Accepted Manuscript

Sonogashira coupling catalyzed by the Cu(Xantphos)I-Pd(OAc)₂ system

Meilin Liu, Mingyan Ye, Yeye Xue, Guodong Yin, Dunjia Wang, Jinkun Huang

 PII:
 S0040-4039(16)30674-8

 DOI:
 http://dx.doi.org/10.1016/j.tetlet.2016.06.014

 Reference:
 TETL 47741

To appear in: Tetrahedron Letters

Received Date:15 April 2016Revised Date:1 June 2016Accepted Date:3 June 2016

Please cite this article as: Liu, M., Ye, M., Xue, Y., Yin, G., Wang, D., Huang, J., Sonogashira coupling catalyzed by the Cu(Xantphos)I-Pd(OAc)₂ system, *Tetrahedron Letters* (2016), doi: http://dx.doi.org/10.1016/j.tetlet. 2016.06.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Tetrahedron Letters

journal homepage: www.elsevier.com

Sonogashira coupling catalyzed by the Cu(Xantphos)I-Pd(OAc)₂ system

Meilin Liu, Mingyan Ye, Yeye Xue, Guodong Yin*, Dunjia Wang and Jinkun Huang*

Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online An efficient Pd(OAc)₂/Cu(Xantphos)I system for Sonogashira coupling is disclosed. Aryl bromides/iodides and electron-poor aryl chlorides were suitable for this reaction. The experimental results suggest that Cu(Xantphos)I plays a unique role in which the phosphine ligand coordinates with copper.

Keywords: Sonogashira coupling Alkynylation Co-catalyst Copper-phosphine ligand complex

1. Introduction

The Sonogashira cross-coupling reaction^{1,2} between aryl halides and terminal alkynes has become a valuable and facile method to prepare substituted alkynes, which are widely employed in synthesis of numerous natural products,³ bioactive and pharmaceutical molecules,⁴ organic materials,⁵ and polymers.⁶ The reaction is typically performed using a palladium complex as catalyst and copper(I) salt as a co-catalyst under basic conditions (Scheme 1, condition a). Generally, palladium is coordinated with a neutral ligand such as phosphines to form the complex, e.g. Pd(PPh₃)₂Cl₂,⁷Pd(dppe)Cl₂,⁸Pd(OAc)₂(PPh₃)₂⁹ and Pd(dppp)Cl₂.¹⁰ Alternatively, chemists have devoted to develop an impressive variety of effective catalytic palladium system, and this includes the palladium-nitrogen complexes,11 palladium-N,O complexes,¹² palladium–P,N complexes,¹³ palladium–P,O complexes,¹⁴ N-heterocyclic carbene (NHC) palladium complexes,¹⁵ palladacycles¹⁶ and palladium nanoparticles.¹⁷ Although Au(I),¹⁸ Ni(II),¹⁹ Fe(III),²⁰ Cu(I)²¹ and Cu(II)²² systems sometimes could catalyze this coupling reaction, most of these methods are only effective for aryl iodides or at high temperature. Recently, Hierso reported the [Pd(allyl)Cl]₂/copper(I) ferrocenyl tetraphosphine complexes system for Sonogashira coupling reaction at high temperature (120 °C), which was the first example for the phosphine ligand complexation to copper instead of palladium.²³ Recently, we prepared the copper-phosphine ligand complex Cu(Xantphos)I and found a highly efficient palladium/Cu(Xantphos)I co-catalytic system for direct arylation of heteroarenes. The high efficiency is attributed to the unique role of Cu(Xantphos)I.²⁴In this paper, we would like to report a

novel Pd(OAc)₂/Cu(Xantphos)I system for efficient Sonogashira coupling reaction (Scheme 1, condition b).

