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ABSTRACT: Pentafluorophenyl (PFP) sulfonic esters were F F

. . 5 / A\ E F
synthesized via a copper-catalyzed one-pot multicomponent F F 0,5:N-N-sO, 00
reaction of aryl diazonium tetrafluoroborate, DABSO (DABCO- |Ar=N,BF, * N I //\O i
(S0O,),), and pentafluorophenol. The reaction system provided the HO F Cat. Cul an

desired pentafluorophenyl sulfonic esters in good yields and F F
exhibited excellent functional group tolerance. In addition, the
generated PFP sulfonic esters were successfully applied in

Sonogashira, Suzuki, Chan—Evans—Lam, and decarboxylative

v/ cheap Cu catalyst y good functional group tolerance
y/ one-step reaction 1y gram-scale synthesis

coupling reactions.

S ulfonyl-bearing organic compounds are among the most
important building blocks used for the synthesis of organic
functional molecules such as drugs.1 For example, sulfone,
sulfonamide, sulfonyl ester, and sulfonyl hydrazine moieties are
present in a variety of bioactive molecules and drugs.” Thus,
numerous synthetic methods for accessing sulfonyl-containing
compounds have been developed to date.” The oxidation of
sulfides to sulfones is one such reliable method; however,
sulfide preparation often entails multistep processes, wherein
thiols are used as starting materials. In addition, direct
oxidation of thiols to sulfonyl chlorides has been developed
and employed for the synthesis of sulfonyl derivatives.
However, the use of thiols as starting materials presents
several drawbacks, such as strong unpleasant odors.”

The use of sulfonyl chlorides as electrophiles in reactions
with a variety of nucleophiles is the most straightforward
approach because sulfonyl chloride derivatives are commer-
cially available and highly reactive.’” However, their high
reactivity suffers from disadvantages such as narrow functional
group tolerance, diminished stability, and complicated storage
and handling,

To address these issues, several sulfonyl chloride surrogates
have been developed. Among them, pentafluorophenyl (PFP)
sulfonic esters have been used as an alternative to sulfonyl
electrophiles due to their stability and versatility.®

The Caddick group reported the first synthesis of PFP
vinylsulfonate via the reaction of sulfonyl chloride and
pentafluorophenol (PFPOH) (Scheme 1a).” In 2004, the
same group developed a general tool for the synthesis of PFP
sulfonic esters from sulfonic acid (Scheme 1b). This
methodology initially entailed a two-step process, and was
subsequently modified to a one-pot reaction.” Furthermore,
2,4,6-trichlorophenol (TCP) sulfonic esters have also been
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Scheme 1. Synthesis of Pentafluorosulfonic Esters
a) Classical Method

QP _Bwe . QP
RSCl HO-PFP R " OPFP

b) From Activated Sulfonic acid salt

N

AT
R ONR, 0.0
"""""""" \ \ 7/
PhP=0+Tf0 — > <
\PRPZOx T Then: R~ OPFP

20 minutes HO-PFP in EtzN

c) From in situ-generated Sulfinate salt

Cat. Pd 9 Cat. Cu, 00

at. i N

p— s Oxidant

9B RS ox Base (R *S~opFp

sulfinate ~ HO—PFP

d) This work: Directly from Aryl diazonium salt

Cat. Cul Q.0

DABSO S
Ar=—N,BF, ———== » 7°~OPFP

HO-PFP &

¥/ cheap Cu catalyst v good functional group tolerance
v one-step reaction Vv gram-scale synthesis

Received: March 28, 2021
Published: May 12, 2021

https://doi.org/10.1021/acs.orglett.1c01056
Org. Lett. 2021, 23, 4516—4520


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muhammad+Aliyu+Idris"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sunwoo+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.orglett.1c01056&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c01056?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c01056?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c01056?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c01056?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c01056?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c01056?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c01056?fig=sch1&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.orglett.1c01056?rel=cite-as&ref=PDF&jav=VoR
https://pubs.acs.org/OrgLett?ref=pdf
https://pubs.acs.org/OrgLett?ref=pdf

Organic Letters

pubs.acs.org/OrgLett

developed as sulfonyl chloride surrogates by the same group.”
However, the drawback of these approaches is the necessity to
prepare sulfonyl derivatives using expensive materials.

Willis and co-workers developed Pd/Cu and Ni/Cu-
catalyzed sequential reactions for the synthesis of PFP sulfonic
esters from aryl boronic acids, DABSO (DABCO-(SO,),), and
PFPOH in 2018 (Scheme 1c)."” However, the protocol
involves a sequential two-step process employing an expensive
palladium catalyst, with only one example being reported for
the Ni/Cu catalytic system. Therefore, the development of a
general synthetic method for accessing sulfonyl derivatives is
imperative.

