30, MeOH). Anal. Calcd for C₂₀H₃₁NO₅: C, 65.73; H, 8.55; N, 3.83. Found: C, 65.35; H, 8.39; N, 3.72.

3.7.15. 1β -[4-(Dimethylcarbamoyl)phenyl]-1-deoxy-*D*-ribofuranose (**6***e*)

Compound **6e** was prepared from **5e** (150 mg, 0.240 mmol) according to general procedure, method A, in 95% yield, as a colourless oil, which after lyophylization furnished white powder, mp 103–105 °C. HRMS (ESI) for C₁₄H₁₈NO₅: [M–H] calculated, 280.1179; found, 280.1190. ¹H NMR (500.0 MHz, DMSO-*d*₆): 2.90 and 2.97 (2×br s, 2×3H, CH₃N), 3.53 and 3.56 (2×ddd, 2H, Jgem=11.7, J_{5',OH}=5.6, J_{5',4'}=4.5, H-5'), 3.65-3.71 (br m, 1H, H-2'), 3.83 (td, 1H, $J_{4',5'}=4.5$, $J_{4',3'}=3.3$, H-4'), 3.87-3.92 (br m, 1H, H-3'), 4.58 (d, 1H, *J*_{1',2'}=7.3, H-1'), 4.86 (t, 1H, *J*_{OH,5'}=5.6, OH-5'), 4.99 (br s, 1H, OH-3'), 5.06 (br d, 1H, *J*_{OH,2'}=7.1, OH-2'), 7.33–7.37 (m, 2H, H-3,5), 7.42–7.46 (m, 2H, H-2,6). ¹³C NMR (125.7 MHz, DMSO-*d*₆): 35.02 and 39.29 (CH₃N), 62.27 (CH₂-5'), 71.76 (CH-3'), 77.97 (CH-2'), 82.77 (CH-1'), 85.51 (CH-4'), 126.25 (CH-2,6), 127.01 (CH-3,5), 135.62 (C-4), 142.99 (C-1), 170.36 (CO). IR spectrum (KBr): 3333, 1613, 1569, 1520, 1493, 1407, 1401, 1305, 1265, 1218, 1182, 1114, 1087, 1053, 1018, 836, 693 cm⁻¹. $[\alpha]_D^{20}$ –26.1 (*c* 3.10, MeOH). Anal. Calcd for C₁₄H₁₉NO₅·0.5H₂O: C, 57.92; H, 6.94; N, 4.82. Found: C, 58.20; H, 6.85; N, 4.57.

3.7.16. 1β -[4-(Cyclopropylcarbamoyl)phenyl]-1-deoxy-*D*-ribofuranose (**6f**)

Compound **6f** was prepared from **5f** (140 mg, 0.220 mmol) according to general procedure, method A, in 89% yield, as a colourless oil, which after lyophylization furnished white powder, mp 94–98 °C. HRMS (ESI) for $C_{15}H_{18}NO_5$: [M–H] calculated, 292.1179; found, 292.1191. ¹H NMR (500.0 MHz, DMSO-*d*₆): 0.54–0.58 and

0.63–0.74 (2×m, 2×2H, CH₂-cycloprop), 2.83 (tq 1H, J=7.2, 4.2, CHcycloprop), 3.53 and 3.57 (2×ddd, 2×1H, J_{gem}=11.7, J_{5',OH}=5.4, $J_{5',4'}=4.6$, H-5'), 3.66 (ddd, 1H, $J_{2',1'}=7.1$, $J_{2',0H}=7.0$, $J_{2',3'}=5.4$, H-2'), 3.82 (td, 1H, J_{4',5'}=4.6, J_{4',3'}=3.6, H-4'), 3.88 (bddd, 1H, J_{3',2'}=5.4, J_{3',OH}=4.7, J_{3',4'}=3.6, H-3'), 4.60 (d, 1H, J_{1',2'}=7.1, H-1'), 4.82 (t, 1H, J_{OH,5'}=5.4, OH-5'), 4.93 (d, 1H, J_{OH,3'}=4.7, OH-3'), 5.01 (d, 1H, J_{OH.2'}=7.1, OH-2'), 7.43–7.46 (m, 2H, H-2,6), 7.74–7.78 (m, 2H, H-3,5), 8.42 (d, 1H, *I*=4.2, NH). ¹³C NMR (125.7 MHz, DMSO-*d*₆): 5.95 and 5.96 (CH₂-cycloprop), 23.20 (CH-cycloprop), 62.14 (CH₂-5'), 71.57 (CH-3'), 77.91 (CH-2'), 82.77 (CH-1'), 85.41 (CH-4'), 125.99 (CH-2,6), 127.08 (CH-3,5), 133.58 (C-4), 144.80 (C-1), 167.54 (CO). IR spectrum (KBr): 3452, 3355, 3316, 3262, 3093, 3007, 1733, 1649, 1633, 1614, 1571, 1538, 1525, 1504, 1493, 1422, 1320, 1306, 1277, 1211, 1189, 1120, 1080, 1047, 1016, 841, 809, 697, 640 cm $^{-1}$. $[\alpha]_D^{20}$ -24.8 (c 3.49, MeOH). Anal. Calcd for C₁₅H₁₉NO₅·2/3H₂O: C, 59.06; H, 6.71; N, 4.59. Found: C, 59.01; H, 6.71; N, 4.31.

