Contents lists available at ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Short communication

Strong Brønsted acid-modified chromium oxide as an efficient catalyst for the selective oxidation of methacrolein to methacrylic acid

Shuhei Yasuda^a, Atsuki Iwakura^a, Jun Hirata^b, Mitsuru Kanno^b, Wataru Ninomiya^b, Ryoichi Otomo^c, Yuichi Kamiya^c,*

^a Graduate School of Environmental Science, Hokkaido University, Kita 10 Nishi 5, Sapporo 060-0810, Japan
^b Otake R&D Center, Mitsubishi Chemical Corporation, 20-1, Miyuki-cho, Otake-shi, Hiroshima 739-0693, Japan

^c Faculty of Environmental Earth Science, Hokkaido University, Kita 10 Nishi 5, Sapporo 060-0810, Japan

ARTICLE INFO

Keywords: Methacrolein oxidation Acid modification Chromium oxide Keggin-type heteropoly acid Gas phase oxidation

ABSTRACT

Gas-phase oxidation of methacrolein to methacrylic acid was carried out over an acid-modified Cr_2O_3/SiO_2 catalyst. While only total oxidation occurred over bare Cr_2O_3/SiO_2 , the acid-modified Cr_2O_3/SiO_2 showed catalytic activity for the formation of methacrylic acid. In particular, $H_3PW_{12}O_{40}$ strong Brønsted acid was the most effective modifier for improving both activity and selectivity. The interface between Cr_2O_3 and $H_3PW_{12}O_{40}$ particles on SiO_2 appears to be responsible for the formation of active sites for the selective formation of methacrylic acid. The strong Brønsted acid would help the activation of methacrolein through rendering it more electrophilic, which is a key step for the formation of methacrylic acid over the present catalyst.

1. Introduction

Methacrylic acid (MAA) is an important chemical for the production of methyl methacrylate and other derivatives and is commercially produced by gas–phase catalytic oxidation of methacrolein (MAL) (Eq. (1)) [1–3].

Heteropolyacids with a Keggin structure composed of P, Mo and V have been utilized as industrial catalysts [1–3]. So far, partial substitution of H^+ in $H_3PMo_{12}O_{40}$ with other cations, substitution of some Mo atoms with V and supporting them on carriers have been investigated to improve the catalytic performance [4–17]. However, further improvement is still desired. A new catalyst not consisting of Mo and V must trigger diverse researches, and accordingly open the way for the development of more effective catalysts for the MAL oxidation.

It is well-known that hexavalent chromium compounds including CrO_3 and $Na_2Cr_2O_7$ are useful oxidizing agents in organic synthesis, especially for oxidations of alcohols and aldehydes into corresponding carboxylic acids, known as Jones oxidation. However, considering cost and environmental factors, it would be advantageous to use chromium

oxides as a heterogeneous catalyst. While hexavalent chromium oxide (CrO₃) has very strong oxidizing ability, it is unstable at a relatively high temperature and spontaneously releases oxygen to be reduced into Cr₂O₃ (non toxic) at around 473 K or higher even in an oxidizing atmosphere [18]. Thus, Cr₂O₃ and Cr³⁺-containing materials are more suitable in oxidation catalysts. So far, oxidation catalysis of Cr₂O₃ and Cr³⁺-containing materials for organic synthesis has been extensively investigated. While some efficient oxidation reactions catalyzed by them with organic peroxides including tert-butyl hydroperoxide have been developed [19-23], utilization of O₂ or air as an oxidizing agent is more advantageous for cost economy and environmental impact. In 1940's, the pioneering work on the oxidation of para-substituted ethylbenzene into corresponding acetophenone with air in the presence of Cr₂O₃ at 403–433 K was reported [24]. Recently, it was found that supported Cr₂O₃ [25,26] and Cr³⁺-containing mesoporous materials [27-29] and metal-organic framework (Cr-MIL-101, Ref. [30]) effectively promoted oxidation of benzyl alcohol to benzaldehyde [25], cycloalkanes to α , β -unsaturated ketones [28,30], monoterpenic alkenes to epoxide and allylic derivatives [27,30], and autooxidation of cyclohexane into cyclohexanone and cyclohexanol [26,29] in an O₂ or air atmosphere. However, to the best of our knowledge, there is no report on the selective oxidation of aldehyde into carboxylic acid with O2 over Cr₂O₃-based catalysts.

