

Phosphorus, Sulfur, and Silicon and the Related Elements

ISSN: 1042-6507 (Print) 1563-5325 (Online) Journal homepage: http://www.tandfonline.com/loi/gpss20

Simple synthesis of (E) and (Z)-2-(arylmethylidene)-N-phenyl succinimides via Wittig olefination by using PS-TPP resin

Mohammad Bayat, Seyedeh Razieh Hosseini & Elnaz Asmari

To cite this article: Mohammad Bayat, Seyedeh Razieh Hosseini & Elnaz Asmari (2016): Simple synthesis of (E) and (Z)-2-(arylmethylidene)-N-phenyl succinimides via Wittig olefination by using PS-TPP resin, Phosphorus, Sulfur, and Silicon and the Related Elements, DOI: <u>10.1080/10426507.2016.1225739</u>

To link to this article: <u>http://dx.doi.org/10.1080/10426507.2016.1225739</u>

View supplementary material 🖸

Accepted author version posted online: 24 Aug 2016. Published online: 24 Aug 2016.

1	
l	
1	

Submit your article to this journal 🗹

Article views: 12

\mathbf{Q}

View related articles 🕑

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gpss20

Simple synthesis of (*E*) and (*Z*)-2-(arylmethylidene)-*N*-phenyl succinimides via Wittig olefination by using *PS-TPP* resin

Mohammad Bayat, Seyedeh Razieh Hosseini, and Elnaz Asmari

Department of Chemistry, Imam Khomeini International University, Qazvin, Iran

ABSTRACT

PS-Triphenylphosphine resin has been used in the Wittig reaction to prepare (E)- and (Z)-2-(arylmethylidene)-N-phenylsuccinimides. PS-TP phosphoranylidene-N-phenylsuccinicimide has been obtained from PS-TPP and N-phenylmaleimide. The Wittig reaction of stabilized PS-TPP ylide with an aromatic aldehyde produced the (E)-alkene as the major product, isolated in high yields by simple filtration of PS-resin, from the reaction mixture. The better stabilized PS-TPP succinic anhydride does not react in the same conditions.

ARTICLE HISTORY Received 3 March 2016

Accepted 15 August 2016

GRAPHICAL ABSTRACT

Introduction

Phosphorus ylides are useful intermediates, which have been used in many reactions and are involved the synthesis of organic compounds.^{1–7} Phosphorus ylides using triphenylphosphine (*TPP*) and maleic anhydride or maleimides were first reported by Hudson⁸ and Hedaya,⁹ but virtually no additional chemistry was reported until the early 2000s.¹⁰

Medicinal chemists in the pharmaceutical industry now routinely utilize solid-phase organic synthesis to prepare libraries of small organic molecules for screening.¹¹⁻¹⁴ Polymer-supported reagents (*PS*-reagents) have been in use since the 1960s, and have been the subject of several review articles.^{15,16} Using *PS*reagents is attractive and suitable for parallel synthesis because the reactions are often very clean and high yielding, and the workup involves simple filtration and evaporation of the solvent.

For some years it has been possible to perform some *Wit*tig reactions with polymer-supported triphenylphosphine (*PS*-*TPP*) instead of triphenylphosphine (*TPP*). The treatment of *PS*-*TPP* with maleic anhydride or *N*-aryl maleimide afford cross-linked phosphorous ylides. These ylides undergo different chemical transformations. The application of *PS*-phosphonium ylides in the *Wittig* reaction enables the preparation of solutions of practically pure olefins free from phosphine oxide or phosphinium salt impurities, which remain connected to the polymer. These ylides react with aromatic aldehydes with the formation of olefins with high stereoselectivity. We wish to report a simple synthetic route to stabilized *PS*-phosphorus ylides **2a** and **2b** using *PS*-*TPP* and maleic anhydride or *N*-aryl maleimide (Scheme 1), which undergo a smooth reaction with readily available aromatic aldehydes in boiling toluene to produce (*E*)- and (*Z*)-2-(arylmethylidene)-*N*-phenylsuccinimides (Scheme 2).

