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Abstract: A xanthene-based bismuthane/phosphane che-
lating ligand has been accessed that has enabled the syn-
thesis of a palladium(0) bismuthane complex. The bis-
muthane donor proved to be hemilabile as it switched to
a dangling position upon addition of O2 that gave a palla-
dium(II) peroxide complex. Unlike the corresponding 4,5-
bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos)
palladium peroxide, the bismuth analogue could be em-
ployed for catalytic phosphane oxidation and oxidative
phenol coupling.

A lively area of current research is concerned with the directed
construction of compounds, in which two different metals in-
teract. Such investigations are motivated to uncover new prop-
erties, emerging through the M···M’ contact or to develop new
modes of cooperative reactivity.[1] Focusing on bismuth(III) as
part of such heterometallic entities, it is noted that only few
complexes exist, in which a transition metal neighbors Bi di-
rectly, and most of them feature a covalent bonding situation,
that is, a metal–metal bond.[2] Some compounds have been
isolated, which showed that bismuthanes principally can act as
donor ligands;[3] however, their number is rather limited, and
because of their reduced donor abilities, bismuthanes were
called the Cinderellas among Group 15/16 ligands.[3b] Those
bismuthane complexes, which are known, mainly contain
Group 6–8 central atoms,[2] and until recently, closed-shell
M···Bi interactions, for M representing a late-transition metal,
remained virtually unexplored.[4] In 2012, we and concomitant-
ly Gabbaı̈ and co-workers established bismuth–late-metal
bonds through a different kind of metallophilic interaction.
The Lewis acidity of BiIII in an ambiphilic PBiP ligand system
(Ph2P-C6H4-Bi(Cl)-C6H4-PPh2), employed as such[5] or generated
in situ,[6] was exploited to bind AuI, PtII and PdII centers, which
acted as s donors. It was further shown that upon replacement
of the Cl residue at Bi against less electronegative ligands, the

character of the bismuthane changed from acceptor to pre-
dominantly donor.[7]

The insights gained tethering bismuthane functions with
phosphane units as in the PBiP ligand mentioned above for
the complexation of late transition metals, led us to pursue fur-
ther promising bismuthane/phosphane combinations. The xan-
thene backbone has been used for the construction of a varie-
ty of potent bidentate ligands and complexes that exhibit in-
teresting reactivity.[8] Mostly, these ligands contain two aryl
phosphane units (rarely also mixed P/N donors), the most
prominent representative being 4,5-bis(diphenylphosphino)-
9,9-dimethylxanthene (Xantphos; Figure 1, left).

Hence, we were interested to replace (formally) one of the
phosphane functions in Xantphos by a bismuthane unit (BiPh2)
and to then investigate the coordination properties of the new
potential ligand Xan(PPh2)(BiPh2) towards a Group 10 metal in
the oxidation state 0. Herein, we present the synthesis of
Xan(PPh2)(BiPh2), its reactivity towards a Pd0 precursor, and the
activation of O2 by the resulting complex.

The synthesis of Xan(PPh2)(BiPh2) started with the introduc-
tion of the phosphane fragment to the xanthene backbone ac-
cording to a modified literature procedure.[9] For this, XanBr2

was lithiated with one equivalent of phenyllithium and then
treated with one equivalent of Ph2PCl in tetrahydrofuran. The
bismuthane unit was then introduced through a second lithia-
tion and a subsequent reaction with Ph2BiCl (Scheme 1). After
work-up, a white solid was isolated, which was identified as
Xan(PPh2)(BiPh2) by NMR spectroscopy, elemental analysis, and
ESI MS data. Single-crystals of Xan(PPh2)(BiPh2) that were suit-
able for an X-ray diffraction analysis were obtained by diffusion
of hexane into a saturated solution of Xan(PPh2)(BiPh2) in tolu-
ene (Figure 2).

The bismuth atom exhibits the typical structural features of
triply arylated bismuthanes, so that the sum of the angles

Figure 1. Selected complexes with xanthene-based phosphane ligands
(P = PPh2).[8a–c]
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around the BiIII atom amounts to only 279.818.[10] The phenyl
residues at the P and Bi atoms are pointing away from each
other, and the BiIII···PIII distance is 4.2096(15) �.

Bearing in mind the scarcity of complexes with Pd···Bi inter-
actions (apart from a cluster[11] and a complex[10a] containing
Pd�Bi metal bonds, only a PdII!Bi complex of the above-men-
tioned ambiphilic pincer ligand is known[6]) the potential of
Xan(PPh2)(BiPh2) to bind Pd0 was investigated. Therefore, a
mixture of Xan(PPh2)(BiPh2) and 0.25 equivalents of [Pd2(dba)3]
(dba = bis(dibenzylideneacetone)) was dissolved in tetrahydro-
furan, and a color change from dark red to yellow was ob-
served within a few minutes (Scheme 2).