Here, we report that a strong Brønsted acid (H₃PW₁₂O₄₀)-modified

* Corresponding author.

E-mail address: kamiya@ees.hokudai.ac.jp (Y. Kamiya).

https://doi.org/10.1016/j.catcom.2019.03.020

Received 22 November 2018; Received in revised form 24 March 2019; Accepted 24 March 2019 Available online 25 March 2019

1566-7367/ © 2019 Elsevier B.V. All rights reserved.

 $\rm Cr_2O_3/SiO_2$ is a highly active and selective catalyst for the gas-phase oxidation of MAL to MAA. The loading amounts of $\rm Cr_2O_3$ and $\rm H_3PW_{12}O_{40}$, and the kind of acidic component used were systematically investigated. Based on the structural analysis of the catalyst and results on transient responses of reaction, the active sites formed on the catalyst surface and the reaction mechanism are discussed.

2. Experimental

2.1. Catalysts preparation

Silica-supported chromium oxide (Cr_2O_3/SiO_2) was prepared by using the wet impregnation method. $Cr(NO_3)_3 \cdot 9H_2O$ (9.895 g, 24.7 mmol, Sigma-Aldrich) was dissolved in Milli-Q water (100 mL). To the solution, SiO₂ (3 g, AEROSIL 300, EVONIK) was added and the suspension was vigorously stirred at room temperature for 1 h. The suspension was then evaporated to dryness by using a rotary evaporator at 323 K. The resulting solid was dried in air at 373 K overnight and calcined in air at 823 K for 5 h. The loading amount of Cr_2O_3 on SiO₂ was 38.5 wt%.

Modification of Cr_2O_3/SiO_2 with $H_3PW_{12}O_{40}$ was carried out by also using the incipient wetness impregnation method. 12–Tungstophosphoric acid $(H_3PW_{12}O_{40}nH_2O$, Nippon Inorganic Colour and Chemical Co., Ltd.) was purified by extraction with diethyl ether and recrystallized from its aqueous solution in advance. Cr_2O_3/SiO_2 (1.8 g) was added to 100 mL Milli-Q water and impregnated with an aqueous solution of $H_3PW_{12}O_{40}$ (0.08 mol L⁻¹, 3.35 mL) at room temperature. Then the resulting wet solid after impregnation was dried in air at 373 K overnight and calcined in air at 523 K for 2 h. The loading amount of $H_3PW_{12}O_{40}$ on Cr_2O_3/SiO_2 was 30 wt%. The resulting supported catalyst is denoted as $H_3PW_{12}O_{40}$ - $Cr_2O_3/$ SiO₂. As a reference, $H_3PW_{12}O_{40}$ - Cr_2O_3/SiO_2 but using SiO₂ instead of Cr_2O_3/SiO_2 .

 $\rm H_2SO_4\text{-}Cr_2O_3/SiO_2$ and $\rm H_3PO_4\text{-}Cr_2O_3/SiO_2$ were also prepared by using the wet impregnation procedure similar to that of $\rm H_3PW_{12}O_{40}\text{-}Cr_2O_3/SiO_2$ now using dilute sulfuric acid (Wako Pure Chem. Ind., Ltd., 0.08 mol L⁻¹) and aqueous solution of phosphoric acid (Wako Pure Chem. Ind., Ltd., 0.08 mol L⁻¹). The loading amounts of H_2SO_4 and H_3PO_4 were 1.5 and 1.0 wt%, respectively, which correspond to the same number of H⁺ (0.31 mmol g⁻¹) as that in H_3PW_{12}O_{40}\text{-}Cr_2O_3/SiO_2. Preparation procedures for other catalysts are described in the Electronic Supporting Information (ESI).