The methodology of *TPP* and *N*-aryl maleimide have been well described in the recent literature, but a limited number of papers have reported on Triphenylphosphoranylidenesuccinic anhydride (*TPPSA*) *Wittig* olefination reactions,^{17–19} and to the best of our knowledge, there are no reports on the synthesis of these compounds by *PS-TPP via Wittig* reaction. Some (*E*)-2-(substituted aryl or alkyl methylidene)-*N*-alkyl or substituted aryl succinimide compounds were reported^{20–27} and **4a-4b** are known²¹ and other products presented in this work are novel.

Results and discussion

The reaction of *PS-TPPSI* **2a** and aromatic aldehyde **3** proceeds smoothly in toluene for 5 h without using any catalyst at reflux conditions, to produce a mixture of geometric isomers (*E*)-**4** and (*Z*)-**4** in excellent yield by a *Wittig* reaction (Scheme 2).

The structures of the products **4a-4k** were deduced from their IR, ¹H- and ¹³C-NMR spectra. The ¹H- and ¹³C-NMR spectra of the crude products indicated the formation of the title products. No product other than **4** could not be detected by ¹H-NMR spectroscopy.

CONTACT Mohammad Bayat bayat_mo@yahoo.com Department of Chemistry, Imam Khomeini International University, Qazvin, Iran. Supplemental data for this article can be accessed on the publisher's website at http://dx.doi.org/10.1080/10426507.2016.1225739 2016 Taylor & Francis Group, LLC

KEYWORDS Phosphorus ylides; *PS-TPP*; *Wittig* olefination; *TPPSA*

Scheme 2. Wittig reaction using PS-phosphorus ylide 2a.

In all of the reactions with aldehydes, the products are obtained as a mixture of (E)- and (Z)-isomers. As is usual for stabilized ylides, the (E)-isomer is dominant.²⁸ The isomeric ratio was calculated from the integral values for the methylene or vinylic H-atoms in the ¹H-NMR spectra of the mixture of (*E*)-4 and (*Z*)-4. The 1 H-NMR spectra of the mixture of the isomers of (E)-4c revealed that they are formed in a 92: 8 ratio. The ¹H-NMR spectra of **4c** display signals at about 3.81 ppm for the two methylene H-atoms (*doublet*, ${}^{4}J_{HH} = 2.4$ Hz, CH₂) and 7.78 ppm for the vinylic H-atom (${}^{4}J_{HH} = 2.4$ Hz,=CH), and signals at 3.71 ppm (doublet, ${}^{4}J_{HH} = 2.1$ Hz, CH₂) and 7.38 ppm (${}^{4}J_{HH} = 2.1$ Hz,=CH) for (Z)-4c in agreement with the suggested structure. The ¹H-decoupled ¹³C-NMR spectra of (E)-4c showed 15 distinct signals in agreement with the proposed structure. The characteristic signal of the CH₂ group was observed at 34.02 ppm. The ¹H- and ¹³C-NMR spectra of compounds 4d-4k were similar to that of 4c, except for the signals of the substituted phenyl rings, which exhibited characteristic resonances with appropriate chemical shifts (see also *Exper. part*).

Polymer-supported triphenylphosphoranylidenesuccinic anhydride (*PS-TPPSA*) (**2b**) or triphenylphosphoranylidenesuccinic anhydride (*TPPSA*) **2c** both did not react in the Wittig olefination reaction successfully under the conditions mentioned above (Scheme 3). When **2b** and aromatic aldehydes are mixed, no changes were detected. Also, heating the mixture at 110 °C for up to 5 h does not yield an olefination product. Instead, triphenylphosphine is partly eliminated from the phosphorus ylide. These phosphorus ylides contain an anhydride group that can stabilize the negative charge from the carbanion (due to π -conjugation of the C=O group with neighboring the P=C moiety).

As shown in Table 1, aromatic aldehydes with electronwithdrawing or donating groups gave excellent yields of the corresponding product. The ratio of the major (*E*)- and minor (*Z*)-isomers of compounds 4a-4k are shown in Table 1.

In conclusion, we have reported a simple method for the synthesis of (*E*)-2-(aryl methylidene)-*N*-phenyl succinimides from readily available aromatic aldehydes and *PS*-*TPPSI*. The present procedure has the advantages that, excess *PS*-*TPPSI* can be used to drive reactions to completion, impurities and excess reagents can be removed by simple washing of the solid-phase. The reactions are simple, high yields and moreover products can be obtained pure and free of triphenylphosphin oxide (*TPPO*).