3.7.17. 1β -[4-(Cyclohexylcarbamoyl)phenyl]-1-deoxy-*D*-ribofuranose (**6g**)

Compound 6g was prepared from 5g (120 mg, 0.177 mmol) according to general procedure, method A, in 85% yield, as a colourless oil, which after crystalisation from EA furnished white needles, mp 191–195 °C. HRMS (ESI) for C₁₈H₂₄NO₅: [M–H] calculated, 334.1649; found, 334.1657. ¹H NMR (500.0 MHz, DMSO-*d*₆): 1.06–1.17, 1.22–1.36, 1.57-1.64, 1.68-1.76 and 1.78-1.85 (5×m, 10H, H-2,3,4,5,6-cyclohex), 3.54 and 3.57 (2×ddd, 2×1H, Jgem=11.7, J5',OH=5.6, J5',4'=4.5, H-5'), $3.66 (ddd, 1H, J_{2',1'} = 7.0, J_{2',OH} = 6.9, J_{2',3'} = 5.3, H-2'), 3.70-3.79 (br m, 1H, J_{2',1'} = 7.0, J_{2',OH} = 6.9, J_{2',3'} = 5.3, H-2')$ H-1-cyclohex), 3.83 (td, 1H, J_{4',5'}=4.5, J_{4',3'}=3.7, H-4'), 3.88 (ddd, 1H, $J_{3',2'}=5.3, J_{3',OH}=4.9, J_{3',4'}=3.7, H-3'), 4.60(d, 1H, J_{1',2'}=7.0, H-1'), 4.83(t, t)$ 1H, J_{OH.5'}=5.6, OH-5'), 4.94 (d, 1H, J_{OH.3'}=4.9, OH-3'), 5.01 (d, 1H, *I*_{OH,2}'=6.9, OH-2'), 7.43-7.47 (m, 2H, H-2,6), 7.77-7.80 (m, 2H, H-3,5), 8.13 (d, 1H, J=8.0, NH). ¹³C NMR (125.7 MHz, DMSO-d₆): 25.17, 25.48 and 32.65 (CH₂-2,3,4,5,6-cyclohex), 48.49 (CH-1-cyclohex), 62.16 (CH2-5'), 71.56 (CH-3'), 77.95 (CH-2'), 82.85 (CH-1'), 85.39 (CH-4'), 125.93 (CH-2,6), 127.21 (CH-3,5), 134.06 (C-4), 144.67 (C-1), 165.45 (CO). IR spectrum (KBr): 3436, 3366, 3314, 3272, 2935, 2854, 1615, 1575, 1540, 1508, 1449, 1438, 1415, 1348, 1335, 1314, 1307, 1283, 1224, 1188, 1131, 1082, 1074, 1050, 1019, 839, 693, 635 cm⁻¹. $[\alpha]_D^{20}$ –27.1 (c 3.51, MeOH). Anal. Calcd for C18H25NO5·1H2O: C, 61.17; H, 7.70; N, 3.96. Found: C, 61.15; H, 7.60; N, 3.94.