2015 Elsevier Ltd. All rights reserved.

 $R_{1}-X + = R_{2} \xrightarrow{\text{Sonogashira reaction}} R_{1} - R_{2}$ $X=CI, Br, I \qquad (a) Pd(PPh_{3})_{2}CI_{2}, Cul, base$ $(b) Pd(OAc)_{2}, Cu(Xantphos)I, base$ Scheme 1

2. Results and discussion

On the light of our previous studies in the arylation of heteroarenes catalyzed by the Pd/Cu(Xantphos)I system,24 we envisioned that the similar system might be effective for the Sonogashira coupling. Initially, we investigated the crosscoupling between 1-bromo-4-methylbenzene (**1a**) and phenylacetylene (2a) in the presence of $Pd(OAc)_2$ (1%) and Cu(Xantphos)I (1%) using Cs₂CO₃ as base in anhydrous DMF at room temperature for 24 h, only trace amount of expected alkynylation product 1-methyl-4-(phenylethynyl)benzene (3a) was observed (Table 1, entry 1). The yield of 3a significantly increased when the temperature was raised to 40 °C (84%, entry 2). While the temperature was further elevated to 60 °C, 3a was obtained in nearly quantitative yield (98%, entry 3). After screening other typical bases, such as Na₂CO₃, K₂CO₃, K₃PO₄·H₂O, NHEt₂, NEt₃, all of them afforded the yields above 90% except for NEt₃ which gave a lower yield of 54% (entries 4– 8). The combination of Cu(Xantphos)I with other palladium compounds, e.g. PdCl₂, [Pd(allyl)Cl]₂ and Pd₂(dba)₃, the yield was in the range of 38-87% (entries 9-11). When the amount of Pd(OAc)₂ or Cu(Xantphos)I was reduced to 0.5% and 0.25%, the coupling resulted in a corresponding lower yield (entries 12–15).

^{*}Corresponding author. Tel./fax: +86 0714 6515602; e-mail address: gdyin@hbnu.edu.cn (G. Yin); jxhcm99@qq.com (J. Huang)

2

ACCEPTED MANUSCRIPT

Meanwhile, the reaction didn't give the product in the absence of the $Pd(OAc)_2$ (entry 16) and was less effective when no copper(I) salt was employed (entries 17 and 19). Replacement of Cu(Xantphos)I by Cu(PPh₃)₃Br or Cu(PPh₃)₃I also furnished **3a** in a lower yield (entries 21, 22). Cu(Xantphos)Br was also effective for the reaction (entry 23). However, the combination of Pd(OAc)₂ and CuI resulted in almost no reaction (<5%, entry 19). Obviously, the addition of Cu(Xantphos)I significantly promotes this coupling reaction (entries 18 and 20).

Table 1

Optimization of the reaction conditions for Sonogashira coupling between 1-bromo-4-methylbenzene and phenylacetylene^a

н₃с–		Conditions Me-	-	
	1a 2a		3	a
Entry	[Pd] (mol%)	[Cu] (mol%)	Base	Yield ^b (%)
1 ^c	$Pd(OAc)_2(1)$	Cu(Xantphos)I ^d (1)	Cs ₂ CO ₃	<5
2	$Pd(OAc)_2(1)$	Cu(Xantphos)I(1)	Cs_2CO_3	84
3 ^e	$Pd(OAc)_2(1)$	Cu(Xantphos)I (1)	Cs ₂ CO ₃	98 (97 ^f , 70 ^g)
4	$Pd(OAc)_2(1)$	Cu(Xantphos)I(1)	Na ₂ CO ₃	90
5	$Pd(OAc)_2(1)$	Cu(Xantphos)I(1)	K ₂ CO ₃	96
6	$Pd(OAc)_2(1)$	Cu(Xantphos)I (1)	K ₃ PO ₄ · H₂O	96
7	$Pd(OAc)_{2}(1)$	Cu(Xantphos)I(1)	NHEt ₂	95
8	$Pd(OAc)_2(1)$	Cu(Xantphos)I (1)	NEt ₂	54
9	$PdCl_{2}(1)$	Cu(Xantphos)I (1)	Cs ₂ CO ₂	60
10	$[Pd(allvl)Cll_2(1)]$	Cu(Xantphos)I (1)	Cs_2CO_3	87
11	$Pd_2(dba)_3^h(1)$	Cu(Xantphos)I(1)	Cs ₂ CO ₃	38
12	$Pd(OAc)_{2}(0.5)$	Cu(Xantphos)I(1)	Cs ₂ CO ₃	76
13	$Pd(OAc)_{2}(0.25)$	Cu(Xantphos)I(1)	Cs ₂ CO ₃	39
14^{i}	$Pd(OAc)_2(1)$	Cu(Xantphos)I (0.5)	Cs ₂ CO ₃	93
15 ⁱ	$Pd(OAc)_2(1)$	Cu(Xantphos)I (0.25)	Cs_2CO_3	67
16		Cu(Xantphos)I(1)	Cs ₂ CO ₃	0
17	$Pd(OAc)_2(1)$	_	Cs ₂ CO ₃	<5
18 ^j	$Pd(OAc)_2(1)$	_	Cs ₂ CO ₃	66
19	$Pd(OAc)_2(1)$	CuI (1)	Cs ₂ CO ₃	<5
20 ^j	$Pd(OAc)_2(1)$	CuI (1)	Cs ₂ CO ₃	87
21	$Pd(OAc)_2(1)$	$Cu(PPh_3)_3Br(1)$	Cs_2CO_3	84
22	$Pd(OAc)_2(1)$	Cu(PPh ₃) ₃ I (1)	Cs ₂ CO ₃	80
23	$Pd(OAc)_{2}(1)$	Cu(Xantphos)Br (1)	Cs ₂ CO ₂	94