Experimental

General. Triphenylphosphine resin (1%) Cross-linked poly(styrene-codivinylbenzene) and contain 1-1.5 mmol TPP per gram of resin) was obtained from Akcros Chemical Co. Aromatic aldehydes and solvents used in this work were obtained from Fluka (Buchs, Switzerland) and used without further purification. NMR spectra: Bruker-DRX-300 Avance instrument; δ in ppm rel. to MeSi₄ as internal standard, J in Hz. M.p.: Gallenkamp electrothermal-9100 apparatus; not corrected. Mass spectra were recorded with an Agilent 5975C VL MSD with Triple-Axis Detector operating at an ionization potential of 70 eV. IR spectra (KBr): Bruker-Tensor-27 spectrometer; ν in cm⁻¹. The Supplemental Materials contains sample ¹H, ¹³C NMR, IR and mass spectra for products 4 (Figures S1-S22).

Typical procedure for the preparation of PS-Triphenylphosphoranylidene-N-phenylsuccinicimide (**2a**). To a stirred solution of 0.173 g N-phenylmalimide (1 mmol) in dichloromethane (10 mL),²⁴ was added 0.8 g PS-TPP (1 mmol) in dichloromethane (4 mL) at room temperature. The reaction

Scheme 3. Wittig olefination did not work for stabilized phosphorus ylides 2b and 2c.

Table 1	Synthesis of (E) and (Z)-2-(aryl	methylidene)-N-phe	nyl succinimides 4a-4k.
---------	-----------------	-------------------	--------------------	-------------------------

Entry	Aldehyde Products and ratio		Yields (%)	
A	СНО		98	
В	CHO Br	95 : 5 Br H (E) 94 : 6 Br	88	
c	CHO NO ₂	$ \begin{array}{c} NO_2 \\ H \\ $	96	
D	CHO CH ₃	$H_{3}C \xrightarrow{(E)} H \xrightarrow{(Z)} H ($	99	
E	CHO NO ₂	$O_2 N \xrightarrow{(E)} (E) \xrightarrow{(CH_3)} (Z)$	97	
F	CHO	$\begin{array}{c} 87 : 13 NO_2 \\ \hline \\ CI \\ H \\ (E) \\ (Z) \\ \hline \\ (Z) \\ CI \\ (Z) \\ CI \\ (Z) \\ (Z)$	87	
g	CI	$\begin{array}{c} 32 \\ \hline \\ $	90	
h	CHO	$\begin{array}{c} CI \\ H \\ H \\ \end{array} \\ (E) \\ (E) \\ (Z) \\ $	90	

(Continued on next page)

Table 1. (Continued).

mixture was stirred at room temperature for 24 h, the solution was filtered and *PS-TPPSI* **2a** dried.

Representative procedure for the preparation of compounds 4. To a magnetically stirred suspension of 2a (0.973 g, 1 mmol) in toluene (5 mL) was added benzaldehyde (0.106 g, 1 mmol) in dichloromethane (4 mL) at room temperature. The reaction mixture was heated at reflux for 5 h. After cooling the mixture, the solution was filtered and solvent was removed under reduced pressure. The solid products 4a-4k were deduced from their ¹H- and ¹³C-NMR spectra.

(E) and (Z)-2-(m-nitrophenyl methylidene)-N-phenyl succinimide (4c): Brown powder: (0.298 g, mp 142–144 °C, yield 96%); IR (KBr) (υ_{max} , cm⁻¹): 3069 (=CH_{str.}), 1708 (C=O), 1650 (C=C); Anal. calc. for C₁₇H₁₂N₂O₄ (308.08): C 66.23, H 3.92, N 9.09; found: C 66.1, H 4.1, N 8.9; ¹H NMR (300 MHz, CDCl₃): (*E*) Isomer: δ 3.81 (2H, d, ⁴J_{HH} = 2.4 Hz, CH₂), 7.78 (1H, t, ⁴J_{HH} = 2.4 Hz, CH), 7.40–7.71 (9H, m, arom); ¹³C NMR (75.4 MHz, CDCl₃): δ 34.02 (CH₂), 124.20, 124.58, 126.37, 128.46, 128.62, 129.25, 131.73, 131.99, 132.02, 133.11, 141.38, 148.19 (aromatic carbons and C=C), 171.10, 172.13 (2C=O). (Z) Isomer: δ 3.71 (2H, d, ⁴J_{HH} = 2.1 Hz, CH₂), 7.38 (1H, t, ⁴J_{HH} = 2.1 Hz, CH), 7.40–7.71 (9H, m, arom).