3.7.18. 1β -[4-(Benzylcarbamoyl)phenyl]-1-deoxy-*D*-ribofuranose (**6**h)

Compound **6h** was prepared from **5h** (334 mg, 0.487 mmol) according to general procedure, method A, in 93% yield, as a colourless oil, which after lyophylization furnished white powder, mp 151-153 °C. HRMS (ESI) for C₁₉H₂₀NO₅: [M-H] calculated, 342.1336; found, 342.1343. ¹H NMR (500.0 MHz, DMSO-d₆): 3.54 (ddd, 1H, Jgem=11.6, J5'b,OH=5.5, J5'b,4'=4.6, H-5'b), 3.58 (ddd, 1H, J_{gem} =11.6, $J_{5'a,OH}$ =5.5, $J_{5'a,4'}$ =4.4, H-5'a), 3.67 (ddd, 1H, $J_{2',1'}$ =7.2, $J_{2',OH}=7.0, J_{2',3'}=5.3, H-2')$, 3.83 (ddd, 1H, $J_{4',5'}=4.6, 4.4, J_{4',3'}=3.5, H-2')$ 4'), 3.89 (ddd, 1H, *J*_{3',2'}=5.3, *J*_{3',OH}=4.9, *J*_{3',4'}=3.5, H-3'), 4.48 (d, 2H, J=6.2, CH₂Ph), 4.61 (d, 1H, J_{1',2'}=7.2, H-1'), 4.86 (t, 1H, J_{OH,5'}=5.5, OH-5'), 4.98 (d, 1H, J_{OH.3'}=4.9, OH-3'), 5.06 (d, 1H, J_{OH.2'}=7.0, OH-2'), 7.21-7.27 (m, 1H, H-p-Ph), 7.29-7.35 (m, 2H, H-o-Ph), 7.29-7.35 (m, 2H, H-m-Ph), 7.46-7.50 (m, 2H, H-2,6), 7.84-7.88 (m, 2H, H-3,5), 9.03 (t, 1H, J=6.2, NH). ¹³C NMR (125.7 MHz, DMSO-d₆): 42.77 (CH₂Ph), 62.19 (CH₂-5'), 71.64 (CH-3'), 78.02 (CH-2'), 82.76 (CH-1'), 85.49 (CH-4'), 126.18 (CH-2,6), 126.96 (CH-p-Ph), 127.24 (CH-3,5), 127.38 (CH-o-Ph), 128.53 (CH-m-Ph), 133.49 (C-4), 139.98 (C-i-Ph), 145.09 (C-1), 166.31 (CO). IR spectrum (KBr): 3440, 3324, 3264, 3088, 3063, 3030, 2938, 2885, 1637, 1614, 1587, 1571, 1535, 1505, 1496, 1454, 1422, 1318, 1309, 1286, 1210, 1120, 1080, 1046, 1041, 1030, 1017, 841, 699, 641, 616 cm⁻¹. $[\alpha]_D^{20}$ –29.0 (*c* 2.79, MeOH). Anal. Calcd for C₁₉H₂₁NO₅ · 0.2H₂O: C, 65.77; H, 6.22; N, 4.04. Found: C, 65.69; H, 6.09; N, 3.95.

3.7.19. 1β -[4-(Methylcarbamoyl)phenyl]-1-deoxy-D-

ribofuranose (**6i**)