^a All of the reactions were carried out with **1a** (1.0 mmol), **2a** (1.2 mmol) and base (2.0 mmol) in anhydrous DMF (5 mL) at 60 °C for 16 h unless otherwise specified.

^b Yield was determined by GC or NMR after 16 h based on a purified standard.

^cAt room temperature for 24 h.

^d Xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene.

 e At 40 ^{o}C for 24 h.

f Isolated yield.

^g Toluene was used as the solvent.

^hdba = *trans*, *trans*-dibenzylideneacetone.

ⁱ At 60 °C for 24 h.

^j0.01 mmol Xantphos was added.

With the above optimal condition in hand, a variety of substituted aryl halides were coupled with alkynes, and the results are shown in Table 2. Excellent yields of **3a–1** were obtained regardless of the reactions using electron-neutral (H), -rich (-OMe, $-N(CH_3)_2$, $-NH_2$, -OH) or -poor (-CHO, $-COCH_3$, -COOEt, -CN, $-CF_3$, $-NO_2$) aryl bromides with phenylacetylene (entries 2–12). 1-Bromonaphthalene and heterocyclic bromides (furyl, thienyl and pyridyl) were also suitable for this reaction, affording the corresponding products **3m–q** in 90–96% isolated yields (entries 13–17). Electron-rich or electron-poor substituted phenylacetylenes and aliphatic alkynes also gave **3c**, **3k** and **3r–t** in excellent yields, respectively (entries 18–22). Furthermore, under the above disclosed typical conditions, a variety of aryl bromides and alkynes were coupled to form a structurally diverse products **3u-z** and **3A-C** (entries 23–31).

Next, we were pleased to find that at room temperature, aryl iodides bearing electron-rich or electron-poor groups on the phenyl ring could afford a nearly quantitative yield of **3b**, **3c** and **3l** (entries 32-34). Notably, the reactions for electron-poor (COCH₃, CN, CF₃) arylchlorides proceed smoothly and gave the corresponding products **3a**, **3h** and **3j** in good yields (entries 36–38). However, this novel Pd/Cu co-catalyzed system was so far ineffective for less reactive aryl chlorides. Only 20% GC yield of **3a** was obtained using 1-chloro-4-methylbenzene at 120 °C with high loading of 5% mmol Pd(OAc)₂ and Cu(Xantphos)I respectively (entry 35).