(*E*) and (*Z*)-2-(*p*-methylphenyl methylidene)-*N*-phenyl succinimide (4d): Red powder: (0.339 g, mp 144–146 °C, yield 99%); IR (KBr) (v_{max} , cm⁻¹): 3050 (=CH_{str}), 1702 (C=O), 1652 (C=C); Anal. calc. for C₁₈H₁₅NO₂ (277.11): C 77.96, H 5.45, N 5.05; found: C 77.9, H 5.6, N 5.1; ¹H NMR (300 MHz, CDCl₃): (*E*) Isomer: δ 2.41 (3H, s, CH₃), 3.75 (2H, d, ⁴J_{HH} = 2.4 Hz, CH₂), 7.78 (1H, t, ⁴J_{HH} = 2.4 Hz, CH), 7.40–7.71 (9H, m, arom); ¹³CNMR (75.4 MHz, CDCl₃): δ 21.56 (CH₃), 34.37 (CH₂), 126.49, 128.44, 128.56, 129.15, 129.73, 129.95, 132.05, 132.19, 133.12, 135.49 (aromatic carbons and C=C), 170.21, 173.21 (2C=O). (*Z*) Isomer: δ 2.39 (3H, s, CH₃), 3.70 (2H, d, ${}^{4}J_{\rm HH} = 1.9$ Hz, CH₂), 7.30 (1H, t, ${}^{4}J_{\rm HH} = 1.9$ Hz, CH), 7.40–7.71 (9H, m, arom).

(E) and (Z)-2-(p-nitrophenyl methylidene)-N-phenyl succinimide (4e): Brown powder: (0.301 g, mp 140–142 °C, yield 97%); IR (KBr) (v_{max} , cm⁻¹): 3056 (=CH_{str.}), 1708 (C=O), 1596 (C=C); Anal. calc. for C₁₇H₁₂N₂O₄ (308.08): C 66.23, H 3.92, N 9.09; found: C 66.3, H 3.9, N 9.1; ¹H NMR (300 MH, CDCl₃): (E) Isomer: δ 3.79 (2H, d, ⁴J_{HH} = 2.40 Hz, CH₂), 7.80 (1H, t, ⁴J_{HH} = 2.40 Hz, CH₂), 7.80 (1H, t, ⁴J_{HH} = 2.40 Hz, CH), 7.40–7.71 (9H, m, arom); ¹³CNMR (75.4 MHz, CDCl₃): δ 34.32 (CH₂), 124.36, 126.34, 128.46, 128.62, 129.28, 130.67, 131.73, 131.98, 132.03, 133.11 (aromatic carbons and C=C), 171.10, 172.13 (2C=O). (Z) Isomer: δ 3.72 (2H, d, ⁴J_{HH} = 1.9 Hz, CH₂), 7.20 (1H, t, ⁴J_{HH} = 1.9 Hz, CH), 7.40–7.71 (9H, m, arom).

(E) and (Z)-2-(p-chlorophenyl methylidene)-N-phenyl succinimide (4f): Red powder: (0.258 g, mp 226–228 °C, yield 87%); IR (KBr) (υ_{max} , cm⁻¹): 3050 (=CH_{str.}), 1706 (C=O), 1643 (C=C); Anal. calc. for C₁₇H₁₂ClNO₂ (297.06): C 68.58, H 4.06, N 4.70; found: C 68.7, H 4.0, N 4.6; ¹H NMR (300 MHz, CDCl₃): (*E*) Isomer: δ 3.73 (2H, d, ⁴J_{HH} = 2.4 Hz, CH₂), 7.78 (1H, t, ⁴J_{HH} = 2.4 Hz, CH), 7.32–7.43 (9H, m, arom); ¹³C NMR (75.4 MHz, CDCl₃): δ 34.18 (CH₂), 126.44, 128.69, 128.73, 129.20, 129.53, 130.94, 131.38, 131.78, 131.96, 132.09 (aromatic carbons and C=C), 169.83, 172.75 (2C=O). (*Z*) Isomer: δ 3.65 (2H, d, ⁴J_{HH} = 1.9 Hz, CH₂), 7.30 (1H, t, ⁴J_{HH} = 1.9 Hz, CH), 7.40–7.71 (10H, m, arom).

