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ABSTRACT 

Ni(I)-mediated single-electron oxidative activation of alkyl halides has been extensively proposed 

as a key step in Ni-catalyzed cross-coupling reactions to generate radical intermediates. There are 

four mechanisms through which this step could take place: oxidative addition, outer-sphere 

electron transfer, inner-sphere electron transfer, and concerted halogen-atom-abstraction. Despite 

considerable computational studies, there is no experimental study to evaluate all four pathways 

for Ni(I)-mediated alkyl radical formation. Herein, we report the isolation of a series of 

(Xantphos)Ni(I)–Ar complexes that selectively activate alkyl halides over aryl halides to eject 

radicals and form Ni(II) complexes. This observation allows the application of kinetic studies on 

the steric, electronic, and solvent effects, in combination with DFT calculations, to systematically 

assess the four possible pathways. Our data reveal that (Xantphos)Ni(I)-mediated alkyl halide 

activation proceeds via a concerted halogen-atom-abstraction mechanism. This result corroborates 
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with previous DFT studies on (terpy)Ni(I) and (py)Ni(I)-mediated alkyl radical formation, and 

contrasts with the outer-sphere electron transfer pathway observed for (PPh3)4Ni(0)-mediated aryl 

halide activation. This case study provides insight into the overall mechanism of Ni-catalyzed 

cross-coupling reactions and offer a basis for differentiating electrophiles in cross-electrophile 

coupling reactions.

INTRODUCTION

Recent advances in Ni-catalyzed cross-coupling reactions have found important synthetic 

applications.1 Historical2 and contemporary3 mechanistic studies provide evidence for single-

electron transfer pathways in the presence of Ni(I) and Ni(III) intermediates.4 In the catalytic 

cycles of Ni-catalyzed cross-coupling and cross-electrophile coupling reactions, alkyl halides are 

proposed to be activated by Ni(I)-halide or Ni(I)-carbyl intermediates via single-electron oxidative 

activation to form radicals (Scheme 1).3 Capture of the radical by a Ni(II) intermediate gives rise 

to a Ni(III) species, which undergo reductive elimination to generate the product. The single-

electron oxidative activation step and the formation of radical intermediates with Ni(I) catalysts 

has created opportunities for stereoconvergent coupling of alkyl halides,1h,5 and the combination 

of Ni catalysis with photoredox catalysis has given access to new reactivity.6 In addition, 

electrophile activation is critical to the chemoselectivity and scope of cross-electrophile coupling 

reactions, when both aryl and alkyl halides are present and competing for activation.1h Therefore, 

it is crucial to understand the mechanistic details of single-electron oxidative activation of 

electrophiles mediated by Ni(I) complexes.  

Scheme 1. Possible Mechanisms of Ni-Catalyzed Cross-coupling with Ni(I)-Mediated Radical 

Formation as Key Steps
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How are electrophiles activated by Ni(I) species and how are radicals generated? Several 

different pathways are possible for Ni(I)-mediated radical formation from aryl and alkyl halides 

(Scheme 2). Ni(I) complexes have been shown to undergo two-electron oxidative addition with 

MeI to form Ni(III),7 from which a radical could be ejected to generate Ni(II) (Pathway 1).8 Single 

electron transfer pathways, either outer-sphere (Pathway 2) or inner-sphere, via an encounter 

complex (Pathway 3), have been invoked in a number of mechanistic proposals,2,3c and proceed 

through electron transfer from Ni(I) to the alkyl/aryl halides to form radical anions, followed by 

subsequent homolytic C–X bond cleavage to eject a radical.2,3 Many of these proposals are 

primarily based on the study of Ni(0)(PEt3)4-mediated aryl halide oxidative addition by Kochi and 

coworkers, who concluded that aryl radicals are formed via outer-sphere electron transfer as the 

rate-determining step.9,10 A macrocyclic Ni(I) complex, relevant to cofactor F430 of methanogenic 

bacteria, has been proposed to activate alkyl halides via electron-transfer.11 Finally, recent DFT 
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calculations on a number of Ni(0)12 and Ni(I)13 systems propose the concerted halogen-atom-

abstraction pathway (Pathway 4).  In particular, this pathway was found to be operational in 