Table 2

Sonogashira reactions of aryl halides and alkynes catalyzed by $Pd(OAc)_2/Cu(Xantphos)I^a$

Pd(OAc) ₂ (1% mmol) Cu(xantphos)I (1% mmol)						
Ar—X	(+	$= -R \xrightarrow{\text{DMF. Cs}_2CO_2} (2 \text{ equiv}), 60^{\circ}\text{C}$				
1		2 3				
Entry	Х	Ar	R	Product	Yield ^b	
					(%)	
1	Br	$4-\text{MeC}_6\text{H}_4$	C_6H_5	3a	97	
2	Br	C_6H_5	C_6H_5	3b	98	
3	Br	$4-MeOC_6H_4$	C_6H_5	3c	96	
4	Br	$4-N(CH_3)_2C_6H_4$	C_6H_5	3d	92	
5	Br	$4-NH_2C_6H_4$	C_6H_5	3e	91	
6	Br	$4-OHC_6H_4$	C_6H_5	3f	85	
7	Br	$4-CHOC_6H_4$	C_6H_5	3g	93	
8	Br	4-COCH ₃ C ₆ H ₄	C_6H_5	3h	94	
9	Br	4-COOEtC ₆ H ₄	C_6H_5	3i	84	
10	Br	4-CNC ₆ H ₄	C ₆ H ₅	3ј	89	
11	Br	$4-CF_3C_6H_4$	C ₆ H ₅	3k	95	
12	Br	$4-NO_2C_6H_4$	C_6H_5	31	94	
13	Br	1-naphthyl	C ₆ H ₅	3m	91	
14	Br	3-furyl	C ₆ H ₅	3n	96	
15	Br	2-thienyl	C ₆ H ₅	30	92	
16	Br	2-pyridyl	C ₆ H ₅	3p	94	
17	Br	3-pyridyl	C ₆ H ₅	3q	90	
18	Br	C ₆ H ₅	4-MeOC ₆ H ₄	3c	92	
19	Br	C ₆ H ₅	$4-n-C_3H_7C_6H_4$	3r	95	
20	Br	C ₆ H ₅	$4-CF_3C_6H_4$	3k	97	
21	Br	C ₆ H ₅	$n-C_6H_{13}$	3s	94	
22	Br	C ₆ H ₅	CH(OH)CH ₃	3t	90	
23	Br	4-MeOC ₆ H ₄	4-MeOC ₆ H ₄	3u	93	
24	Br	4-N(CH ₃) ₂ C ₆ H ₄	4-MeOC ₆ H ₄	3v	89	
25	Br	4-NO ₂ C ₆ H ₄	4-MeOC ₆ H ₄	3w	96	
26	Br	1-naphthyl	4-MeOC ₆ H ₄	3x	92	
27	Br	3-pyridyl	4-MeOC ₆ H ₄	3v	93	
28	Br	4-COCH ₂ C ₆ H ₄	4-CF ₂ C ₆ H ₄	3z	90	
29	Br	4-MeOC ₆ H ₄	n-C6H13	3A	95	
30	Br	4-CF ₃ C ₆ H ₄	n-C6H13	3B	92	
31	Br	3-pyridyl	n-C6H13	3C	90	
32	I	C ₆ H ₅	C ₆ H ₅	3h	98°	
33	ī	4-MeOC ₄ H	C ₆ H ₅	3c	95°	
34	Ī	4-NO ₂ C ₆ H ₄	C ₆ H ₅	31	97°	
35	CI	4-MeC ₆ H ₄	C ₆ H ₅	39	20^{d}	
36	CI	4-COCH ₂ C ₄ H	CeHe	3h	91 ^d	
37	CI	4-CNC ₄ H ₄	CeHe	3i	89 ^d	
38	CI	$4-CF_2C_4H_4$	CeHe	∼j 3k	93 ^d	
20	0.1		~0~~)	~ 11	15	

^a All of the reactions were carried out with **1** (1.0 mmol), **2** (1.2 mmol), Pd(OAc)₂ (0.01 mmol), Cu(Xantphos)I (0.01 mmol), Cs₂CO₃ (2.0 mmol) in anhydrous DMF (5 mL) at 60 °C for 16 h unless otherwise specified.

^b Isolated yields.

^c At room temperature.

 d Pd(OAc)_2 (0.05 mmol) and Cu(Xantphos)I (0.05 mmol) were employed at 120 $^{\circ}C$ for 12 h.