(E) and (Z)-2-(1,6-dichlorophenyl methylidene)-N-phenyl succinimide (4g): Orange powder: (0.290 g, mp 143–145 °C, yield 90%); IR (KBr) (υ_{max} , cm⁻¹): 3065 (=CH_{str.}), 1716 (C=O), 1650 (C=C); Anal. calc. for C₁₇H₁₁Cl₂NO₂ (331.02): C 61.47, H 3.34, N 4.22; found: C 61.2, H 3.5, N 4.3; MS: m/z, (%) = 331 (M⁺, 1), 313 (5), 285 (8), 244 (5), 222 (5), 201 (10), 173 (100), 145 (19), 111 (12), 75 (12); ¹H NMR (300 MHz, CDCl₃): (*E*) Isomer: δ 3.45 (2H, d, ⁴J_{HH} = 2.4 Hz, CH₂), 7.76 (1H, t, ⁴J_{HH} =

2.4 Hz, CH), 7.28–7.55 (8H, m, arom); ¹³C NMR (75.4 MHz, CDCl₃): δ 33.53 (CH₂), 126.43, 128.45, 128.54, 128.61, 130.48, 130.54, 131.76, 131.97, 132.01, 134.05 (aromatic carbons and C=C), 168.28, 172.70 (2C=O). (*Z*) Isomer: δ 3.10 (2H, d, ⁴*J*_{HH} = 1.8 Hz, CH₂), 7.59 (1H, t, ⁴*J*_{HH} = 1.8 Hz, CH), 7.28–7.55 (8H, m, arom).

(*E*) and (*Z*)-2-(*m*-chlorophenyl methylidene)-*N*-phenyl succinimide (4h): White Powder, (0.267 g, mp 234–236 °C, yield 90%); IR (KBr) (υ_{max} , cm⁻¹): 3047 (=CH_{str.}), 1699 (C=O), 1600 (C=C); Anal. calc. for C₁₇H₁₂ClNO₂ (297.06): C 68.58, H 4.06, N 4.70; found: C 68.5, H 4.2, N 4.6; ¹H NMR (300 MHz, CDCl₃): (*E*) Isomer: δ 3.68 (2H, d, ⁴J_{HH} = 2.0 Hz, CH₂), 7.54 (1H, t, ⁴J_{HH} = 2.0 Hz, CH), 7.31–7.48 (9H, m, arom); ¹³C NMR (75.4 MHz, CDCl₃): δ 34.16 (CH₂), 124.56, 126.42, 128.29, 128.74, 129.22, 129.89, 130.30, 130.44, 131.82, 133.83, 135.22, 135.77 (aromatic carbons and C=C), 169.69, 172.70 (2C=O). (*Z*) Isomer: δ 3.76 (2H, d, ⁴J_{HH} = 2.4 Hz, CH₂), 7.70 (1H, t, ⁴J_{HH} = 2.4 Hz, CH), 7.31–7.48 (9H, m, arom).

