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Abstract 

 

A series of novel ureido benzenesulfonamides incorporating 1,3,5-triazine moieties were 

obtained by reacting 4-isocyanato-benzenesulfonamide (2) with 2-amino-4,6-dicholoro-1,3,5-

triazine (4). The 4-(3-(4,6-dichloro-1,3,5-triazin-2-yl)ureido) benzenesulfonamide (5) was 

subsequently derivatized by reaction with various nucleophiles such as, morpholine, ammonia, 

methyl amine, dimethyl amine, and piperidine. The ureido benzenesulfonamides incorporating 

triazinyl moieties were investigated as inhibitors of four selected physiologically relevant human 

carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, namely, hCA I, II, IX, and XII which are 

involved in various diseases such as glaucoma, epilepsy, obesity and cancer. The membrane-

bound tumor-associated isoform hCA IX was potently inhibited with these compounds with Kis 

in the range of 0.91 to 126.2 nM. Specifically, compound 7j showed great potency against hCA 

IX with sub-nanomolar Ki of 0.91 nM. Since hCA IX is a validated drug target for anticancer 

agents, these isoform-selective and potent inhibitors may be considered of interest for further 

medicinal/pharmacologic studies. 
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1. Introduction  

 

Cancer is the second most common disease causing death, after cardiovascular diseases 

across the world, and its incidence is expected to increase dramatically in the near future. The 

high incidence and mortality ratio of cancer is due to the fact that there are more than 200 types 

of cancers and it is rather difficult to detect most of them in the early stage. For all these reasons, 

the research in the anti-cancer drug discovery focused on cancer treatment with more effective 

and less toxic agents [1-3].  

Carbonic anhydrase (CA, EC 4.2.1.1) IX and XII (h, human isozymes, hCA IX and XII) 

are well-known transmembrane CA isoforms which are highly expressed in different tumor types 

and present a rather limited expression in most normal cells [4-7]. These tumor-associated 

proteins play important roles in tumor survival, acidification and proliferation under hypoxic 

conditions of primary tumors and metastases [4-7]. The extracellular localization of these 

isoforms, allows their efficient targeting by antibodies and small molecule inhibitors. Recently, 

one of the small molecule CA IX/XII inhibitors, SLC-0111 advanced into Phase I/II clinical 

trials for the treatment of hypoxic, metastatic tumors over-expressing these proteins [8-10]. SLC-

0111 belongs to the class of ureido-sulfonamides, which show a very good selectivity for 

inhibiting CA IX/XII over CA I and II [8-10], cytosolic isoforms which are off-targets when 

considering the antitumor applications of the CA inhibitors.  

The 1,3,5-triazine scaffold, also known as s-triazine, is an interesting core for medicinal 

chemistry applications due to the broad biological activities and wide variety of applications of 

compounds incorporating it, such as antimicrobial, diuretics, antiviral, anti-inflammatory, and 

more anti-cancer agents [11-13]. In recent years, sulfonamides incorporating 1,3,5-triazine 

moieties were discovered as potent and highly selective hCA IX inhibitors [14-16]. These 



  

compounds showed one of the best selectivity ratio for hCA IX over the widespread, off-target 

hCA II, between 166 to 706 fold. The high selectivity ratio of these compounds makes them 

good lead compounds for designing other types of selective inhibitors targeting the tumor-

associated isoform hCA IX [14].  

In the current work, we combined these two powerful scaffolds (1,3,5-triazine and ureido 

substituted benzenesulfonamides) to obtain potent and selective hCA IX and XII inhibitors by 

using the tail approach, as described in Figure 1. For this reason, novel ureido 

benzensulfonamides incorporating 1,3,5-triazine moieties were synthesized and investigated as 

inhibitors of four physiologically and pharmacologically relevant isoforms, which are the 

cytosolic isozymes hCA I and II, as well as tumor-associated membrane-bound isoforms hCA IX 

and XII.  

 

                       



  

Figure 1. The design strategy for the ureido benzensulfonamides incorporating 1,3,5-triazine 

moieties, starting from SLC-0111 as lead, by using tail approach. 