In summary, we have disclosed a mild and efficient Sonogashira coupling reactions catalyzed by the Pd(OAc)₂/Cu(Xantphos)I system. This is an interesting catalytic

ACCEPTED MANUSCRIPT

system in which the phosphine ligand coordinates with copper instead of the commonly accepted palladium. The novel catalytic system has been demonstrated to be suitable for a broad range of substrates. Further applications to other substrates as well additional data on the reaction mechanism will be reported in due course.

Acknowledgments

We gratefully acknowledge support from the National Natural Science Foundation of China (21542009) and the Educational Commission of Hubei Province (D20142501).

Supplementary data

Supplementary data related to this article can be found, in the online version at:

References and notes

- (a) Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874. (b) Chinchilla, R.; Nájera, C. Chem. Soc. Rev. 2011, 40, 5084; (c) Chinchilla, R.; Nájera, C. Chem. Rev. 2014, 114, 1783; (d) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46.
- 2. Bakherad, M. Appl. Organometal. Chem. 2013, 27, 125.
- (a) Mujahidin, D.; Doye, S. Eur. J. Org. Chem. 2005, 2689; (b) Wang, D.; Gao, S. H. Org. Chem. Front. 2014, 1, 556.
- 4. King, A. O.; Yasuda, N. Top. Organomet. Chem. 2004, 6, 205.
- Prathapan, S.; Johnson, T. E.; Lindsey, J. S. J. Am. Chem. Soc. 1993, 115, 7519.
- 6. Pautzsch, T.; Klemm, E. Macromolecules 2002, 35, 1569.
- (a) Bai, X. Y.; Chen, X. Y.; Barnes, C.; Dias, J. R.; Sandreczki, T. C. *Tetrahedron* 2013, 69, 1105; (b) Huang, H.; Liu, H.; Jiang, H. L.; Chen, K. X. J. Org. Chem. 2008, 73, 6037; (c) Liang, Y.; Xie, Y. X.; Li, J. H. J. Org. Chem. 2006, 71, 379.
- Brun, V.; Legraverend, M.; Grierson, D. S. *Tetrahedron Lett.* 2001, 42, 8169.
- 9. Cacchi, S.; Morera, E.; Ortar, G. Synthesis 1986, 320.
- Fairlamb, I. J. S.; Bäuerlein, P. S.; Marrison, L. R.; Dickinson, J. M. Chem. Commun. 2003, 632.
- (a) Nájera, C.; Gil-Molto, J.; Karlström, S.; Falvello, L. R. Org. Lett. 2003, 5, 1451; (b) Gil-Moltó, J.; Karlström, S.; Nájera, C. Tetrahedron 2005, 61, 12168; (c) Lee, D. H.; Lee, Y. H.; Harrowfield, J. M.; Lee, I. M.; Lee, H. I.; Lim, W. T.; Kim, Y.; Jin, M. J. Tetrahedron 2009, 65, 1630; (d) Li, F. W.; Hor, T. S. A. Adv. Synth. Catal. 2008, 350, 2391; (e) Feng, Z. J.; Yu, S. Y.; Shang, Y. J. Appl. Organomet. Chem. 2008, 22, 577.
- 12. Mi, X.; Huang, M. M.; Feng, Y. J.; Wu, Y. J. Synlett 2012, 23, 1257.
- 13. Arques, A.; Auñon, D.; Molina, P. Tetrahedron Lett. 2004, 45, 4337.
- 14. Nishide, K.; Liang, H.; Ito, S.; Yoshifuji, M. J. J. Organomet. Chem. 2005, 690, 4809.
- (a) Dhudshia, B.; Thadani, A. N. *Chem. Commun.* **2006**, 668; (b) Roy, S.; Plenio, H. *Adv. Synth. Catal.* **2010**, *352*, 1014; (c) Eckhardt, M.; Fu, G. C. *J. Am. Chem. Soc.* **2003**, *125*, 13642; (d) Gallop, C. W. D.; Chen, M. T.; Navarro, O. *Org. Lett.* **2014**, *16*, 3724; (e) Zanardi, A.; Mata, J. A.; Peris, E. *Organometallics* **2009**, *28*, 4335.
- (a) Hu, H.; Yang, F.; Wu, Y. J. J. Org. Chem. 2013, 78, 10506; (b) Buxaderas, E.; Alonso, D. A.; Nájera, C. Eur. J. Org. Chem. 2013, 5864.
- (a) Ye, C. F.; Xiao, J. C.; Twamley, B.; LaLonde, A. D.; Norton, M. G.; Shreeve, J. M. *Eur. J. Org. Chem.* **2007**, 5095; (b) Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.; Sreedhar, B. *J. Am. Chem. Soc.* **2002**, *124*, 14127; (c) Son, S. U.; Jang, Y.; Park, J.; Na, H. B.; Park, H. M.; Yun, H. J.; Lee, J.; Hyeon, T. *J. Am. Chem. Soc.* **2004**, *126*, 5026; (d) Isfahani, A. L.; Mohammadpoor-Baltork, I.; Mirkhani, V.; Khosropour, A. R.; Moghadam, M.; Tangestaninejad, S. *Eur. J. Org. Chem.* **2014**, 5603.
- (a) González-Arellano, C.; Abad, A.; Corma, A.; García, H.; Iglesias, M.; Sánchez, F. Angew. Chem. Int. Ed. 2007, 46, 1536; (b) Lauterbach, T.; Livendahl, M.; Rosellón, A.; Espinet, P.; Echavarren, A. M. Org. Lett. 2010, 12, 3006.
- (a) Vechorkin, O.; Barmaz, D.; Proust, V.; Hu, X. L. J. Am. Chem. Soc. 2009, 131, 12078; (b) Gallego, D.; Brück, A.; Irran, E.; Meier, F.; Kaupp, M.; Driess, M.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 15617.