2.2. Catalysts characterization

Powder X-ray diffraction (XRD) patterns of the various solid catalysts were recorded on an X-ray diffractometer (MiniFlex, Rigaku) equipped with a Cu K α radiation ($\lambda = 0.154$ nm). Infrared (IR) spectra of the samples were recorded for self-supporting disks on an IR spectrometer (FT-IR/230, JASCO). X-ray photoelectron (XPS) spectra were taken by using a ULVAC-PHI Quantera II (Al K α radiation). Binding energy was calibrated with respect to C 1 s peak of a carbon tape at 284.6 eV.

2.3. Catalytic oxidation of MAL

Catalytic oxidation of MAL was performed in a continuous flow reactor under atmospheric pressure. After pretreatment of the catalyst (1 g) at 593 K with a mixture of O_2 (10.7 vol%), H₂O (17.9 vol%) and N₂ (balance) at the total flow rate of 28 mL min⁻¹ for 1 h, the temperature was decreased to 573 K and the reaction mixture of MAL (3 vol%), O₂ (6 vol%), H₂O (13 vol%) and N₂ (balance) at the total flow rate of 72 mL min⁻¹ was fed into the reactor. The reaction products at the outlet of reactor were analyzed by using on-line gas chromatography. Details of the reaction products analysis is given in the Electronic Supporting Information (ESI).

3. Results and discussion

Table 1 summarizes the catalytic performance results for the oxidation of MAL. While the unmodified Cr_2O_3/SiO_2 showed no MAA formation (Entry 1), the modification with acid components dramatically increased the selectivity to MAA and simultaneously decreased that to CO_x . It should be noted that $H_3PW_{12}O_{40}$ - Cr_2O_3/SiO_2 showed the highest activity and highest selectivity to MAA (Entry 2) among the catalysts tested. Since $H_3PW_{12}O_{40}/SiO_2$ (Entry 3) as well as Cr_2O_3/SiO_2 did not form MAA at all, combination of Cr_2O_3 with $H_3PW_{12}O_{40}$ was indispensable to form MAA. However, the physical mixture of $Cr_2O_3/$ SiO_2 and $H_3PW_{12}O_{40}/SiO_2$ were less active and less selective (Entry 4) than $H_3PW_{12}O_{40}$ - Cr_2O_3/SiO_2 , indicating that adjacency of the two solid components was important for the selective formation of MAA.

Next, we optimized the loading amount of $H_3PW_{12}O_{40}$ and Cr_2O_3 to improve the catalytic performance of $H_3PW_{12}O_{40}$ - Cr_2O_3 /SiO₂ (Figs. S1 and S2, ESI). The loading amount of both Cr_2O_3 and $H_3PW_{12}O_{40}$ had great impact on the catalytic performance. It was found that the loading amount of 38.5 and 30 wt% for Cr_2O_3 and $H_3PW_{12}O_{40}$, respectively,

Table 1

<u> </u>	1 . *	c	1. 0	1		C 3 6 4 7		•	. 1 .*	. a
ote 1	INTIC.	nortormanco	roculte tor	asc_nhsca	ovidation		OVOr V	73710110	cotolytic.	evetome "
Jai	uvuc	Derformance	i couito i ui	zas-Dilasc	Uniualion	UI WIAL	UVCI V	anous	catarvuc	SVSICIIIS.

Entry	Catalyst	Reaction rate/mmol h^{-1}	Selectivity/ %			
		MAL consumption	MAA formation	MAA ^b	$AcOH^{b}$	CO _x
1	Cr ₂ O ₃ /SiO ₂	0.42	0.00	0	3	97
2	H ₃ PW ₁₂ O ₄₀ -Cr ₂ O ₃ /SiO ₂	0.60	0.44	72	4	24
3	H ₃ PW ₁₂ O ₄₀ /SiO ₂	0.54	0.00	0	0	100
4	$Cr_2O_3/SiO_2 + H_3PW_{12}O_{40}/SiO_2^{c}$	0.30	0.12	39	7	54
5	H ₃ PW ₁₂ O ₄₀ /Cr ₂ O ₃	0.06	0.04	74	5	21
6	H ₂ SO ₄ -Cr ₂ O ₃ /SiO ₂	0.36	0.19	52	6	41
7	H_2SO_4 - Cr_2O_3/SiO_2^d	0.30	0.17	55	6	39
8	H ₃ PO ₄ -Cr ₂ O ₃ /SiO ₂	0.24	0.09	36	7	56
9	H ₃ PO ₄ -Cr ₂ O ₃ /SiO ₂ ^d	0.36	0.16	45	7	48
10	Na ₃ PW ₁₂ O ₄₀ -Cr ₂ O ₃ /SiO ₂	0.12	0.08	68	4	28
11	H ₃ PW ₁₂ O ₄₀ -Mn ₂ O ₃ /SiO ₂	0.12	0.01	9	12	79
12	H ₃ PW ₁₂ O ₄₀ -CuO/SiO ₂	2.52	< 0.01	< 1	2	98