 

2. Result and Discussion 

2.1. Chemistry 

In the design of novel and possibly isoform-selective CA inhibitors, the investigation of 

hybrid molecules through the combination of different scaffolds and pharmacophores in one 

structure may lead to improved potency and selectivity. Considering the versatile chemistry of 

cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) and the ureido substituted benzene-sulfonamide 

scaffold present in SLC-0111, we have designed and synthesized novel ureido 

benzenesulfonamides incorporating the 1,3,5-triazine moiety as CA inhibitors.  

The synthesis of this series of ureido benzenesulfonamides was performed according to 

the general synthetic route described in Scheme 1. The starting compounds, 4-isocyanato-

benzenesulfonamide (2) and 4,6-dicholoro-1,3,5-triazine-2-amine (4) were synthesized as 

previously described [17,18]. The key intermediate of this work, 4-(3-(4,6-dichloro-1,3,5-triazin-

2-yl)ureido) benzenesulfonamide (5) was obtained as shown in Scheme 1 by the reaction of 

compounds 2 and 4.  Subsequently, the chlorine atoms of the key intermediate 5 were substituted 

by using morpholine, piperidine, ammonia, methyl amine, and dimethyl amine as nucleophiles, 

in order to generate chemical diversity.  

 

 

 



  

 
 

Scheme 1. General synthetic route for the synthesis of  benzenesulfonamides incorporating 

1,3,5-triazine moieties. Reagents and conditions: (i) nitrobenzene, phosgene, -10 to 90 
0
C slowly, 

6h, (ii) Acetone, crushed ice, 25 wt% aqueous ammonia solution, 0 to 5 
0
C, 30 min, yield 95%. 

(iii) THF, 48 h, 40 
0
C, yield 45%  (iv) R1H, DMF, 0 to 5 

0
C, 1h, then R.T. 4h, yields 54-88% (v) 

R2H, DMF, room temperature, 1h, then 90 
0
C, 2h, yields 45-88%.   

 

2.2.Carbonic anhydrase inhibition 

 

The novel ureido benzenesulfonamides incorporating 1,3,5-triazine moieties obtained 

here were tested as inhibitors of four physiologically and pharmacologically relevant isoforms, 

namely, the cytosolic hCA I and II, as well as the transmembrane tumor-associated isoforms 

hCA IX and XII, by a stopped-flow CO2 hydrase assay [19]. Acetazolamide (AAZ), a clinically 



  

employed sulfonamide CAI and SLC-0111 (Phase I/II clinical trials for the treatment of 

advanced, metastatic breast cancer) were also included in the assays as standard drugs. The 

following structure-activity relationship (SAR) may be drawn regarding the inhibition data of 

Table 1 for this series of ureido benzenesulfonamides incorporating the 1,3,5-triazine scaffold, 5, 

6 (a-e), and 7 (a-k): 

i. The widely abundant slow cytosolic isoform hCA I was moderately inhibited by all the 

novel inhibitors that are presented in this work, with the inhibition constants in the range 

of 91.7-8374.8 nM. Only one compound (6e) showed efficient inhibition, being more 

effective than the clinically used drug acetazolamide (AAZ), with a Ki of 91.7 nM. The 

least potent inhibitors from the series were compound 7a (R1= morpholine, R2= NH2), 

compound 7e (R1, R2= morpholine) and 7i (R1= N(Me)2, R2 = NH2), with Kis of 8343.1, 

4186.7 and 8374.8 nM, respectively.  

ii. All compounds reported here were more efficient as hCA II inhibitors compared to SLC-

0111, which is a weak inhibitor of this isoform with a Ki of 960 nM. In general, all the 

new compounds reported here showed low nanomolar to subnanomolar inhibition of hCA 

II, with Kis ranging between 0.69 nM and 420.9 nM. The best hCA II inhibitors were 

derivatives 6d (R1= morpholine, R2= Cl), 6e (R1= piperidine, R2= Cl) and 7j (R1= 

N(Me)2, R2= NHMe), with Kis of 1.5, 0.69, and 3.1 nM.  

iii. The transmembrane tumor-associated isoform hCA IX was efficiently inhibited by most 

of the compounds reported in this work. Only three compounds from the series were less 

potent than SLC-0111, which is an effective hCA IX inhibitor, namely compound 6a, 7a, 

and 7e with Kis of 48.5, 126.2, 46.5 nM, respectively. One of the most important findings 

of the current work is that compound 7j showed subnanomolar activity (Ki, 0.91 nM) 