Compound **6i** was prepared from **5i** (205 mg, 0.336 mmol) according to general procedure, method A, in 90% yield, as a colourless oil, which after lyophylization furnished white hygroscopic powder. HRMS (ESI) for C₁₃H₁₈NO₅: [M+H] calculated, 268.1179; found, 268.1181. ¹H NMR (499.8 MHz, DMSO- d_6): 2.78 (d, 3H, J=4.6, CH₃), 3.54 and 3.57 (2×ddd, 2H, J_{gem}=11.7, J_{5',OH}=5.4, J_{5',4'}=4.5, H-5'), 3.67 (dd, 1H, J_{2',1'}=7.2, J_{2',3'}=5.3, H-2'), 3.83 (td, 1H, J_{4',5'}=4.5, *J*_{4',3'}=3.4, H-4'), 3.89 (dd, 1H, *J*_{3',2'}=5.3, *J*_{3',4'}=3.4, H-3'), 4.60 (d, 1H, *J*_{1',2'}=7.2, H-1'), 4.83 (t, 1H, *J*_{0H,5'}=5.4, OH-5'), 4.96 (br s, 1H, OH-3'), 5.03 (br s, 1H, OH-2'), 7.44-7.48 (m, 2H, H-2,6), 7.76-7.80 (m, 2H, H-3,5), 8.38 (q, 1H, J=4.6, NH). ¹³C NMR (125.7 MHz, DMSO-d₆): 26.42 (CH₃), 62.18 (CH₂-5'), 71.63 (CH-3'), 77.91 (CH-2'), 82.75 (CH-1'), 85.47 (CH-4'), 126.12 (CH-2,6), 126.98 (CH-3,5), 133.69 (C-4), 144.73 (C-1), 166.70 (CO). IR spectrum (KBr): 3415, 3362, 3270, 3195, 1671, 1643, 1619, 1572, 1564, 1545, 1508, 1469, 1412, 1404, 1328, 1316, 1305, 1217, 1186, 1161, 1129, 1108, 1074, 1052, 1035, 1016, 836, 706 cm⁻¹. $[\alpha]_D^{20}$ –26.4 (*c* 3.46, MeOH). Anal. Calcd for C₁₃H₁₇NO₅·1H₂O: C, 54.73; H, 6.71; N, 4.91. Found: C, 54.61; H, 6.52; N, 4.73.

3.7.20. 1β -[4-(Carbamoyl)phenyl]-1-deoxy-D-ribofuranose (**6***j*)

Compound **6** was prepared from **5** (332 mg, 0.557 mmol) according to general procedure, method B, in 90% yield, as a colourless oil, which after lyophylization furnished white powder, mp 166–172 °C. HRMS (ESI) for C₁₂H₁₆NO₅: [M+H] calculated, 254.1023; found, 254.1023. ¹H NMR (499.8 MHz, DMSO-d₆): 3.54 (ddd, 1H, J_{gem}=11.6, J_{5'b,OH}=5.6, J_{5'b,4'}=4.6, H-5'b), 3.57 (ddd, 1H, J_{gem} =11.6, $J_{5'a,4'}$ =5.6, $J_{5'a,4'}$ =4.4, H-5'a), 3.67 (ddd, 1H, $J_{2',1'}$ =7.2, $J_{2',OH}=7.0, J_{2',3'}=5.3, H-2')$, 3.83 (ddd, 1H, $J_{4',5'}=4.6, 4.4, J_{4',3'}=3.4, H-10$ 4'), 3.89 (ddd, 1H, *J*_{3',2'}=5.3, *J*_{3',OH}=4.8, *J*_{3',4'}=3.4, H-3'), 4.61 (d, 1H, *J*_{1',2'}=7.2, H-1'), 4.82 (t, 1H, *J*_{OH,5'}=5.6, OH-5'), 4.93 (d, 1H, *J*_{OH,3'}=4.8, OH-3'), 5.01 (d, 1H, J_{OH.2}'=7.0, OH-2'), 7.31 (br s, 1H, NH_aH_b), 7.45 (m, 2H, H-2,6), 7.82 (m, 2H, H-3,5), 7.92 (br s, 1H, NH_aH_b). ¹³C NMR (125.7 MHz, DMSO-d₆): 62.17 (CH₂-5'), 71.63 (CH-3'), 77.94 (CH-2'), 82.75 (CH-1'), 85.45 (CH-4'), 126.03 (CH-2,6), 127.41 (CH-3,5), 133.43 (C-4), 144.97 (C-1), 167.98 (CO). IR spectrum (KBr): 3442, 3349, 3288, 3238, 3199, 1649, 1614, 1599, 1568, 1513, 1418, 1394, 1309, 1211, 1189, 1131, 1100, 1080, 1052, 1016, 841, 830, 633 cm⁻¹. $[\alpha]_{D}^{20}$ –31.1 (c 2.80, MeOH). Anal. Calcd for C₁₂H₁₅NO₅·0.2H₂O: C, 56.11; H, 6.04; N, 5.45. Found: C, 56.18; H, 6.01; N, 5.34.