^a Reaction conditions: MAL: O_2 : H_2O : $N_2 = 3$: 6: 13: 78; temperature, 573 K; catalyst weight, 1.0 g; total flow rate, 72 mL min⁻¹; total pressure = 0.1 MPa. The data in the table were taken after 3 h or more from the beginning of the reaction. Activity and selectivity were estimated from the data with conversion less than 16 %.

 $^{\rm b}\,$ MAA and AcOH represent methacrylic acid and acetic acid, respectively.

 c Physical mixture of Cr₂O₃/SiO₂ (1.0 g) and H₃PW₁₂O₄₀/SiO₂ (1.0 g). Two catalysts were mixed well in a mortar and afforded to the reaction.

 $^d\,$ The loading amounts of H_2SO_4 and H_3PO_4 were twice as much as those for the catalysts in entries 6 and 8.

Fig. 1. Time courses for the oxidation of MAL over $H_3PW_{12}O_{40}$ - Cr_2O_3/SiO_2 . (•) MAL conversion and selectivities to (•) MAA, (\triangle) acetic acid, and (\square) CO_x . Reaction conditions: MAL: O_2 : H_2O : $N_2 = 3$: 6: 13: balance; catalyst weight = 1.0 g; $WF^{-1} = 230 g_{cat} h^{-1} mol^{-1}$; and total pressure = 0.1 MPa.

were the best for both the activity and selectivity to MAA. Subsequently, we further examined the stability of catalyst for the selective oxidation of MAL (Fig. 1). While the activity was slightly decreased for the initial 100 min of reaction, the catalyst showed stable activity and selectivity for at least 360 min (6 h).

H₃PW₁₂O₄₀-modified unsupported Cr₂O₃ showed high selectivity to MAA comparable to H₃PW₁₂O₄₀-Cr₂O₃/SiO₂, but the activity was very low (Entry 5). This was due to the low surface area of Cr_2O_3 (2 m² g⁻¹). In other words, utilization of SiO₂ support was effective to give smallsized Cr_2O_3 particles deposited on it. By the modification of Cr_2O_3/SiO_2 with H₂SO₄ (Entry 6) and H₃PO₄ (Entry 8), the activities of catalysts for MAA formation were brought about, but the catalysts were less active and less selective than H₃PW₁₂O₄₀-Cr₂O₃/SiO₂, while H₂SO₄ was better than H₃PO₄ for the modification. We investigated the modification of Cr₂O₃/SiO₂ with twice amounts of H₂SO₄ and H₃PO₄, but improvements in the activity and selectivity were not so significant (Entries 7 and 9). Hammett acidity functions (H₀) of H₃PO₄, H₂SO₄ and $H_3PW_{12}O_{40}$ are -5, -12 and -13, respectively, meaning that the acid strength increases in this order. The order of the MAA formation rate as well as the selectivity to MAA was correlated well with that of the acid strength. This fact suggests that the strong Brønsted acid is required for the MAA formation. In fact, Cr_2O_3/SiO_2 modified with neutral sodium salt of $H_3PW_{12}O_{40}$ (Na₃PW₁₂O₄₀) showed only little activity for the MAA formation (Entry 10).