  

against hCA IX, with good selectivity over hCA I and hCA XII, and reasonable 

selectivity over hCA II. Other hCA IX potent inhibitors were derivatives 5 (R1, R2= Cl), 

6c (R1= N(Me)2, R2= Cl), 6e (R1= piperidine, R2= Cl), and 7f (R1= piperidine, R2= 

NHMe) with Kis of 4.4, 4.5, 2.3, and 2.7 nM, respectively.  

iv. The other tumor-associated membrane bound isoform hCA XII was moderately inhibited 

by most of the ureido benzenesulfonamides incorporating 1,3,5-triazine moieties reported 

here, with Kis ranging from 80.5 to 901.3 nM, except derivatives 7a and 7e, which did 

not inhibit the enzyme up to 10,000 nM. Among this series, two compounds showed 

potent inhibition against hCA XII, i.e.,  compound 5 (R1=R2= Cl) and compound 7f (R1= 

piperidin, R2= NHMe) with Kis of 84.2 and 80.5 nM, respectively.  

 

Table 1: Inhibition data of human CA isoforms hCA I, II,  IX and XII with derivatives 5, 6 (a-e), 

and 7 (a-k) reported here and the standard sulfonamide inhibitors acetazolamide (AAZ) and 

SLC-0111 (phase I/II clinical trials for the treatment of advanced metastatic breast cancer) by a 

stopped flow CO2 hydrase assay [19].   

 

 
       KI

*
 (nM) 

 
Comp.  R1   R2  hCAI  hCA II  hCA IX        hCA XII

 
5  Cl    Cl  873.0  93.9  4.4  84.2  

6a -NH2   Cl  816.8  178.6  48.5  901.3  

6b -NHMe  Cl  676.5  9.0  26.8  579.0  

6c -N(Me)2  Cl  660.2  12.4  4.5  346.5  



  

6d    Cl  548.1  1.5  31.6  301.4  

6e    Cl  91.7  0.69  2.3  277.5  

7a   -NH2  8343.1  420.9             126.2             >10000 

7b   -NHMe 803.2  33.6  32.0  872.9  

7c   -N(Me)2 602.9  3.9  7.4  747.7  

7d      625.9  33.2  28.3  831.8  

7e    4186.7  6.9  46.5            >10000 

7f    -NHMe 427.7  5.2  2.7  80.5  

7g   -N(Me)2 551.3  8.5  4.9  743.7  

7h    474.2  78.9  12.7  494.7  

7i -N(Me)2  -NH2  8374.8  299.4  23.8  692.9  

7j -N(Me)2  -NHMe 394.9  3.1  0.91  554.7  

7k -N(Me)2  -N(Me)2 923.8  7.5  11.4  626.3 

AAZ        -       -  250  12  25  5.7 

SLC-0111 -       -  5080  960  45.1  4.5 

* Mean from 3 different assays, by a stopped flow technique (errors were in the range of  5-10 

% of the reported values). 

 

 

 

3. Conclusions 

 

In conclusion, we report here a novel series of ureido benzenesulfonamides incorporating 

1,3,5-triazine moieties, which also contain with morpholine, piperidine, ammonia, methyl amine, 



  

and dimethyl amine moieties in their molecules. The novel compounds were investigated as 

inhibitors of four physiologically and pharmacologically relevant isoforms, the cytosolic 

isoforms hCA I and II, as well as tumor-associated membrane-bound isoforms hCA IX and XII. 

All compounds showed potent inhibition against the tumor-associated isozyme hCA IX with low 

nanomolar to subnanomolar potency, with Kis in the range of 0.91 to 126.2 nM. For other 

isoforms, distinct inhibition profiles and interesting structure-activity relationship were observed, 

depending on the nature of the amine that was appended on the 1,3,5-triazine scaffold. As hCA 

IX is a validated drug target for metastatic hypoxic tumors and SLC-0111 advanced to Phase I/II 

clinical trials for the treatment of breast cancer, these hCA IX potent ureido 

benzenesulfonamides incorporating 1,3,5-triazine moieties might be of interest for further 

medicinal/pharmacologic studies. 