Recently, reactions involving DABSO have garnered
considerable attention, as this reagent can be employed as a
surrogate for SO,, which is a toxic gas, whereas DABSO is a
commercially available air-stable solid. The use of sulfinate salts
as intermediates readily provides a variety of sulfonyl
compounds, such as sulfonyl fluorides, sulfones, sulfonamides,
and sulfonic esters.''

The transition-metal-catalyzed sulfination of aryl substrates,
such as aryl halides and boronic acids, has been developed,
entailing the use of DABSO as a sulfur dioxide surrogate to
access the corresponding arene sulfinate salts.'”

Aryl diazonium salts have been widely utilized as starting
materials for the synthesis of aryl derivatives, as they are readily
prepared from a plethora of commercially available aryl
amines."” Han and co-workers reported that copper-catalyzed
reactions of aryl diazonium salts, DABSO, and alkyl alcohols
provide the corresponding sulfonic esters. However, they failed
to obtain the corresponding aryl sulfonic esters from aromatic
alcohols."

We envisaged that the use of aryl diazonium salts and
DABSO would be an efficient system for the synthesis of PFP
sulfonic esters. Herein, we report the copper-catalyzed
synthesis of diverse PFP sulfonic esters entailing a multi-
component reaction of aryl diazonium salts, DABSO, and
pentafluorophenol. This method employs an inexpensive Cu
catalyst in a single-step operation.

After extensive screening of the reaction parameters, the
optimized conditions for the reaction of 1a and HOPFP were
established as follows: Cul (20 mol %) in CH;CN in the
presence of DABSO in air at 85 °C for 12 h afforded the
desired product 2a in 98% vyield (Table 1, entry 1).
Modification of the reaction parameters provided the following
results. No product was formed in the absence of copper
catalyst (entry 2). In addition to copper(I), copper(1l) likewise
provided 2a, albeit in lower yields (entries 2—6). When
inorganic sulfur dioxide surrogates, such as Na,S,05 and
K,S,0s, were employed, no product was formed (entries 7 and
8). Conducting the reaction in 1,4-dioxane or DMF afforded a
trace amount of product (entries 9 and 10). When DMSO or
toluene was employed as the solvent, the product was obtained
in 35% and 30% yield, respectively (entries 11 and 12).
Reducing the amount of catalyst and decreasing the reaction
temperature provided inferior results (entries 13 and 14).
However, shortening the reaction time to 6 h did not
significantly affect the yield (entry 15). No product was
formed in the presence of CF;CO,H, employed as a promoter
in CuBr,-catalyzed syntheses of sulfonic esters from alkyl
alcohols (entries 16 and 17).

With the optimized conditions in hand, we next investigated
the substrate scope with respect to aryl diazonium salts. Aryl
diazonium salts bearing substituents of varying electronic and
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Table 1. Optimization of Conditions for the Synthesis of
PFP Sulfonic Esters”

. F
N so, F F cul (20 mol %) 00 F
o T e
OZSNQ o £ CHiCN. A ©/ o F
E 85°C,12h F
1a 2a
Entry Change from the standard conditions Yield (%)
1 No changes 98
2 No Cul 0
3 CuCl instead of Cul 67
4 CuBr instead of Cul 86
S CuCl, instead of Cul 50
6 CuBr, instead of Cul SS
7 Na,S,0; instead of DABSO 0
8 K,S,0; instead of DABSO 0
9 1,4-Dioxane instead of MeCN trace
10 DMEF instead of MeCN trace
11 DMSO instead of MeCN 35
12 Toluene instead of MeCN 30
13 10 mol % Cul instead of 20 mol % 60
14 50 °C instead of 85 °C 45
15 6 h instead of 12 h 96
16 In the presence of CF;CO,H (1 equiv) trace
17 In the presence of CF;CO,H (0.1 equiv) trace
18 Under N, atmosphere 0

“Reaction conditions: 1a (0.15 mmol), DABSO (0.2 mmol), HOPFP
(0.1 mmol), and Cul (0.02 mmol) were reacted in MeCN (1.0 mL)
under air at 85 °C for 12 h.