(terpy)Ni–Me,13a (PNP)Ni(CO),13b (pybox)NiMe,13c and (py)NiPh3h mediated alkyl halide 

activation. Although the halogen-atom-abstraction pathway prevails in recent DFT studies, there 

is limited experimental support. Moreover, despite the observation of stoichiometric radical 

formation with several well-defined Ni(I) complexes,3e,14 there is no systematic experimental study 

to evaluate all four pathways for Ni(I)-mediated alkyl radical formation. 

Scheme 2. Possible Pathways for Ni-Mediated Radical Formation from Alkyl Halides

In light of the prevalent proposals of Ni(I)-mediated single-electron activation of electrophiles 

to form radicals in catalytic studies,2,3 we herein, report the synthesis and isolation of (tBu-

Xantphos)Ni(I)-aryl complexes that enabled a detailed study on the mechanism of Ni(I)-mediated 

alkyl halide activation to form radicals. Although the vast majority of Ni-catalyzed cross-coupling 

reactions utilize nitrogen-based ligands, the catalytic reactivity of the Ni/Xantphos system shown 

here and the analogy of the transition states between (Xantphos)Ni-Ar and (terpy)NiMe13a suggest 
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that this work could provide insight into the electrophile activation step in cross-electrophile 

coupling reactions.

RESULTS

Synthesis and Characterization of (tBu-Xantphos)Ni(I) Complexes. The synthesis and 

isolation of well-defined Ni(I)-carbyl complexes is a significant synthetic challenge due to the 

radical, and often unstable, nature of Ni(I) complexes.15 Previous examples use tridentate ligands 

to stabilize the Ni(I) oxidation state,3e, 14a whereas only a couple of Ni(I)-carbyl molecules have 

been reported with bidentate ligands.16 We reasoned that the large bite-angle of Xantphos would 

help stabilize Ni(I) complexes. After assessing the effect of substituents on Xantphos, we found 

that tBu-Xantphos stabilizes Ni complexes better than Ph- and iPr-Xantphos, possibly due to the 

greater steric protection. Our synthesis started with the preparation of (tBu-Xantphos)NiBr2 1 by 

coordination of tBu-Xantphos to Ni(DME)Br2 (Scheme 3). Reduction of 1 with KC8 or NaBHEt3 

afforded (tBu-Xantphos)Ni(N2) 2. The X-ray crystal structure of 2 shows that N2 is bridging 

between two Ni centers, and the N≡N distance is 1.144(3) Å: only slightly elongated from that of 

free N2 (1.098 Å) (Figure 1A).  The use of Cp2Co as the reductant gave (tBu-Xantphos)NiBr 3 in 

96% yield, which could be further reduced to 2 by KC8. The X-ray structure of 3 shows a distorted 

tetrahedral geometry and a relatively long distance between the O-atom of tBu-Xantphos and Ni 

(2.434 Å), indicating a secondary O-Ni interaction (Figure 1B). Phenylation of 3 with 

phenyllithium at -35 ºC generated (tBu-Xantphos)NiPh 4 in 55% yield. X-ray crystallography 

established a secondary interaction between the O-atom of tBu-Xantphos and Ni (2.518 Å) and a 

distorted tetrahedral geometry (Figure 1C). Broken-symmetry DFT calculations using the ORCA 

package revealed that the unpaired electron density is concentrated on Ni with a small portion 

delocalized to the Ar group (Figure 2).17 Arylation of 3 with a variety of aryllithium reagents gave 
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a series of (tBu-Xantphos)NiAr complexes 5-11. The analogous paramagnetic 1H NMR spectra of 

5-11, compared to that of 4, suggest that these compounds have similar electronic structures.

Scheme 3. Syntheses of (tBu-Xantphos)Ni Complexes 

(A)

(B)

  

(C)

 

Page 6 of 26

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 1. X-ray structures of 2 (A), 3 (B), and 4 (C) at 50% probability thermal ellipsoids. 