    

4. Experimental 

 

4.1. Chemistry 

 

All chemicals and anhydrous solvents were purchased from Sigma-Aldrich, Merck, Alfa 

Aesar and TCI and used without further purification. FT-IR spectra were obtained by using 

Perkin Elmer Spectrum 100 FT-IR spectrometer. Nuclear Magnetic Resonance (
1
H-NMR and 

13
C-NMR) spectra of compounds were recorded using a Bruker Advance III 300 MHz 

spectrometer in DMSO-d6 and TMS as an internal standard operating at 300 MHz for 
1
H-NMR 

and 75 MHz for 
13

C-NMR. Thin layer chromatography (TLC) was carried out on Merck silica 

gel 60 F254 plates. 

 

 



  

4.1.1. Syntesis of 4-(3-(4,6-dichloro-1,3,5-triazin-2-yl)ureido) 

benzenesulfonamide (5) 

The starting compounds, 4-isocyanato-benzenesulfonamide (2) and 4,6-dicholoro-1,3,5-

triazine-2-amine (4) were synthesized as previously described [15,16]. A solution of 2 (10 mmol) 

in 5 mL of THF was slowly added over the solution of 4 (10 mmol) under stirring at room 

temperature. The solution was left under stirring for 48 h at 40 
0
C (TLC monitoring). After that, 

the solvent was evaporated and crude residue was purified by column chromatography (ethyl 

acetate/ petroleum ether) to give title compound 5. The obtained product was dried under 

vacuum and fully characterized by FT-IR, 
1
H-NMR, 

13
C-NMR, and melting point.     

Yield: 25%; Color: white solid; mp: 244-246 
0
C; FT-IR (cm

-1
): 3213, 1653, 1535 (asymmetric), 

1342, 1164 (symmetric) (S=O), 1090; 
1
H-NMR (DMSO-d6, 300 MHz, δ ppm): 10.65 (s, 1H, -

NH-), 9.10 (s, 1H, -NH-), 8.00 (d, 2H, J = 8.4, Ar-H), 7.93 (d, 2H, J = 6.9, Ar-H), 7.58 (s, 2H, -

SO2NH2): 
13

C-NMR (DMSO-d6, 75 MHz, δ ppm): 165.3, 156.1, 150.4, 147.1, 135.5, 129.2, 

126.0; 

4.1.2. General procedure for the synthesis of compounds 6(a-e).  

At 0 
0
C,  a 10 mmol solution of R1-H (morpholine, piperidine, 25 wt% ammonia, 40 wt% 

methyl amine, dimethyl amine) was added to 5 mmol of 5 in DMF under stirring. After complete 

addition, the mixture was allowed to warm to room temperature for 4h. Then, the product was 

filtered off washed with water and dried under vacuum at 40 
0
C. The obtained final pure 

products were fully characterized by FT-IR, 
1
H-NMR, 

13
C-NMR, and melting points.    

4-(3-(4-amino-6-chloro-1,3,5-triazin-2-yl)ureido) benzenesulfonamide (6a). 

Yield: 54%; Color: white solid; mp: 288-290 
0
C; FT-IR (cm

-1
): 3304, 3148, 1643, 1547 

(asymmetric), 1413, 1155 (symmetric) (S=O), 1093; 
1
H-NMR (DMSO-d6, 300 MHz, δ 



  

ppm): 10.60 (s, 1H, -NH-), 9.15 (s, 1H, -NH-), 8.11 (d, 2H, J = 7.2, Ar-H), 7.95 (d, 2H, J 

= 7.5, Ar-H), 7.56 (s, 2H, -SO2NH2), 6.62 (s, 2H, -NH2): 
13

C-NMR (DMSO-d6, 75 MHz, 

δ ppm): 165.7, 164.1, 156.4, 150.2, 147.3, 136.1, 129.1, 126.3; 

4-(3-(4-chloro-6-(methylamino)-1,3,5-triazin-2-yl)ureido) benzenesulfonamide (6b). 