Manganese oxides are well-known oxidizing agents commonly used in organic synthesis as the chromium oxides ones. However, $H_3PW_{12}O_{40}$ -Mn₂O₃/SiO₂ gave mainly CO_x and the selectivity to MAA was only 9% (Entry 11). In addition, there was no MAA formation over

Fig. 3. XPS spectra of Cr 2p and W 4f for (–) $H_3PW_{12}O_{40}$ -Cr₂O₃/SiO₂, (––) Cr₂O₃/SiO₂ and (––) $H_3PW_{12}O_{40}$ /SiO₂ catalysts.

 $\rm H_3PW_{12}O_{40}\text{-}CuO/SiO_2$ (Entry 12). These results demonstrate that the combination of $\rm Cr_2O_3$ with strong Brønsted acid like $\rm H_3PW_{12}O_{40}$ is absolutely necessary for the selective and effective formation of MAA.

The powder XRD pattern of H₃PW₁₂O₄₀-Cr₂O₃/SiO₂ (Fig. 2) clearly demonstrates that well-crystallized Cr₂O₃ and H₃PW₁₂O₄₀ were present and the mean crystallite size of Cr₂O₃ and H₃PW₁₂O₄₀ estimated from Scherrer's equation were 22 and 14 nm, respectively. There was no evidence to prove the formation of a mixed metal oxide from H₃PW₁₂O₄₀ and Cr₂O₃ based on the powder XRD pattern and IR spectrum recorded on H₃PW₁₂O₄₀-Cr₂O₃/SiO₂ (Fig. 1). The structure of H₃PW₁₂O₄₀-Cr₂O₃/SiO₂ after the oxidation of MAL was basically the same as that before the reaction (Fig. S3). The XPS spectra indicated that Cr^{3+} and W^{6+} were predominantly present on the surface of $H_3PW_{12}O_{40}$ -Cr₂O₃/SiO₂ (Fig. 3), as expected from their crystalline phases. The peak due to Cr³⁺ was shifted toward high binding energies and conversely that of W^{6+} moved toward low BEs compared with those of the unmodified Cr_2O_3/SiO_2 and $H_3PW_{12}O_{40}/SiO_2$ solids, respectively. These peak shifts suggest that Cr₂O₃ partly interacts with $H_3PW_{12}O_{40}$ with the charge transfer from Cr^{3+} to W^{6+} . Based on these results, we could conclude that the interface formed between particles of Cr₂O₃ and H₃PW₁₂O₄₀ provided active sites for the MAA formation. Further evidence about the interaction between Cr₂O₃ and H₃PW₁₂O₄₀ was derived by TPD measurements of benzonitrile (basic probe molecule), where the alteration of the acid strength of H₃PW₁₂O₄₀ was probed (Fig. S4, ESI).

For $H_3PW_{12}O_{40}$ -Cr₂O₃/SiO₂, the change in the electronic states of Cr and W may lead to the decrease in the activity of the unmodified Cr₂O₃/SiO₂, as well as of $H_3PW_{12}O_{40}$ /SiO₂ for the total oxidation of MAL, resulting in low selectivity to CO_x over the $H_3PW_{12}O_{40}$ -Cr₂O₃/SiO₂ catalytic system.

To investigate some important issues of the reaction mechanism, the

Fig. 2. Powder XRD patterns and IR spectra of (a) Cr_2O_3/SiO_2 (b) $H_3PW_{12}O_{40}/SiO_2$ and (c) $H_3PW_{12}O_{40}-Cr_2O_3/SiO_2$. (O) Cr_2O_3 and (\diamondsuit) $H_3PW_{12}O_{40}-14H_2O_{40}-1$

 $\label{eq:scheme1} Scheme1. Plausible reaction mechanism for the selective oxidation of methacrolein over H_3PW_{12}O_{40}-Cr_2O_3/SiO_2 catalyst.$