Hydrogen atoms are omitted and t-Bu groups are truncated for clarity. Selected bond lengths (Å) 

for 2: N(1)≡N(2) = 1.144(3), Ni(1)··· O(1) = 2.518. Selected bond length (Å) for 3: Ni(1)··· O(1) 

= 2.434. Selected bond lengths (Å) for 4: Ni(1)–C(1) = 1.9795(14), Ni(1)··· O(1) = 2.518.

Figure 2. Spin-density plot of 4.

Ni(0) and Ni(I)-Mediated Alkyl and Aryl Halide Activation. The isolation of the well-

defined (tBu-Xantphos)Ni(N2), 2, and (tBu-Xantphos)Ni–Ar complexes, 4-11, allowed us to carry 

out a study on their reactivity towards activating alkyl and aryl halides. In C6D6, addition of one 

equivalent of bromobenzene or chlorobenzene to 2 led to the immediate formation of the 

corresponding (tBu-Xantphos)Ni–bromide 3 or chloride 13, respectively, with concomitant 

formation of biphenyl in high yields (Scheme 4). When (bromomethyl)cyclopropane 12 was added 

to 2, the reaction rapidly formed (tBu-Xantphos) 3 and 1,7-octadiene in 91% yield.

Scheme 4. Ni(0) Complex 2-Mediated Activation of Alkyl and Aryl halides
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Subsequently, we examined the reactivity of the Ni(I) complexes. (tBu-Xantphos)Ni–Br 3 does 

not react with PhBr, PhI, or 12. Next we probed the reactivity of (tBu-Xantphos)Ni–o-Tol, 6, 

towards aryl and alkyl halides (Scheme 5). When one equivalent of bromobenzene was introduced 

into a solution of 6 in C6D6, no reaction took place after 48 hours. Heating the reaction resulted in 

decomposition of 6. Addition of CH3I to 6, in contrast, led to the formation of the corresponding 

Ni(II) iodide 14 and ethane. Activation of 12 also took place when treated with 6 to form Ni(II) 

bromide 15 and 1,7-octadiene in high yields. While the iodide of complex 14 is dissociated from 

the Ni center to give a square planar geometry, as determined by X-ray crystallography (Figure 

S20), the bromide from complex 15 is bound to Ni to give a distorted trigonal bipyramidal 

geometry. When 15 was dissolved in a polar solvent, such as acetone, the bromide dissociated 

from the Ni center to generate the square planar ionic complex. The reaction rate of 6 with 12 is 

substantially slower than that of 2 with 12. In-situ NMR spectroscopy allowed us to monitor the 

reaction time-course (Figure 3), as the paramagnetic resonances of 6 could be readily integrated 

(Figure S37). The time-course fits into a second-order kinetic model using COPASI software to 

give a second-order rate constant (k) of 0.011 M-1s-1.18 When five equivalents of TEMPO were 

included in the reaction of 6 with 12, the reaction generated a mixture of 16 and 17 as the organic 

products. 

Scheme 5. Ni(I) Complex 6-Mediated Activation of Alkyl and Aryl halides
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Figure 3. Kinetic profile of (tBu-Xantphos)Ni-o-Tol 6-mediated ring-opening dimerization of 

cyclopropylmethy bromide 12. Reaction conditions: [6]0 = 10 mM, [12]0 = 12 mM, C6D6 = 0.65 

mL, 25 ºC. Internal standard = mesitylene. 

Steric Effects on Ni(I)-Mediated Alkyl Bromide Activation. The clean kinetic profile of 

(tBu-Xantphos)Ni-o-Tol 6-mediated alkyl bromide activation and the formation of the resulting 

(tBu-Xantphos)Ni(II)(o-Tol)(Br) 15 as a well-defined molecule provided us a special opportunity 

to elucidate the mechanism of this single-electron oxidative activation process. We initiated our 

study by investigating the steric and electronic effects of Ni(I) complexes and alkyl bromides on 

the reaction kinetics. We first compared the activation rates of 12 with a series of increasingly 

bulky aryl ligands on Ni(I) (Table 1). The reaction of (tBu-Xantphos)NiPh 4 with 12 proceeded to 

form 1,7-octadiene with a second-order rate of 0.033 M-1s-1 at 25 ºC. Compared to that of 4, the 
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rate of (tBu-Xantphos)Ni-o-Tol 6-mediated activation of 12 decreased threefold and no reaction 

was observed over 12 h with (tBu-Xantphos)Ni-2,6-dimethylphenyl 5. 