Yield: 78%; Color: white solid; mp: 282-285 
0
C; FT-IR (cm

-1
): 3255, 3117, 1647, 1551 

(asymmetric), 1319, 1155 (symmetric) (S=O), 1104; 
1
H-NMR (DMSO-d6, 300 MHz, δ 

ppm): 10.62 (s, 1H, -NH-), 9.18 (s, 1H, -NH-), 8.08-7.94 (m, 4H, Ar-H),  7.55 (s, 2H, -

SO2NH2), 6.52 (s, 2H, -NHCH3), 2.81-2.75 (m, 3H, -NHCH3) : 
13

C-NMR (DMSO-d6, 75 

MHz, δ ppm): 165.7, 164.4, 156.5, 150.7, 146.7, 136.1, 128.9, 126.2, 27.6; 

4-(3-(4-chloro-6-(dimethylamino)-1,3,5-triazin-2-yl)ureido) benzenesulfonamide 

(6c). Yield: 83%; Color: white solid; mp: 249-251 
0
C; FT-IR (cm

-1
): 3361, 3257, 1669, 

1577 (asymmetric), 1345, 1166 (symmetric) (S=O), 1113; 
1
H-NMR (DMSO-d6, 300 

MHz, δ ppm): 10.65 (s, 1H, -NH-), 9.15 (s, 1H, -NH-), 8.08 (d, 2H, J = 7.2, Ar-H), 7.92 

(d, 2H, J = 6.9, Ar-H), 7.54 (s, 2H, -SO2NH2), 3.12 (s, 6H, -CH3): 
13

C-NMR (DMSO-d6, 

75 MHz, δ ppm): 165.9, 164.7, 156.2, 150.5, 146.8, 136.3, 128.8, 126.1, 35.5; 

4-(3-(4-chloro-6-morpholino-1,3,5-triazin-2-yl)ureido) benzenesulfonamide (6d). 

Yield: 88%; Color: white solid; mp: 265-267 
0
C; FT-IR (cm

-1
): 3337, 3201, 1669, 1577 

(asymmetric), 1345, 1166 (symmetric) (S=O), 1113; 
1
H-NMR (DMSO-d6, 300 MHz, δ 

ppm): 10.68 (s, 1H, -NH-), 9.10 (s, 1H, -NH-), 8.12 (d, 2H, J = 6.9, Ar-H), 7.90 (d, 2H, J 

= 6.3, Ar-H), 7.51 (s, 2H, -SO2NH2), 3.80-3.45 (m, 8H, morpholine): 
13

C-NMR (DMSO-

d6, 75 MHz, δ ppm): 165.6, 164.3, 156.5, 150.2, 146.7, 136.2, 128.7, 126.3, 66.3, 43.4; 

4-(3-(4-chloro-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)ureido) benzenesulfonamide (6e). 

Yield: 66%; Color: white solid; mp: 229-231 
0
C; FT-IR (cm

-1
): 3341, 3240, 1673, 1558 



  

(asymmetric), 1332, 1159 (symmetric) (S=O), 1084; 
1
H-NMR (DMSO-d6, 300 MHz, δ 

ppm): 10.66 (s, 1H, -NH-), 9.02 (s, 1H, -NH-), 8.08 (d, 2H, J = 7.2, Ar-H), 7.88 (d, 2H, J 

= 6.9, Ar-H), 7.53 (s, 2H, -SO2NH2), 3.45-3.21 (m, 4H, piperidine), 1.74-1.48 (m, 6H, 

piperidine): 
13

C-NMR (DMSO-d6, 75 MHz, δ ppm): 165.9, 164.7, 156.4, 150.5, 146.8, 

136.5, 128.4, 126.2, 43.6, 25.8, 24.3; 

4.1.3. General procedure for the synthesis of compounds 7 (a-k).  

Under stirring, a 2 mmol solution of R2-H (morpholine, piperidine, 25 wt% ammonia, 40 

wt% methyl amine, dimethyl amine) was added to 1 mmol of 6 (a-e) in DMF at room 

temperature. Then, the reaction temperature was raised to 90 
0
C for 2h. After cooling to room 

temperature, the mixture was filtered and the precipitate was washed with water and dried at 50 

0
C. The obtained final pure products 7 (a-k) were fully characterized by FT-IR, 

1
H-NMR, 

13
C-

NMR, and melting points.     

 

4-(3-(4-amino-6-morpholino-1,3,5-triazin-2-yl)ureido) benzenesulfonamide (7a).  