(E) and (Z)-2-(2-chloro-6-fluorophenyl methylidene)-N-phenyl succinimide (4i): Red powder: (0.302 g, yield 96%); IR (KBr) (υ_{max} , cm⁻¹): 3064 (=CH_{str.}), 1715 (C=O), 1641 (C=C); Anal. calc. for C₁₇H₁₂ClFNO₂ (315.05): C 64.67, H 3.51, N 4.44; found: C 64.9, H 3.8, N 4.3; ¹H NMR (300 MHz, CDCl₃): (E) Isomer: δ 3.51 (2H, d, ⁴J_{HH} = 2.4 Hz, CH₂), 7.80 (1H, t, ⁴J_{HH} = 2.4 Hz, CH), 7.10–7.58 (8H, m, arom); ¹³C NMR (75.4 MHz, CDCl₃): δ 33.95 (CH₂), 118.07 (d, ²J_{C-F} = 23.3 Hz, C_{ortho}), 125.86 (d, ⁴J_{C-F} = 3.0 Hz, C_{para}), 133.36 (d, ³J_{C-F} = 9.8 Hz, C_{meta}), 126.42, 126.80, 128.67, 129.16, 130.04, 131.89 (aromatic carbons and C=C), 161.53 (d, ¹J_{C-F} = 245 Hz, C_{ipso}), 168.67, 172.74 (2C=O). (Z) Isomer: δ 3.30 (2H, d, ⁴J_{HH} = 2.0 Hz, CH₂), 7.30 (1H, t, ⁴J_{HH} = 2.0 Hz, CH), 7.10–7.58 (8H, m, arom).

(*E*) and (*Z*)-2-(*m*-fluorophenyl methylidene)-*N*-phenyl succinimide (4j): Pale brown powder: (0.266 g, mp 176–178 °C, yield 95%); IR (KBr) (υ_{max} , cm⁻¹): 3056 (=CH_{str.}), 1707 (C=O), 1644 (C=C); Anal. calc. for C₁₇H₁₂FNO₂ (281.09): C 72.59, H 4.30, N 4.98; found: C 72.8, H 4.6, N 4.8; ¹H NMR (300 MHz, CDCl₃): (*E*) Isomer: δ 3.76 (2H, d, ⁴J_{HH} = 2.4 Hz, CH₂), 7.70 (1H, t, ⁴J_{HH} = 2.4 Hz, CH), 7.28–7.51 (9H, m, arom); ¹³C NMR (75.4 MHz, CDCl₃): δ 34.15 (CH₂), 117.04 (d, ²J_{C-F} = 22.6 Hz, C_{ortho}), 126.13 (d, ⁴J_{C-F} = 3.0 Hz, C_{para}), 133.43 (d, ³J_{C-F} = 8.2 Hz, C_{meta}), 126.42, 128.73, 129.22, 130.14, 131.83, 134.07 (aromatic carbons and C=C), 164.59 (d, ¹J_{C-F} = 245.0 Hz, C_{ipso}), 169.74, 172.70 (2C=O). (*Z*) Isomer: δ 3.69 (2H, d, ⁴J_{HH} = 2.0 Hz, CH₂), 7.53 (1H, t, ⁴J_{HH} = 2.0 Hz, CH), 7.28–7.51 (9H, m, arom).

(E) and (Z)-2-(4-chloro-3-nitrophenyl methylidene)-N-phenyl succinimide (4k): Brown powder: (0.322 g, mp 202-204 °C, yield 94%); IR (KBr) (v_{max} , cm⁻¹): 3064 (=CH_{str.}), 1715 (C=O), 1642 (C=C); Anal. calc. for C₁₇H₁₂ClNO₂ (342.04): C 59.57, H 3.23, N 8.17; found: C 59.9, H 3.6, N 8.1; ¹H NMR (300 MHz, CDCl₃): (*E*) Isomer: δ 3.77 (2H, d, ⁴J_{HH} = 2.4 Hz, CH₂), 7.53 (1H, t, ⁴J_{HH} = 2.4 Hz, CH), 7.33–7.51 (8H, m, arom); ¹³C NMR (75.4 MHz, CDCl₃): δ 33.53 (CH₂), 126.32, 126.38, 126.71, 128.52, 128.92, 129.29, 131.30, 131.61, 132.88, 133.12, 133.83, 133.93 (aromatic carbons and C=C), 168.10, 171.95 (2C=O). (*Z*) Isomer: δ 3.71 (2H, d, ⁴*J*_{HH} = 2.0 Hz, CH₂), 7.53 (1H, t, ⁴*J*_{HH} = 2.0 Hz, CH), 7.33–7.51 (8H, m, arom).