Table 1. Steric Effect of the Ar Group on Ni(I)Ar-Mediated Activation of 12a  

aReaction conditions: [Ni(I)]0 = 10 mM, [12]0 = 20 mM, C6D6 = 0.65 mL. Internal standard = 

mesitylene.

Our examination of the effect of the alkyl halide was carried out using (tBu-Xantphos)Ni(I) 

complex 8 as the model molecule (Table 2). Reaction of 8 with 1-bromopropane proceeded with 

a second-order rate constant of 1.4 x 10-3 M-1s-1 at 25 ºC. The reaction with secondary alkyl 

bromide, 2-bromopropane, was about 4 times faster. The more hindered 4-bromoheptane led to a 

slightly decreased rate relative to that of 2-bromopropane.

Table 2. Steric Effect of Alkyl Bromides on Ni(I)-Mediated Activationa  
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aReaction conditions: [8]0 = 10 mM, [R–Br]0 = 20 mM, C6D6 = 0.65 mL. Internal standard = 

mesitylene.

Electronic Effect on Ni(I)-Mediated Alkyl Bromide Activation. The electronic effect of the 

Ni(I) complexes on the rate of alkyl bromide activation was investigated with a series of para-

substituted (tBu-Xantphos)NiAr complexes, 6-11 (Table 3). The electronic effect of each Ni(I) 

complex was parameterized by the electrochemical potentials of the oxidation and reduction in 

THF solutions. The cyclic voltammetry (CV) of 6 showed quasi-reversible oxidation and reduction 

waves at -2.70 V (vs. Fc/Fc+) and -1.51 V (vs. Fc/Fc+) with a scan rate of 250 mV/s, which are 

assigned to Ni(0)/Ni(I) and Ni(I)/Ni(II) transitions, respectively (Figure 4). With a scan rate of 25 

mV/s, the quasi-reversible Ni(0)/Ni(I) transition became irreversible. We attribute this 

phenomenon to a reversible electron transfer event followed by an irreversible chemical reaction 

(ErCi).19 The irreversible chemical reaction rate varies as the electronic nature of the Ni(I) complex 

changes (cf. Figures S23-S28). The time-courses of the (tBu-Xantphos)NiAr, 6-11, mediated 

single-electron oxidative activations of 12 were monitored by in-situ NMR spectroscopy, and fit 

into a second-order kinetic model (Figures S1-S7). The E1/2 values for the Ni(I)/Ni(II) transition 

and the second-order rate constants, k, for each (tBu-Xantphos)NiAr complexes are summarized 

in Table 3. 

Table 3. Electronic Effect on Ni(I)-Mediated Alkyl Bromide Activation  

X p
E1/2(NiI/II) 
(V vs. Fc+/Fc)  

k x 103 
(M-1s-1)

NMe2 7 -0.83 -1.60 27
OMe 8 -0.27 -1.54 14
Me 9 -0.17 -1.59 11
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H 6 0 -1.51 11
Pyrrolyl 10 0.37 -1.45 4.2
CF3 11 0.54 -1.37 2.8

Figure 4. Cyclic Voltammetry of 6 in THF. [6] = 1 mM, [Bu4NPF6] = 0.4 M. (A) scan rate = 250 

mV/s; (B) scan rate = 25 mV/s. Internal standard = ferrocene.