steric properties were well-tolerated. Phenyl diazonium
provided a 98% isolated yield of 2a. Aryl diazonium salts
bearing alkyl substituents on the phenyl ring delivered
excellent yields of the corresponding products (2b, 2c, and
2d; Scheme 2). Halide substitutions with chloride, bromide,
iodide, and fluoride were well-tolerated, and moderate to good
yields of the corresponding products 2e—2j were obtained.
Aryl diazonium salts disubstituted with methyl and iodide as
well as methyl and bromide groups also reacted well to
produce 2k, 2I, and 2m in 53%, 98% and 48% yield,
respectively. 2-Naphthyl- and 2-phenoxyphenyl diazonium
salts gave 2n and 2o, respectively, in good yields; however,
2-biphenyl diazonium provided a low yield due to the steric
hindrance of the ortho-substituted phenyl group. Alkoxy-,
thiomethyl-, and amine-substituted aryl diazonium salts
afforded the corresponding products 2q, 2r, 2s, 2t, and 2u in
moderate to excellent yields. 3-Pyridyl-, 3-acetyl-, and 3-ethyl
ester-substituted aryl diazonium salts produced 2v, 2w, and 2x
in 45%, 77%, and 98% vyields, respectively. In the case of aryl
diazonium salts containing electron-withdrawing groups at the
para-position, such as a cyano or nitro, the corresponding
products (2y, 2z, and 2ab) were also isolated in moderate
yields (45%—53%). It is noteworthy that no desired sulfonic
esters were formed when phenol and methanol were employed
instead of HOPFP (see Scheme S1 in the Supporting
Information).

Next, we evaluated the efficiency of this method for large-
scale reactions, and the applicability of the generated PFP
sulfonic esters in further transformations. Products 2i and 2t
were chosen for gram scale preparation and as substrates in
further transformations. As shown in Scheme 3, 2i and 2t were
successfully obtained in 92% and 63% yield, respectively.
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Scheme 2. Cu-Catalyzed Synthesis of PFP Sulfonic Esters”
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“Reaction conditions: 1 (1.5 mmol), DABSO (2.0 mmol), HOPFP
(1.0 mmol), and Cul (0.2 mmol) were reacted in MeCN (8.0 mL)
under air at 85 °C for 12 h.

Scheme 3. Gram Scale Synthesis of PFP Sulfonic Esters

F
® o , F F
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2i: R = 1(2.09 g, 89% yield)
2t: R = NH, (1.01 g, 60% yield)

We then investigated the suitability of PFP sulfonic esters in
several reactions, as shown in Scheme 4. PFP sulfonic ester 2i
was employed as a coupling partner in palladium-catalyzed
cross-coupling reactions. In the case of Sonogashira coupling,
the reaction of 2i and phenyl acetylene afforded the coupled
product in 72% vyield. When phenyl propiolic acid was
employed in the reaction with 2i under decarboxylative
coupling conditions, the desired product was formed in 61%
yield. In addition, Suzuki coupling of 2i with phenylboronic
acid provided 4 in 88% yield. The PFP sulfonic ester bearing
an amine group displayed good activity in the Chan—Evans—
Lam reaction” providing § in 67% yield, and N-acylation
proceeded smoothly to afford the corresponding product 6 in
91% yield.

To study the reaction pathway, the standard reaction was
conducted in the presence of radical trapping reagents
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Scheme 4. Transformation of PFP Sulfonic Esters
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TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy), BHT (2,6-di-
tert-4-methylphenol), and DPE (1,1-diphenylethylene). As
shown in Scheme 5, no product was formed in the presence

Scheme 5. Control Experiments

® o Cul (20 mol %) Q\S,P
DABSO <
N2BFs Additive (3 equiv) OPFP
+ + CH4CN, Air
HOPFP 85°C, 12h 2a
Additive Yield of 2a (%)
TEMPO 0
BHT
DPE 20

of TEMPO or BHT. When the standard reaction was
performed in the presence of DPE, 2a was formed in 20%
yield and the arylsulfonyl -bearing alkene byproduct was
obtained in 44% yield."’

Based on the results from the control experiments and
previous reports, a plausible reaction mechanism is outlined in
Scheme 6. The aryldiazonium salt generates the aryl radical,
and it reacts with DABSO to provide the corresponding
arylsulfonyl radical and a DABCO radical cation, which in turn

Scheme 6. Proposed Mechanism
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oxidizes Cu(I) to Cu(Il). In addition, it is suggested that
molecular oxygen may be involved in the oxidation of Cu(I) to
Cu(II) because the reaction fails under a nitrogen atmosphere.
PFPOH reacts with Cu(Il) to produce the corresponding
alkoxy copper complex, which subsequently reacts with the
arylsulfonyl radical to generate the Cu(Ill) intermediate.
Finally, reductive elimination produces the corresponding PFP
sulfonyl ester and regenerates the Cu(I) species.

In summary, we have developed a copper-catalyzed synthesis
of PFP sulfonyl esters via a multicomponent one-pot reaction
of aryl diazonium tetrafluoroborates, DABSO, and PFPOH.
Cul was found to be the optimal copper catalyst source and
CH;CN was the best solvent. The protocol exhibits a broad
substrate scope, providing the corresponding PFP sulfonyl
esters in good yields. PFP 4-iodobenzenesulfonate (2i)
successfully participated in Sonogashira, Suzuki, and decar-
boxylative coupling reactions. In addition, PFP 4-amino-
benzenesulfonate (2t) participated in Chan-Evans-Lam re-
action.
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