influence of steam and O₂ in the reaction feed gas stream on the catalytic performance of H₃PW₁₂O₄₀-Cr₂O₃/SiO₂ was studied. After the reaction over H₃PW₁₂O₄₀-Cr₂O₃/SiO₂ reached near steady-state, the supply of O₂ to the reactor was stopped while the supply of MAL continued (Fig. S5). The obtained results showed that MAA formation continued up to 3 h after the stop of O₂ supply, suggesting that reaction proceeds with Mars-Van Krevelen mechanism, in which lattice oxygen of the catalyst can oxidize MAL. In addition, there was only little change in the catalytic performance of H₃PW₁₂O₄₀-Cr₂O₃/SiO₂ without steam in the reaction feed gas stream (Fig. S6, ESI). The non-necessity of steam suggests that MAA formation is not passing through 1,1-diol formed by hydration of MAL, unlike conventional oxidation of aldehydes with hexavalent chromium compounds, including CrO3 and Na₂Cr₂O₇, in which aldehyde is hydrated in the first step and the formed 1,1-diol reacts with chromium compounds to give chromium ester as a reaction intermediate. Based on these results, we propose that the reaction mechanism for the MAL oxidation over H₃PW₁₂O₄₀-Cr₂O₃/ SiO₂ proceeds as follows (Scheme 1). The reaction occurs on the interface between Cr2O3 and H3PW12O40 particles. Firstly, MAL is activated through protonation and the activated MAL is then oxidized with lattice oxygen of Cr₂O₃ to form MAA. Finally, the reduced chromium is re-oxidized with gas-phase O₂ along with the regeneration of lattice oxygen. Since strong acid was preferable, the activation of MAL on H⁺ would increase the electrophilicity of carbonyl carbon in MAL, facilitating nucleophilic addition of a lattice oxygen to it. However, there are several unclear points in the reaction mechanism, that is, how chromium species forms a redox cycle, what active oxygen species is, and why the activity of Cr₂O₃ and H₃PW₁₂O₄₀ for total oxidation is suppressed by their combination. Therefore, further investigations are absolutely necessary to clarify the reaction mechanism. In addition, successive oxidation of MAA to CO_x might be another problem for $\rm H_3PW_{12}O_{40}\mbox{-}Cr_2O_3\mbox{/}SiO_2$ (Fig. S7) and this should be suppressed by the addition of additives, choice of support and the control of reaction conditions, subject of a future work.

4. Conclusions

While Cr₂O₃/SiO₂ gave no MAA formation in the gas-phase oxidation of MAL, the modification of it with strong Brønsted acids such as $H_3PW_{12}O_{40}$ dramatically altered the catalytic performance and the resulting $H_3PW_{12}O_{40}$ -Cr₂O₃/SiO₂ catalytic system promoted the formation of MAA. Among the acids, $H_3PW_{12}O_{40}$ was the best modifier for

 Cr_2O_3/SiO_2 , and $H_3PW_{12}O_{40}-Cr_2O_3/SiO_2$ showed the highest activity (0.44 mmol h⁻¹ g⁻¹ of MAA formation rate at 573 K) and selectivity to MAA (72%). In addition, $H_3PW_{12}O_{40}-Cr_2O_3/SiO_2$ exhibited stable activity and selectivity at least for 6 h. The reaction proceeds through the Mars–Van Krevelen mechanism over $H_3PW_{12}O_{40}-Cr_2O_3/SiO_2$. The presence of steam in the feed gas stream was not necessary, unlike conventional oxidation of aldehydes with hexavalent chromium compounds. The interface formed between Cr_2O_3 and $H_3PW_{12}O_{40}$ particles on SiO₂ provides active sites for the MAA formation and the strong Brønsted acids would increase the electrophilicity of carbonyl carbon in MAL, thus promoting MAA formation.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.catcom.2019.03.020.