Acknowledgements

This work is a part of the research project Z4 055 905. It was supported by the Ministry of Education (LC 512), by the Grant Agency of the ASCR (IAA400550902) and by Gilead Sciences, Inc. Cytostatic activity was studied by Dr. I. Votruba (IOCB) and Dr. Gabriel Birkus and Dr. Tomas Cihlar (Gilead Sciences, Inc.).

Supplementary data

Copies of the ¹H and ¹³C NMR spectra of all new compounds. Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2009.04.006.

References and notes

 Reviews: (a) Wang, L; Schultz, P. G. Chem. Commun. 2002, 1–11; (b) Henry, A. A.; Romesberg, F. E. Curr. Opin. Chem. Biol. 2003, 7, 727–733; (c) Kool, E. T.; Morales, J. C.; Guckian, K. M. Angew. Chem., Int. Ed. 2000, 39, 990–1009; (d) Kool, E. T. Acc. Chem. Res. 2002, 35, 936–943; Recent examples: (e) Matsuda, S.; Fillo, J. D.; Henry, A. A.; Rai, P.; Wilkens, S. J.; Dwyer, T. J.; Geierstanger, B. H.; Wemmer, D. E.; Schultz, P. G.; Spraggon, G.; Romesberg, F. E. J. Am. Chem. Soc. 2007, 129, 10466–10473; (f) Leconte, A. M.; Hwang, G. T.; Matsuda, S.; Capek, P.; Hari, Y.; Romesberg, F. E. J. Am. Chem. Soc. 2008, 130, 2336–2343; (g) Hari, Y.; Hwang, G. T.; Leconte, A. M.; Joubert, N.; Hocek, M.; Romesberg, F. E. *ChemBioChem* **2008**, 9, 2796–2799.

- Examples: (a) Franchetti, P.; Cappellacci, L.; Griffantini, M.; Barzi, A.; Nocentini, G.; Yang, H. Y.; O'Connor, A.; Jayaram, H. N.; Carrell, C.; Goldstein, B. M. J. Med. Chem. 1995, 38, 3829–3837; (b) Walker, J. A.; Liu, W.; Wise, D. S.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1998, 41, 1236–1241; (c) Aketani, S.; Tanaka, K.; Yamamoto, K.; Ishihama, A.; Cao, H.; Tengeiji, A.; Hiraoka, S.; Shiro, M.; Shionoya, M. J. Med. Chem. 2002, 45, 5594–5603.
- 3. Review: Wu, Q. P.; Simons, C. Synthesis 2004, 1533-1553.
- Recent examples of efficient procedures to C-nucleosides: (a) Reese, C. B.; Wu, Q. Org. Biomol. Chem. 2003, 1, 3160–3172; (b) Sun, Z.; Ahmed, S.; McLaughlin, L. W. J. Org. Chem. 2006, 71, 2922–2926; (c) Hainke, S.; Arndt, S.; Seitz, O. Org. Biomol. Chem. 2005, 3, 4233–4238; (d) Singh, I.; Seitz, O. Org. Lett. 2006, 8, 4319–4322; (e) Hainke, S.; Singh, I.; Hemmings, J.; Seitz, O. J. Org. Chem. 2007, 72, 8811–8819.
- (a) Hocek, M.; Pohl, R.; Klepetářová, B. *Eur. J. Org. Chem.* 2005, 4525–4528; (b) Urban, M.; Pohl, R.; Klepetářová, B.; Hocek, M. *J. Org. Chem.* 2006, 71, 7322– 7328; (c) Joubert, N.; Pohl, R.; Klepetářová, B.; Hocek, M. *J. Org. Chem.* 2007, 72, 6797–6805; (d) Bárta, J.; Pohl, R.; Klepetářová, B.; Ernsting, N. P.; Hocek, M. *J. Org. Chem.* 2008, 73, 3798–3806; (e) Joubert, N.; Urban, M.; Pohl, R.; Hocek, M. Synthesis 2008, 1918–1932.
- Recent reviews: (a) Chen, L.; Petrelli, R.; Felczak, K.; Gao, G.; Bonnac, L.; Yu, J. S.; Bennett, E. M.; Pankiewicz, K. W. *Curr. Med. Chem.* **2008**, *15*, 650–670; (b) Chen, L. Q.; Pankiewicz, K. W. *Curr. Opin. Drug Discovery Dev.* **2007**, *10*, 403–412.
- (a) Srivastava, P. C.; Pickering, M. V.; Allen, L. B.; Streeter, D. G.; Campbell, M. T.; Witkowski, J. T.; Sidwell, R. W.; Robins, R. K. J. *Med. Chem.* **1977**, *20*, 256–262; (b) Robins, R. K.; Srivastava, P. C.; Narayanan, V. L.; Plowman, J.; Paull, K. D. J. Med. *Chem.* **1982**, *25*, 107–108; (c) Gebeyehu, G.; Marquez, V.; Vancott, A.; Cooney, D. A.; Kelley, J. A.; Jayaram, H. N.; Ahluwalia, G. S.; Dion, R. L.; Wilson, Y. A.; Johns,