The second-order rate constants, k, for the oxidative addition and dimerization of 12 with 

various (tBu-Xantphos)NiAr complexes show a linear-free-energy relationship with the Hammett 

parameters to give a slope () of -0.72 (Figure 5). The G‡ of each reaction was calculated with k 

using the Eyring equation. The G0 of each reaction was estimated with the E1/2(Ni(I)/Ni(II)) and 

the Nernst equation. The G‡ varied linearly as a function of G0, with R2 of 0.86 and a slope of 

0.22 (Figure 6). 
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Figure 5. Hammett correlation of the reaction rates of 12 dimerization mediated by complexes 6-

11.  

Figure 6. Correlation of the activation energy G‡ (kJ/mol) versus G0 (kJ/mol). 

Solvent Effect. The effect of solvent on the rate of 8-mediated activation of isopropyl bromide 

was investigated with four solvents (Table 4). Monitoring the reactions in pentane-d12, benzene-

d6, DME-d12 (dimethoxyethane), and acetone-d6 revealed similar rates despite the different 

dielectric constants of the solvents. The reduced rates in polar solvents could be attributed to their 

coordination to Ni, hindering the approach of the alkyl bromides. The rate in THF-d6 decreased 

dramatically, and a black precipitate was formed from the reaction. We attribute this outlier to a 

side-pathway triggered by the coordination of THF to 8. Our attempts to examine the reaction in 

other polar solvents, including CH2Cl2, were complicated by the decomposition of complex 8 in 

halogenated solvents.

Table 4. Solvent Effect of 8-Mediated Isopropyl Bromide Activation

Solvent Dielectric 
constant k x 103 (M-1s-1) Yield

Pentane-d12 1.8 5.3 80
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Benzene-d6 2.3 6.0 95
1,2-DME-d10 7.2 1.8 88
THF-d6 7.5 0.17 85
Acetone-d6 21 4.3 84

DFT Calculations. Computational studies were performed and compared with the 

experimental data. We evaluated the four possible pathways (Scheme 2) for the single-electron 

oxidative activation of EtBr by (tBu-Xantphos)Ni(Ph) 4, using spin-unrestricted formalism of DFT 

calculations with the B3LYP functional and the LANL2DZ basis/pseudopotential for the nickel 

centers and 6-31G(d) for the main-group elements, phosphorus, and bromine. The Gibbs free 

energy change (ΔG) of -15.6 kcal/mol suggests that the single-electron oxidative activation is 

exergonic. Optimization for the oxidative addition pathway converged to an SN2-type mechanism 

with an activation energy of 17.0 kcal/mol (Figure S57). The outer-sphere electron transfer 

mechanism was modeled using the Marcus-Hush theory, and resulted in a high barrier of 82.8 

kcal/mol, suggesting an unfavorable pathway. Evaluation of the inner-sphere electron transfer 

pathway failed to locate a stable encounter intermediate between 4 and EtBr. Calculations for the 

halogen-abstraction pathway converged to a concerted transition state 18 with an activation energy 

of 9.91 kcal/mol (Figure 7A). The geometry of the Ni center in 18 is distorted to a square pyramidal 

geometry with the phenyl group lifted as the bromide approaches Ni, giving a nearly linear 

geometry for the C(Ph)-Ni-Br-CH2CH3 atoms with a Ni---Br---Et angle of 169º. The spin density 

plot of 18 shows that the unpaired electron density is distributed on Ni and CH2CH3 (Figure 7B). 

Within the context of the halogen-abstraction mechanism, we examined the steric effect of the 

electrophile on the rate of single-electron oxidative activation. When iPrBr was used instead of 

EtBr, the ΔG of the reaction decreased to -16.3 kcal/mol, while the activation energy decreased to 

8.53 kcal/mol. Finally, in order to unravel the lack of reactivity of Ni(I) with aryl halides, we 
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calculated the ΔG for phenyl radical generation from PhBr with (tBu-Xantphos)Ni(Ph) 4. The ΔG 

of 1.15 kcal/mol suggests that the activation of sp2 electrophiles is slightly uphill.

(A)

 

(B)

Figure 7. (A) Reaction coordinate for single-electron oxidative activation of EtBr by 4 via 

concerted halogen-abstraction. Relative Gibbs free energy values were calculated with DFT 

B3LYP/LANL2DZ/6-31G(d). (B) Spin-density plot of transition state 18.