References

- Selva, M.; Perosa, A.; Noè, M. Organophosphorus Chemistry, Vol. 43; Royal Society of Chemistry: UK, 2014, pp. 85-116.
- 2. Odinets, I. L. Organophosphorus Chemistry, Vol. 41; Royal Society of Chemistry: UK, **2011**, pp. 85-116.
- Kolodiazhnyi, O. I. Phosphorus Ylides, Wiley-VCH: Weinheim, 1999, pp. 478-494.
- 4. Schobert, R.; Siegfried, S.; Nieuwenhuyzen, M.; Milius, W.; Hampel, F. J. Chem. Soc. Perkin Trans. 2000, 1, 1723-1733.
- Wasserman, H. H.; Baldino, C. M.; Coats, S. J. J. Org. Chem. 1995, 60, 8231-8235.
- Balema, V. P.; Wiench, J. W.; Pruski, M.; Pecharsky, V. K. J. Am. Chem. Soc. 2002, 124, 6244-6245.
- Johnson, A. W. Ylides and Imines of Phosphorus., Wiley: New York, 1993.
- 8. Hudson, R. F.; Chopard, P. A. Helv. Chim. Acta. 1963, 46, 2178-2185.
- 9. Hedaya, E.; Theodoropulos S. Tetrahedron Lett. 1968, 24, 2241-2254.
- 10. Cunha, S.; Kascheres, A. J. Braz. Chem. Soc. 2000, 11, 525-529.
- 11. Thompson, L.; Ellman, J. A. Chem. Rev. 1996, 96, 555-600.
- Gordon, E. M.; Barrett, R. W.; Dower, W. J.; Fodor, S. P. A.; Gallop, M. A. J. Med. Chem. 1994, 37, 1385-1401.
- Ullah, E.; Nulty, J. M.; Sliwinski, M.; Robertson, A. *Tetrahedron Lett.* 2012, 53, 3990-3993.
- Liu, H. L.; Jiang, H. F.; Xu, L.; Zhan, H. Y. Tetrahedron Lett. 2007, 48, 8371-8375.
- 15. Shuttleworth, S. J.; Allin, S. M.; Sharma, P. K. Synthesis 1997, 1217-1239.
- Burgess, K. Solid-Phase Organic Synthesis, Wiley-Interscience: New York, 2000.
- Adair, G. R. A.; Edwards, M. G.; Williams, J. M. J. Tetrahedron Lett. 2003, 44, 5523-5525.
- 18. Stawinska, M. K.; Sas, W. J. Chem. Res. (S) 1999, 694-695.
- Mangaleswaran, S.; Argade, N. P. J. Chem. Soc., Perkin Trans.1 2001, 1764-1766.
- Zheng, X. Q.; Han, B. F.; Wang, X. F.; Qiang, S.; Yang, C. L. *Heterocyclic Commun.* 2011, 17, 73-78.
- 21. Liu, Y.; Zhang, W. Angew. Chem. Int. Ed., 2013, 52, 8, 2203-2206.
- Deshmukh, G. B.; Patil, N. S.; Gaikwad, V. B.; Bhole, A. D.; Patil, S. V. J. Chem. Pharm. Res. 2014, 6, 8, 393-399.
- Oda, M.; Nakamura, T.; Neha, M.; Miyawaki, D.; Ohta, A.; Kuroda, S.; Miyatake, R. *Eur. J. Org. Chem.* **2014**, 5976-5985.
- Ha, M. Y.; Kim, J. A.; Park, Y. J.; Park, D.; Choi, Y. J.; Kim, J. M.; Chung, K. W.; Han, Y. K.; Park, J. Y.; Lee, J. Y.; Moon, H. R.; Chung, H. Y. *Med. Chem. Commun.* **2011**, 2, 542-549.
- 25. Thiemann, T.; Watanabe, M.; Tanakaa, Y.; Mataka, S. *New J. Chem.* **2006**, 30, 359-369.
- Thiemann, T.; Watanabe, M.; Tanakaa, Y.; Mataka, S. New J. Chem. 2004, 28, 578-584.
- Awad, B. M.; Abdallah, S. M.; Hefny, H. A.; Abdou, M. H.; Abd-Elmonem, F. I.; Abd-Elmonem, N. A. *Life Sci. J.* 2012, 9, 4, 567-570.