Yield: 45%; Color: white solid; mp: 248-251 
0
C; FT-IR (cm

-1
): 3273, 3205, 1635, 1529 

(asymmetric), 1338, 1179 (symmetric) (S=O), 1091; 
1
H-NMR (DMSO-d6, 300 MHz, δ 

ppm): 10.55 (s, 1H, -NH-), 8.88 (s, 1H, -NH-), 8.15 (d, 2H, J = 7.2, Ar-H), 7.92 (d, 2H, J 

= 6.9, Ar-H), 7.53 (s, 2H, -SO2NH2), 6.48 (s, 2H, -NH2), 3.79-3.65 (m, 4H, morpholine), 

3.42-3.35 (m, 4H, morpholine): 
13

C-NMR (DMSO-d6, 75 MHz, δ ppm): 165.2, 164.1, 

156.2, 150.5, 146.8, 136.1, 128.3, 126.1, 66.5, 43.2; 

4-(3-(4-(methylamino)-6-morpholino-1,3,5-triazin-2-yl)ureido) benzenesulfonamide 

(7b). Yield: 85%; Color: white solid; mp: 248-251 
0
C; FT-IR (cm

-1
): 3423, 3319, 3213, 

1663, 1514 (asymmetric), 1330, 1157 (symmetric) (S=O), 1108; 
1
H-NMR (DMSO-d6, 



  

300 MHz, δ ppm): 10.58 (s, 1H, -NH-), 8.85 (s, 1H, -NH-), 8.07 (d, 2H, J = 7.5, Ar-H), 

7.88 (d, 2H, J = 7.2, Ar-H), 7.52 (s, 2H, -SO2NH2), 6.58 (s, 2H, -NHCH3), 3.75-3.62 (m, 

4H, morpholine), 3.45-3.37 (m, 4H, morpholine), 2.99-2.85 (m, 3H, -NHCH3)  : 
13

C-

NMR (DMSO-d6, 75 MHz, δ ppm): 166.0, 164.7, 156.8, 150.7, 146.5, 136.4, 128.2, 

126.6, 66.2, 42.8, 28.3; 

4-(3-(4-(dimethylamino)-6-morpholino-1,3,5-triazin-2-yl)ureido) 

benzenesulfonamide (7c). Yield: 88%; Color: white solid; mp: 262-265
0
C; FT-IR (cm

-

1
): 3330, 3203, 1674, 1513 (asymmetric), 1306, 1167 (symmetric) (S=O), 1111; 

1
H-NMR 

(DMSO-d6, 300 MHz, δ ppm): 10.41 (s, 1H, -NH-), 8.76 (s, 1H, -NH-), 8.02 (d, 2H, J = 

7.5, Ar-H), 7.93 (d, 2H, J = 7.2, Ar-H), 7.53 (s, 2H, -SO2NH2),  3.84-3.43 (m, 8H, 

morpholine), 3.05 (s, 6H, -CH3) : 
13

C-NMR (DMSO-d6, 75 MHz, δ ppm): 166.8, 165.2, 

156.9, 150.8, 146.3, 136.7, 128.5, 126.9, 66.6, 43.4, 35.8; 

4-(3-(4-morpholino-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)ureido) benzenesulfonamide 

(7d). Yield: 82%; Color: white solid; mp: 222-225
0
C; FT-IR (cm

-1
): 3216, 3064, 1656, 

1505 (asymmetric), 1331, 1162 (symmetric) (S=O), 1102; 
1
H-NMR (DMSO-d6, 300 

MHz, δ ppm): 10.41 (s, 1H, -NH-), 8.75 (s, 1H, -NH-), 8.00 (d, 2H, J = 8.1, Ar-H), 7.93 

(d, 2H, J = 8.4, Ar-H), 7.53 (s, 2H, -SO2NH2),  3.80-3.43 (m, 12H, morpholine and 

piperidine), 1.71-1.44 (m, 6H, piperidine) : 
13

C-NMR (DMSO-d6, 75 MHz, δ ppm): 

166.7, 165.1, 156.7, 150.4, 146.6, 136.3, 128.4, 126.6, 66.5, 44.0, 43.7, 25.9, 24.8; 

4-(3-(4,6-dimorpholino-1,3,5-triazin-2-yl)ureido) benzenesulfonamide (7e). Yield: 

87%; Color: white solid; mp: 298-300
0
C; FT-IR (cm

-1
): 3244, 3170, 1668, 1501 

(asymmetric), 1339, 1165 (symmetric) (S=O), 1067; 
1
H-NMR (DMSO-d6, 300 MHz, δ 

ppm): 10.45 (s, 1H, -NH-), 8.72 (s, 1H, -NH-), 8.00 (d, 2H, J = 7.5, Ar-H), 7.91 (d, 2H, J 



  