Catalytic Reactivity. While the majority of Ni-catalyzed cross-coupling reactions utilize 

nitrogen-based ligands, phosphine ligands, such as Xantphos, are competent in a number of cross-

coupling reactions.20 We explored the catalytic relevance of Xantphos ligands to the cross-

coupling of alkyl halides. Kumada coupling of benzyl bromide 19 with PhMgBr benefited from 

the use of a Ph-Xantphos ligand to afford the cross-coupling product 20 in 60% yield, whereas the 

reaction without a ligand gave 20 in 24% yield (Scheme 6A). Use of the bulkier tBu-Xantphos 

afforded 21 in 30% yield, suggesting activation of 19, but unsuccessful cross-coupling. 

Unactivated neopentyl iodide underwent cross-coupling with PhMgBr to give 23 in 83% yield, 
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whereas the reaction with no ligand afforded 23 in 5% yield. Cross-electrophile coupling of 19 

with PhI proceeded to generate the desired cross-coupling product 20 in 20% yield with 

considerable homo-coupling by-products (Scheme 6C). These observations clearly reveal a strong 

ligand effect on the reactivity and selectivity of the reaction.

Scheme 6. (Xantphos)Ni-Catalyzed Cross-Coupling Reactions

DISCUSSION

The Ni(0) complex (tBu-Xantphos)Ni(N2) 2 undergoes facile single-electron oxidative 

activation of aryl and alkyl bromides to form (tBu-Xantphos)NiBr 3 (Scheme 4). This observation 

is reminiscent of previous studies on (PEt3)4Ni(0).9 In contrast, Ni(I) complex (tBu-Xantphos)Ni–

o-Tol 6 selectively activates alkyl halides, but is inactive towards aryl halides (Scheme 5). We 

attribute the lack of reactivity with aryl bromides to the instability of aryl radicals, which results 

in a positive G for the reaction, as determined by DFT calculations. This selective activation of 

alkyl bromides activation over aryl bromides has important implications in controlling selectivity 
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in cross-electrophile coupling reactions, when both sp2 and sp3 electrophiles are present.1h The 

reaction of (tBu-Xantphos)Ni–o-Tol 6 with radical clock 12 forms 1,7-octadiene, indicating a 

radical-mediated ring opening that precedes the dimerization of the homoallylic radical (Scheme 

5). Such radical dimerizations have been extensively observed in catalytic reactions proceeding 

through radical intermediates.21 This assignment is supported by the trapping experiment of the 

cyclopropylmethyl radical with TEMPO to form 16 and 17. The ratio of 16 to 17 is dependent on 

the relative rates of cyclopropylmethyl radical ring-opening and trapping by TEMPO.22 

 Four different mechanisms were postulated for the activation of alkyl halides by Ni(I) 

complexes (Scheme 2), and the results described above provide evidence to distinguish among 

these possibilities. The slower rate with primary alkyl bromides relative to secondary alkyl 

bromides (Table 2) rules out the oxidative addition pathway (Scheme 2, Pathway 1). This 

interpretation is consistent with DFT calculations, which show an activation energy of 17.0 

kcal/mol for the SN2 type oxidative addition: substantially higher than that of the halogen 

abstraction pathway (9.91 kcal/mol). The faster rate of secondary bromide activation, relative to 

primary bromide activation, is reproduced by DFT calculations on the halogen-atom-abstraction 

pathway, and can be attributed to the formation of a more stable secondary radical which has a 

higher driving force compared to the formation of a primary radical.

The steric effect of aryl groups on Ni and the slope of the linear correlation of G‡ with G0, 

according to Marcus theory, provides evidence against an outer-sphere electron transfer pathway 

(Scheme 2, Pathway 2). Increased steric hindrance of the Ni complexes significantly reduced the 

reaction rate (Table 1), whereas outer-sphere electron transfer rates are unlikely to be subject to 

steric effects.23 According to Marcus theory,24 the activation barrier (G‡) of electron transfer 

would exhibit a linear-free-energy relationship with G0 and a slope of 0.5 (eq 1).25 The observed 

Page 17 of 26

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



slope of 0.22 for the correlation of G‡ to G0 significantly deviates from 0.5 (Figure 6), which is 

inconsistent with the outer-sphere electron transfer pathway. Corroborating this analysis, DFT 

calculations on the outer-sphere electron transfer pathway returned a very high activation energy 

of 82.8 kcal/mol. 