In the 31P{1H} NMR spectrum of a solution in C6D6, the phos-
phane donor gave rise to a signal at d= 20.8 ppm, shifted by
37 ppm in comparison to unbound Xan(PPh2)(BiPh2). The
proton NMR spectrum displayed two new singlet signals for
the methyl groups (d= 1.56 and 1.71 ppm) of the xanthene
backbone. Suitable crystals for an X-ray diffraction analysis
could be grown by diffusion of diethylether into a saturated
solution of the product in acetonitrile at room temperature
and the corresponding molecular structure determined is
shown in Figure 3.

The complex was identified as [(Xan(PPh2)(BiPh2))2Pd] (1),
that is, the Pd0 center is surrounded by two ligand molecules.
Both phosphorus and bismuth donors are bound, so that a tet-
rahedral coordination sphere results. The distances of
Bi1A···Pd1A 2.7342(11) � and Bi2A···Pd1A 2.7845(11) � indicate
a significant interaction between these atoms, because the
values are significantly smaller than the sum of the corre-
sponding van der Waals radii (3.70 �).[12] To clarify the nature of
the metallophilic Bi···Pd interactions present, DFT calculations
(B3LYP) were carried out for 1, and a natural bond orbital
(NBO) analysis revealed one dominating donor–acceptor inter-
action between the filled atomic orbital of bismuth (6s) and
the empty atomic orbital of palladium (5s), and thus, an unpre-
cedented to date Bi!Pd ligation. The corresponding average
NBO deletion energy amounts to 61.9 kcal mol�1 (Bi1A!Pd1A
67.1 and Bi2A!Pd1A 56.8 kcal mol�1).

Because a series of different P-ligand-based Pd0 complexes
are known, which are able to react with dioxygen forming pal-
ladium(II) peroxido complexes,[13] the reaction behavior of com-
plex 1 towards the activation of O2 was tested.

Scheme 1. Synthesis of the potential ligand Xan(PPh2)(BiPh2).

Figure 2. Molecular structure of Xan(PPh2)(BiPh2): (left) front view, (right) top
view. All hydrogen atoms are omitted for clarity. Selected bond lengths [�]
and angles [8]: C2�Bi1 2.273(2), C29�Bi1 2.223(3), Bi1�C30A 2.256(4), C36�P1
1.865(3), C42�P1 1.886(3), C14�P1 1.832(3), P1···Bi1 4.2096(15); C29-Bi1-C2
91.53(10), C30A-Bi1-C2 93.38(12), C14-P1-C36 103.59(14), C14-P1-C42
102.11(13), C29-Bi1-C30A 94.90(13).

Scheme 2. Synthesis of a Pd0 complex 1 (P = PPh2, Bi = BiPh2).

Figure 3. Molecular structure of 1·MeCN. The co-crystallized MeCN solvent
molecule and hydrogen atoms are omitted for clarity. Selected bond lengths
[�] and angles [8]: P1A�Pd1A 2.290(3), P2A�Pd1A 2.297(3), Bi1A�Pd1A
2.7342(11), Bi2A�Pd1A 2.7845 (11); P1A-Pd1A-P2A 129.07(12), P1A-Pd1A-
Bi1A 105.67(9), P2A-Pd1A-Bi1A 106.86(8), P1A-Pd1A-Bi2A 105.97(8), P2A-
Pd1A-Bi2A 107.51(8), Bi1A-Pd1A-Bi2A 97.27(3).
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After treatment of complex 1 with dioxygen in n-hexane, a
light yellow precipitate was formed within a few minutes,
which was analyzed by infrared spectroscopy (Scheme 3). The
solid-state IR spectrum (ATR) showed one characteristic absorp-
tion band at ũ= 920 cm�1, which can be assigned to a O�O
stretching vibration of a h2-peroxido ligand.[13] For the 18O iso-
topically labeled complex a shift of Dũ= 52 cm�1 to higher
wavelengths could be observed (Figure 4).

Upon cooling of a saturated solution of the product in tolu-
ene/n-hexane (1:2) to �30 8C for 16 hours, crystals were grown,
and an X-ray diffraction analysis revealed the molecular struc-
ture of [(Xan(PPh2)(BiPh2))2PdO2] (2 ; Figure 5).

The PdII center is coordinated in a distorted square-planar
coordination sphere by the phosphane units and the peroxide
ligand, whereas the bismuthane units remain dangling. Ac-
cordingly, these bismuthane donors in 1 can be considered as
hemilabile[14]: they readily give way to an external substrate,
such as O2, but in 1, they serve to fill the otherwise vacant co-
ordination sites. The crystallographically determined O2�O2’
bond length of 1.433(5) � is within the typical range of known
PdII(h2-O2) complexes,[13] and also the Pd1�O2/O2’ distances
are with 2.015(3) � characteristic.[13]

Compound 2 decomposes rapidly in solution, but as a solid
2 is stable for months at room temperature. Dissolving 2 in a

solvent leads to the loss of the peroxido unit with regeneration
of the Pd0 complex 1. The hemilabile behavior of the bismuth-
anes triggered investigations on the potential of 2 as an oxi-
dant, because some of the known Pd�O2 complexes have
been reported to perform oxidations.[15]