= 8.1, Ar-H), 7.52 (s, 2H, -SO2NH2),  3.79-3.65 (m, 8H, morpholine), 3.54-3.41 (m, 8H, 

morpholine): 
13

C-NMR (DMSO-d6, 75 MHz, δ ppm): 166.4, 156.8, 150.2, 146.3, 136.6, 

128.7, 126.2, 66.8, 43.5; 

4-(3-(4-(methylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)ureido) 

benzenesulfonamide (7f). Yield: 78%; Color: white solid; mp: 239-241 
0
C; FT-IR (cm

-

1
): 3404, 3334, 1667, 1515 (asymmetric), 1329, 1160 (symmetric) (S=O), 1088; 

1
H-NMR 

(DMSO-d6, 300 MHz, δ ppm): 10.65 (s, 1H, -NH-), 9.08 (s, 1H, -NH-), 8.05 (d, 2H, J = 

7.5, Ar-H), 7.85 (d, 2H, J = 7.2, Ar-H), 7.54 (s, 2H, -SO2NH2), 6.55 (s, 2H, -NHCH3), 

3.42-3.29 (m, 4H, piperidine), 2.79-2.72 (m, 3H, -NHCH3), 1.72-1.52 (m, 6H, 

piperidine): 
13

C-NMR (DMSO-d6, 75 MHz, δ ppm): 166.1, 164.5, 156.7, 150.8, 146.9, 

136.2, 128.7, 126.5, 43.9, 28.1, 25.5, 24.2; 

4-(3-(4-(dimethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)ureido) 

benzenesulfonamide (7g). Yield: 86 %; Color: white solid; mp: 236-239 
0
C; FT-IR (cm

-

1
): 3322, 3170, 1695, 1503 (asymmetric), 1335, 1159 (symmetric) (S=O), 1094; 

1
H-NMR 

(DMSO-d6, 300 MHz, δ ppm): 10.69 (s, 1H, -NH-), 9.05 (s, 1H, -NH-), 8.10 (d, 2H, J = 

8.1, Ar-H), 7.83 (d, 2H, J = 7.2, Ar-H), 7.53 (s, 2H, -SO2NH2), 3.40-3.27 (m, 4H, 

piperidine), 3.10 (s, 6H, -CH3), 1.75-1.52 (m, 6H, piperidine): 
13

C-NMR (DMSO-d6, 75 

MHz, δ ppm): 166.4, 164.7, 156.5, 150.4, 146.6, 136.4, 128.2, 126.3, 43.7, 35.4, 25.7, 

24.3; 

4-(3-(4,6-di(piperidin-1-yl)-1,3,5-triazin-2-yl)ureido) benzenesulfonamide (7h). 

Yield: 82 %; Color: white solid; mp: 233-236 
0
C; FT-IR (cm

-1
): 3339, 3225, 1664, 1501 

(asymmetric), 1327, 1169 (symmetric) (S=O), 1103; 
1
H-NMR (DMSO-d6, 300 MHz, δ 

ppm): 10.60 (s, 1H, -NH-), 9.01 (s, 1H, -NH-), 8.01 (d, 2H, J = 7.5, Ar-H), 7.79 (d, 2H, J 



  

= 6.9, Ar-H), 7.52 (s, 2H, -SO2NH2), 3.41-3.29 (m, 8H, piperidine), 1.73-1.54 (m, 12H, 

piperidine): 
13

C-NMR (DMSO-d6, 75 MHz, δ ppm): 166.3, 156.4, 150.2, 146.3, 136.5, 

128.7, 126.4, 43.9,  25.3, 24.1; 

4-(3-(4-amino-6-(dimethylamino)-1,3,5-triazin-2-yl)ureido) benzenesulfonamide (7i). 