D. G. J. Med. Chem. **1985**, 28, 107–108; (d) Franchetti, P.; Cappellacci, L.; Perlini, P.; Jayaram, H. N.; Butler, A.; Schneider, B. P.; Collart, F. R.; Huberman, E.; Grifantini, M. J. Med. Chem. **1998**, 41, 107–108; (e) Franchetti, P.; Marchetti, S.; Cappellacci, L.; Jayaram, H. N.; Yalowitz, J. A.; Goldstein, B. M.; Barascut, J. L.; Dukhan, D.; Imbach, J. L.; Grifantini, M. J. Med. Chem. **2000**, 43, 1264–1270.

- 8. Krohn, K.; Heins, H.; Wielckens, K. J. Med. Chem. **1992**, 35, 511–517.
- (a) Jayaram, H. N.; Gharehbaghi, K.; Jayaram, N. H.; Rieser, J.; Krohn, K.; Paull, K. D. Biochem. Biophys. Res. Commun. 1992, 186, 1600–1606; (b) Gharehbaghi, K.; Paull, K. D.; Kelley, J. A.; Barchi, J. J.; Marquez, V. E.; Cooney, D. A.; Monks, A.; Scudiero, D.; Krohn, K.; Jayaram, H. N. Int. J. Cancer 1994, 56, 892–899; (c) Saunders, P. P.; Arimilli, S.; Krohn, K.; Muhs, M. A.; Alvarez, E.; Survelyer, R. Anti-Cancer Drugs 1996, 7, 93–99; (d) Grush, M.; Rosenberger, G.; Fuhrman, G.; Braun, K.; Titscher, B.; Szekeres, T.; Fritzer-Szekeres, M.; Oberhuber, G.; Kruhn, K.; Hengstschlaeger, M.; Krupitza, G.; Jayaram, H. N. Cell Death Differ. 1999, 8, 736–744; (e) Krohn, K.; Dorner, H.; Zukowski, M. Curr. Med. Chem. 2002, 9, 727–731; (f) Gharehbaghi, K.; Grunberger, W.; Jayaram, H. N. Curr. Med. Chem. 2002, 9, 743–748; (g) Szekeres, T.; Sedlak, J.; Novotny, L. Curr. Med. Chem. 2002, 9, 759–764.
- (a) Fridland, A. Cancer Res. **1986**, 46, 532–537; (b) Zatorski, A.; Watanabe, K. A.; Carr, S. F.; Goldstein, B. M.; Pankiewicz, K. W. J. Med. Chem. **1996**, 39, 2422– 2426; (c) Pankiewicz, K. W. Pharmacol. Ther. **1997**, 76, 89–100; (d) Pankiewicz, K. W.; Patterson, S. E.; Black, P. L.; Jayaram, H. N.; Risal, D.; Goldstein, B. M.; Stuyver, L. J.; Schinazi, R. F. Curr. Med. Chem. **2004**, *11*, 887–900.
- 11. Review: Barnard, C. F. J. Organometallics 2008, 27, 5402-5422.
- 12. Sanpei, K.; Saito, Y.; Imoto, M.; Umezawa, K.; Kato, K. *Bioorg. Med. Chem. Lett.* **1996**, 6, 2487–2490.
- Martinelli, J. R.; Watson, D. A.; Freckmann, M. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7102–7107.
- Štefko, M.; Pohl, R.; Klepetářová, B.; Hocek, M. Eur. J. Org. Chem. 2008, 1689– 1704.