Due to the low stability of 2 in solution, dioxygen was
added to a mixture of complex 1 and five equivalents of PPh3

in tetrahydrofuran.[17] A discoloration of the solution was ob-
served immediately. By using 31P{1H} NMR spectroscopy, the
formation of OPPh3 (80 %, TON= 4.0; based on PPh3) was de-
tected (Scheme 4). Although we could not obtain evidence for
any intermediate of the catalytic cycle, a conceivable mecha-
nism could include a bis(m-oxido) species generated after the
first O atom transfer or the insertion of phosphane into the
Pd�O2 bonds.[16]

Employing 2,4-di-tert-butylphenol as a substrate (5 equiv in
THF) led to the formation of the coupling product 3,3’,5,5’-
tetra-tert-butyl-2,4-bisphenol (37 %; based on complex 1). For
the analogous reaction with 9,10-dihydroanthracene, no reac-
tivity was observed.

To investigate the influence of the bismuthane units in 1 for
O2 activation and subsequent substrate oxidation, the analo-

Scheme 3. Synthesis of a PdII peroxido complex 2 (P = PPh2, Bi = BiPh2).

Figure 4. ATR-FTIR spectra of 16O-2 (black) and 18O-2 (red) between 1150 and
400 cm�1.

Figure 5. Molecular structure of 2. All hydrogen atoms are omitted for clari-
ty. Selected bond lengths [�] and angles [8]: Pd1�O2 2.015(3), Pd1�P1
2.3175(9), O2�O2’ 1.433(5), Bi1···P1 4.4507(12), Bi1···Pd1 4.2233(16); O2-Pd1-
O2’ 41.65(15), O2-Pd1-P1 104.14(8), O2’-Pd1-P1 144.76(8), P1-Pd1-P1’
110.84(5).

Scheme 4. Reactions of complex 1 with PPh3 and 2,4-di-tert-butylphenol in
the presence of dioxygen.
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gous bis-ligated Pd0 complex [(Xantphos)2Pd] (3) based on the
Xantphos ligand[8e] was prepared in situ and also reacted with
molecular dioxygen in THF to generate a PdII peroxido com-
plex (Scheme 5).

Formation of a crystalline, yellow green solid was observed,
which was analyzed by infrared spectroscopy. A characteristic
absorption band at ũ= 907 cm�1, shifting by 67 cm�1 upon
usage of 18O2 was observed again, suggestive of a O�O
stretching vibration and formation of a peroxide complex.[13]

Upon cooling a saturated solution of the product in tetrahy-
drofuran to �30 8C for 16 hours, crystals could be grown, and
an X-ray diffraction analysis identified the product as [(Xant-
phos)2PdO2] (4 ; Figure 6). In comparison to 2, complex 4 con-
tains only one ligand molecule, coordinating to the metal
center by both phosphane donors. The palladium(II) center is
found in a square planar coordination sphere, and the O2�O2’
distance of 1.422(5) �, as well as the Pd1�O2 distance of
2.015(3) � (Pd1�O2’ is the same) are similar to those found for
compound 2.

Compound 4 proved to be stable in solution, that is, neither
elimination of O2 nor reformation of 3 was observed. Once iso-
lated, 4 showed a rather low solubility in common aprotic sol-
vents. Because the precursor 3 showed the same behavior, the
reactivity of 4 was studied best by preparing first 3 and then 4
in situ.[17]

The reaction with PPh3 led to the formation of OPPh3 with
yields of 31 % (based on complex 3) ; hence, unlike 2, 4 does
not even achieve one oxygen-atom transfer (OAT) turnover. In
the presence of 2,4-di-tert-butylphenol as a substrate, no oxi-

dation or coupling product was observed. Also attempts to
perform C�H bond activations failed.

In conclusion, first reactivity studies exhibit a higher reactivi-
ty for the bismuthane based complex 2 in comparison to 4
concerning the tested substrates PPh3 and 2,4-di-tert-butylphe-
nol. Apparently, the hemilabile character of the bismuth
groups exerts a positive effect on the reactivity of the palladi-
um peroxide complex 2 and restricts decomposition under
turnover conditions. Further studies, especially with regard to
the complexation behavior of the new bismuth-based ligand
Xan(PPh2)(BiPh2) towards other late transition metals and their
reactivity towards small molecules are ongoing.
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COMMUNICATION

& Bismuth

K. Materne, B. Braun-Cula, C. Herwig,
N. Frank, C. Limberg*

&& –&&

Bismuthanes as Hemilabile Donors in
an O2-Activating Palladium(0)
Complex New character trait of bismuthanes :

Pd0 chelated by a phosphino/bismuthi-
no ligand reacted with dioxygen to
form a palladium(II) peroxido complex
(see scheme). In this reaction, the bis-
muthane donor acts as a hemilabile

ligand that leaves when O2 enters and
comes back, upon O2 elimination. This
feature proved to be favorable for the
properties of the peroxide as an oxi-
dant.
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