Yield: 51 %; Color: white solid; mp: 222-225 
0
C; FT-IR (cm

-1
): 3273, 3103, 1639, 1528 

(asymmetric), 1334, 1161 (symmetric) (S=O), 1091; 
1
H-NMR (DMSO-d6, 300 MHz, δ 

ppm): 10.45 (s, 1H, -NH-), 8.82 (s, 1H, -NH-), 8.01 (d, 2H, J = 7.2, Ar-H), 7.93 (d, 2H, J 

= 7.5, Ar-H), 7.53 (s, 2H, -SO2NH2), 6.60 (s, 2H, -NH2), 3.08 (s, 6H, -CH3): 
13

C-NMR 

(DMSO-d6, 75 MHz, δ ppm): 166.1, 164.7, 156.6, 150.2, 147.5, 136.2, 129.3, 126.8, 

35.6; 

4-(3-(4-(dimethylamino)-6-(methylamino)-1,3,5-triazin-2-yl)ureido) 

benzenesulfonamide (7j). Yield: 82 %; Color: white solid; mp: 245-248 
0
C; FT-IR (cm

-

1
): 3425, 3312, 3213, 1661, 1535 (asymmetric), 1331, 1158 (symmetric) (S=O), 1093; 

1
H-NMR (DMSO-d6, 300 MHz, δ ppm): 10.48 (s, 1H, -NH-), 8.80 (s, 1H, -NH-), 8.03 (d, 

2H, J = 6.9, Ar-H), 7.94 (d, 2H, J = 7.2, Ar-H), 7.54 (s, 2H, -SO2NH2), 6.50 (s, 2H, -

NHCH3), 3.12 (s, 6H, -CH3), 2.75-2.69 (m, 3H, -NHCH3): 
13

C-NMR (DMSO-d6, 75 

MHz, δ ppm): 166.4, 164.5, 156.5, 150.2, 147.4, 136.8, 129.5, 126.3, 35.6, 28.7; 

4-(3-(4,6-bis(dimethylamino)-1,3,5-triazin-2-yl)ureido) benzenesulfonamide (7k). 

Yield: 86 %; Color: white solid; mp: 262-264 
0
C; FT-IR (cm

-1
): 3317, 3270, 1678, 1517 

(asymmetric), 1339, 1162 (symmetric) (S=O), 1089; 
1
H-NMR (DMSO-d6, 300 MHz, δ 

ppm): 10.47 (s, 1H, -NH-), 8.79 (s, 1H, -NH-), 8.05 (d, 2H, J = 6.9, Ar-H), 7.95 (d, 2H, J 

= 7.5, Ar-H), 7.53 (s, 2H, -SO2NH2), 3.09 (s, 12H, -CH3): 
13

C-NMR (DMSO-d6, 75 

MHz, δ ppm): 166.5, 156.7, 150.1, 147.8, 136.4, 129.3, 126.2, 35.8; 



  

 

4.1.4. CA inhibition 
 

An SX.18MV-R Applied Photophysics (Oxford, UK) stopped-flow instrument has been 

used to assay the catalytic/inhibition of various CA isozymes [19]. Phenol Red (at a 

concentration of 0.2 mM) has been used as an indicator, working at the absorbance maximum of 

557 nm, with 10 mM Hepes (pH 7.4) as a buffer, 0.1 M Na2SO4 or NaClO4 (for maintaining 

constant the ionic strength; these anions are not inhibitory in the used concentration), following 

the CA-catalyzed CO2 hydration reaction for a period of 5-10 s. Saturated CO2 solutions in water 

at 25 °C were used as substrate. Stock solutions of inhibitors were prepared at a concentration of 

10 mM (in DMSO-water 1:1, v/v) and dilutions up to 0.01 nM done with the assay buffer 

mentioned above. At least 7 different inhibitor concentrations have been used for measuring the 

inhibition constant. Inhibitor and enzyme solutions were pre-incubated together for 10 min at 

room temperature prior to assay, in order to allow for the formation of the E-I complex. 

Triplicate experiments were done for each inhibitor concentration, and the values reported 

throughout the paper is the mean of such results. The inhibition constants were obtained by 

nonlinear least-squares methods using the Cheng-Prusoff equation, as reported earlier, and 

represent the mean from at least three different determinations [20-22]. All CA isozymes used 

here were recombinant proteins obtained as reported earlier by our group. 
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Highlights 
 

 The synthesis of a series of novel ureido benzenesulfonamides incorporating 1,3,5-triazine 

moieties was reported.  

 The ureido benzenesulfonamides incorporating 1,3,5-triazine derivatives were investigated as 

hCA I, II, IX and XII inhibitors. 

  The derivatives showed to be subnanomolar to nanomolar inhibitors of hCA IX isozyme with Kis 

in the range of 0.91 to 126.2 nM. 

 These derivatives showed some selectivity for hCA IX over hCA I, II and XII isoforms 

 

 
 