- (a) Firouzabadi, H.; Iranpoor, N.; Gholinejad, M.; Hoseini, J. Adv. Synth. Catal. 2011, 353, 125; b) Sawant, D. N.; Tambade, P. J.; Wagh, Y. S.; Bhanage, B. M. Tetrahedron Lett. 2010, 51, 2758; (c) Carril, M.; Correa, A.; Bolm, C. Angew. Chem. Int. Ed. 2008, 48, 4862.
- (a) Santandrea, J.; Bédard, A. C.; Collins, S. K. Org. Lett. 2014, 16, 3892;
 (b) Lin, C. H.; Wang, Y. J.; Lee, C. F. Eur. J. Org. Chem. 2010, 4368.
- 22. Monnier, F.; Turtaut, F.; Duroure, L.; Taillefer, M. Org. Lett. 2008, 10, 3203.
- (a) Baupérin, M.; Job, A.; Cattey, H.; Royer, S.; Meunier, P.; Hierso, J. C. Organometallics 2010, 29, 2815; (b) Beaupérin, M.; Fayad, E.; Amardeil, R.; Cattey, H.; Richard, P.; Brandès, S.; Meunier, P.; Hierso, J. C. Organometallics 2008, 27, 1506; (c) Trivedi, M.; Singh, G.; Kumar, A.; Rath, N. P. Dalton Trans. 2014, 43, 13620.
- 24. (a) Huang, J. K.; Chan, J.; Chen, Y.; Borths, C. J.; Baucom, K. D.; Larsen, R. D.; Faul, M. M. J. Am. Chem. Soc. 2010, 132, 3674; (b) Huang, J.; Wang, X.; Chan, J. Sustainable Catalysis: Challenges and Practices for the Pharmaceutical and Fine Chemical Industries (Eds. by Dunn, P. J.; Hii, K. K.; Krische, M. J.; Williams, M. T.), Wiley-VCH, Weinheim, 2013.

ACCEPTED MANUSCRIPT

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Research highlights

- A novel Pd(OAc)₂/Cu(Xantphos)I system for efficient Sonogashira coupling reaction is disclosed.
- This is an interesting catalytic system in which the phosphine ligand coordinates with copper.
- Cu(Xantphos)I plays a unique role in this coupling reaction.