References

- [1] M. Misono, N. Nojiri, Appl. Catal. 64 (1990) 1-30.
- [2] K. Nagai, Appl. Catal. A 221 (2001) 367-377.
- [3] M.J.D. Mahboub, J.-L. Dubois, F. Cavani, M. Rostamizadeh, G.S. Patience, Chem. Soc. Rev. 47 (2018) 7703–7738.
- [4] K. Eguchi, I. Aso, N. Yamazoe, T. Seiyama, Chem. Lett. 8 (1979) 1345-1346.
- [5] L. Marosi, C. Otero Area'n, J. Catal. 213 (2003) 235–240.
- [6] H. Zhang, R.Y. Yan, L. Yang, Y.Y. Diao, L. Wang, S.J. Zhang, Ind. Eng. Chem. Res. 52 (2013) 4484–4490.
- [7] L.L. Zhou, L. Wang, S.J. Zhang, R.Y. Yan, Y.Y. Diao, J. Catal. 329 (2015) 431–440.
 [8] Y. Zheng, H. Zhang, L. Wang, S. Zhang, S. Wang, Front. Chem. Sci. Eng. 10 (2016) 139–146
- [8] H. Zhang, T. Wang, X. Ma, W. Zhu, Catalysts 6 (2016) 187–193.
- [10] L. Zhou, L. Wang, Y. Diao, R. Yan, S. Zhang, Mol. Catal. 433 (2017) 153–161.
- [11] L. Zhou, L. Wang, Y. Cao, Y. Diao, R. Yan, S. Zhang, Mol. Catal. 438 (2017) 47–54.
- [12] X. Ma, T. Wang, M. Zhang, W. Zhu, Z. Zhang, H. Zhang, Catal. Lett. 148 (2018)
- 660–670. [13] H. Kim, J.C. Jung, D.R. Park, S.-H. Baeck, I.K. Song, Appl. Catal. A 320 (2007) 159–165.
- [14] H. Kim, J.C. Jung, S.H. Yeom, K.-Y. Lee, I.K. Song, J. Mol. Catal. A 248 (2006) 21–25.
- [15] M. Kanno, T. Yasukawa, W. Ninomiya, K. Ooyachi, Y. Kamiya, J. Catal. 273 (2010) 1–8.
- [16] M. Kanno, Y. Miura, T. Yasukawa, T. Hasegawa, W. Ninomiya, K. Ooyachi, H. Imai, T. Tatsumi, Y. Kamiya, Catal. Commun. 13 (2011) 59–62.
- [17] Y.-L. Cao, L. Wang, L.-L. Zhou, G.-J. Zhang, B.-H. Xu, S.-J. Zhang, Ind. Eng. Chem. Res. 56 (2017) 653–664.
- [18] W.K. Jóźwiak, W. Ignaczak, D. Dominiak, T.P. Maniecki, Appl. Catal. A 258 (2004) 33–45.
- [19] R.S. da Cruz, J.M.S. e Silva, U. Arnold, U. Schuchardt, J. Mol. Catal. A 171 (2001) 251–257.

Catalysis Communications 125 (2019) 43–47

- [20] A. Sakthivel, S.E. Dapurkar, P. Selvam, Appl. Catal. A 246 (2003) 283–293.
- [21] S.E. Dapurkar, A. Sakthivel, P. Selvam, New J. Chem. 27 (2003) 1184–1190.
 [22] S. Gómez, L.J. Garces, J. Villegas, R. Ghosh, O. Giraldo, S.L. Suib, J. Catal. 233
- (2005) 60–67. [23] K.J. Betsy, C. Nayak, A. Lazar, A. Krishnan, D. Bhattacharyya, S.N. Jha, C.P. Vinod,
- ChemCatChem 10 (2018) 3291–3298. [24] J. Muzart, Chem. Rev. 92 (1992) 113–140 (and references herein).
- [25] L.F. Liotta, A.M. Venezia, G. Pantaleo, G. Deganello, M. Gruttadauria, R. Noto, Catal. Today 91–92 (2004) 231–236.
- [26] E. Breynaert, I. Hermans, B. Lambie, G. Maes, J. Peeters, A. Maes, P. Jacobs, Angew.

Chem. Int. Ed. 45 (006) 7584-7588.

- [27] P.A. Robles-Durenhefner, B.B.N.S. Brandão, L.F. de Sousa, E.V. Gusevskaya, Appl. Catal. A 399 (2011) 172–178.
- [28] S.E. Dapurkar, H. Kawanami, K. Komura, T. Yokoyama, Y. Ikushima, Appl. Catal. A 346 (2008) 112–116.
- [29] A.P. Singh, N. Torita, S. Shylesh, N. Iwasa, M. Arai, Catal. Lett. 132 (2009) 492–499.
- [30] I.Y. Skobelev, A.B. Sorokin, K.A. Kovalenko, V.P. Fedin, O.A. Kholdeeva, J. Catal. 298 (2013) 61–69.