G‡ = 0.5G0 + constant (1)

The difference between the inner-sphere electron transfer (Scheme 2, Pathway 3) and the 

concerted halogen-atom-abstraction pathways (Scheme 2, Pathway 4) mainly rests on whether a 

caged ionic pair is formed as an intermediate. Polar solvents are expected to accelerate the rates of 

reactions going through an ionic intermediate.9 In this Ni(I)-mediated single-electron oxidative 

activation, DME and acetone gave slightly slower rates than those in pentane and benzene (Table 

4). We attribute the reduced rates with polar solvents to their coordination to Ni, which hinders the 

approach of the alkyl bromides. This solvent effect is inconsistent with the inner-sphere electron 

transfer pathway. 

Halogen-atom-abstraction is fully supported by experimental and computational data. The high 

susceptibility of the rate to the steric effect of the Ni complex (Table 1) indicates association of Ni 

with the alkyl bromide in the rate-determining step. Such a steric effect is corroborated by the 

faster rate for 2-bromopropane relative to 4-bromoheptane (Table 2). The encounter of the Ni(I) 

with the alkyl bromide could be viewed as nucleophilic donation of electron density from Ni(I) to 

the * orbital of the C–Br bond.26 TS 18 is stabilized by delocalizing electrons among three atoms, 

Ni, Br, and CH2CH3, and forming a three-center-three-electron bond (eq 2). The nearly linear 

geometry of 18, with a Ni---Br---Et angle of 169º, is reminiscent of TS 24 identified for 

(terpy)NiMe-mediated activation of iodopropane.13a In contrast, halogen-abstraction by (py)Ni(Ph) 

was calculated to have a bent TS 25.3h The activation barriers for 24 and 25 were determined to be 
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18 and 7.3 kcal/mol, respectively. The barrier of 9.91 kcal/mol for 18 is in between of the two 

systems. The trans-geometry of the aryl group on Ni to the incoming bromide in TS 18 is expected 

to enhance the electronic effect on the rate. The Hammett correlation of the rates with para-

substituted Ni-aryl complexes indicates a build-up of partial positive charge on Ni in transition 

state (TS) 18. A similar electronic effect has been proposed for 24.13a The slope of -0.72 is similar 

to previous reactions going through a concerted mechanism.27 The Marcus dependence of G‡ as 

a function of G0 shows an unusually shallow slope of 0.22. A comparable slope has been reported 

in a C–H oxidation reaction, going through concerted PCET (proton-coupled-electron-transfer).28 

While the origin of the moderate slope is unclear in either system, studies to explain it are 

underway. 

 (2)

SUMMARY

We prepared a series of (tBu-Xantphos)Ni(I)–Ar complexes that selectively activate alkyl 

halides over aryl halides via single-electron oxidative activation to eject alkyl radicals. Kinetic 

studies on the steric, electronic, and solvent effects, in combination with DFT calculations, reveal 

that the single-electron oxidative activation of alkyl halides proceeds via a concerted halogen-

atom-abstraction mechanism, in contrast with the previous proposal of outer-sphere electron 

transfer for Ni(0)-mediated aryl halide activation9 and consistent with recent DFT calculations on 

Ni(I) systems.13 Corroborated by the stoichiometric study, Xantphos is shown to promote catalytic 

cross-coupling of unactivated alkyl halides. The selective reactivity of (Xantphos)Ni(I) toward 
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alkyl halides, relative to aryl halides, and the elucidation of the mechanism, as a case study, provide 

insight into the mechanism of Ni-catalyzed cross-coupling reactions. However, whether the 

mechanism could be generalized remains to be seen, and the insight obtained here should be 

cautiously applied to other systems.
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