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ABSTRACT: A stable dialkylphosphinyl radical, 2,2,5,5-tatrakis-
(trimethylsilyl)-1-phosphacyclopentan-1-yl (RH

2P
•), showed both

irreversible one-electron oxidation and reduction peaks at −0.24 and
−2.29 V vs ferrocene/ferrocenium couple. One-electron reduction of
RH

2P
• with KC8 in the presence of 18-crown-6 (18-c-6) or

[2.2.2]cryptand (crypt-222) gave the corresponding phosphides
[K(18-c-6)]+[RH

2P]
− and [K(crypt-222)]+[RH

2P]
−. Whereas [K(18-

c-6)]+[RH
2P]

− exists as a contact ion pair, [K(crypt-222)]+[RH
2P]

−

exists as a solvent-separated ion pair in the solid state. Reaction of
RH

2P
• with AgOTf afforded an unexpected product, a silver(I)

phosphaalkene complex.

Two-coordinate phosphorus-centered radicals (R2P
•, phos-

phinyl radicals) are one of the representative reactive
intermediates in phosphorus chemistry.1−3 Since phosphinyl
radicals are expected to afford the corresponding phosphides
R2P

− and phospheniums R2P
+ by redox reactions and these

three species still have lone pairs, they can act as redox-active
(noninnocent) ligands for transition metals as well as aminyl
radicals.4 Several dicoordinate stable phosphinyl radicals have
been studied extensively in recent years; however, the redox
behavior of phosphinyl radicals is still unclear. Previously we
synthesized the stable and spin-localized dialkylphosphinyl
radical 1 (RH

2P
•), as shown in Scheme 1.5 We report herein the

redox properties of phosphinyl radical 1: the electrochemical
behavior of 1 using cyclic voltammetry and chemical redox
reactions of 1 involving formation of phosphide anions [K(18-
c-6)]+1− and [K(crypt-222)]+1− (18-c-6 = 18-crown-6, crypt-
222 = [2.2.2]cryptand) by reduction with KC8 and the
unexpected formation of the phosphaalkene silver(I) complex
2 by the reaction with AgOTf as an oxidant.
The cyclic voltammogram of radical 1 in THF showed

irreversible oxidation and reduction waves at −0.24 and −2.29
V (vs Fc/Fc+ couple; Fc = ferrocene) (Figure S14 in the
Supporting Information). The reduction potential of 1 (−2.29
V) is more cathodic than that of the structurally similar
phosphaalkene 3 (−3.01 V), while the oxidation potential of 1
is considerably lower than that of the dialkylphosphine RH

2PH

(Epa = +0.76 V). The low oxidation and reduction potentials of
1 can be explained by the unpaired electron lying on the 3p
orbital of the phosphorus atom of 1.5a

Reduction of phosphinyl radical 1 with KC8 in the presence
of 18-c-6 in THF at room temperature for 3 h gave yellow
crystals of the potassium phosphide [K(18-c-6)]+1− in 68%
yield (Scheme 2). A similar reaction in the presence of crypt-

222 afforded [K(crypt-222)]+1− as orange crystals in 86% yield.
The structures of both [K(18-c-6)]+1−and [K(crypt-222)]+1−

were determined by NMR spectroscopy and X-ray diffraction
(XRD) analysis. Both of them are protonated gradually to give
RH

2PH in THF.
The molecular structure of [K(18-c-6)]+1− is a contact ion

pair structure with monomeric form (Figure 1a), while
[K(crypt-222)]+1− exists as a solvent-separated ion pair in
the solid state (Figure S17 in the Supporting Information).6

The shortest distance between the potassium and phosphorus
atoms in [K(18-c-6)]+1− is 3.3079(11) Å, which is in the range
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Scheme 1. Phosphinyl Radical and Related Compounds

Scheme 2. Reactions of 1a

aAbbreviations: 18-c-6, 18-crown-6; crypt-222, [2.2.2]cryptand.
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of reported monomeric potassium phosphides (3.2198(10)−
3.4822(9) Å).7 The electropositive potassium atom of the
phosphide [K(18-c-6)]+1− increases the p character of its
nonbonding electron pair orbital; the sum of the bond angles
around the phosphorus atom is 344.16(9)°, which is larger than
those of RH

2PCl (304.76(9)°).
5

Reaction of 1 with 1.5 equiv of AgOTf in C6H6 at room
temperature afforded the phosphaalkene silver(I) complex 2
and Me3SiOTf in 92% and 90% yields with the precipitation of
silver, instead of the expected phosphenium cation RH

2P
+.

Reaction of 1 with 1 equiv of AgOTf gave 2 and unreacted 1.
The molecular structure of 2 determined by XRD analysis is
shown in Figure 1b. The silver atom adopts a planar three-
coordinated geometry with two cyclic phosphaalkenes and one
OTf ligand: the sum of the bond angles around the Ag atom is
360.0(1)°.8

The formation of the silver complex 2 can be explained by
the following mechanism. Initial formation of phosphinosulfo-
nate RH

2POTf (4) by the oxidation of phosphinyl radical 1 with
AgOTf and the subsequent elimination of trimethylsilyl triflate
from 4 provide 3. Coordination of the resulting phosphaalkene
3 to 1/2 equiv of AgOTf provides 2.9,10 Reactions of (1)
phosphaalkene 3 with AgOTf, giving 2, and (2) RH

2PCl with
AgOTf, giving 3, support the aforementioned mechanism.11

In conclusion, we disclosed the redox behavior of the isolable
phosphinyl radical 1. Radical 1 shows oxidation and reduction
irreversible waves at −0.24 and −2.29 V. Corresponding to the
observed electrochemical redox behavior, reduction of 1 with
KC8 gave the phosphides [K(18-c-6)]+1− and [K(crypt-
222)]+1−, and oxidation of 1 with AgOTf afforded an
unexpected product, phosphaalkene silver(I) complex 2.
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