Advance Publication Cover Page

Cu/Fe/O=PPh₃-Catalyzed Etherification for the Synthesis of Aryl 3-Benzo[b]thienyl Ethers

Koichi Mitsudo,* Takuya Asada, Tomohiro Inada, Yuji Kurimoto, Hiroki Mandai, and Seiji Suga*

Advance Publication on the web June 21, 2018 doi:10.1246/cl.180425

© 2018 The Chemical Society of Japan

Advance Publication is a service for online publication of manuscripts prior to releasing fully edited, printed versions. Entire manuscripts and a portion of the graphical abstract can be released on the web as soon as the submission is accepted. Note that the Chemical Society of Japan bears no responsibility for issues resulting from the use of information taken from unedited, Advance Publication manuscripts.

Cu/Fe/O=PPh₃-Catalyzed Etherification for the Synthesis of Aryl 3-Benzo[b]thienyl Ethers

Koichi Mitsudo,* Takuya Asada, Tomohiro Inada, Yuji Kurimoto, Hiroki Mandai, and Seiji Suga*

Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka,

Kita-ku, Okayama 700-8530

E-mail: insert corresponding e-mail address

Cu/Fe-cocatalyzed cross-coupling reactions between 3 bromobenzo[b]thiophene and hydroxyaryls are described
 herein. The combination of Cu and Fe catalysts is important
 for the progress of the reactions, and the use of
 triphenylphosphine oxide as a ligand suppresses the
 dehalogenation of 3-bromobenzo[b]thiophene, and proceeds
 promptly the reaction. The obtained aryl benzo[b]thienyl
 ethers can be converted to π-extended thienobenzofuran
 derivatives via Pd-catalyzed dehydrogenative cyclizations.

10 Keywords: Aryl thienyl ether, Cu/Fe-cocatalyst, Cross-11 coupling

12 Diaryl ethers are known as common skeletal motifs of 13 natural products and bioactive compounds, and several 14 synthetic methods have been reported thus far.¹ Among the 15 known diaryl ethers, aryl thienyl ethers are important 16 because they can be used as precursors for π -extended 17 thieno[3,2-*b*]furan derivatives,² which are potential 18 candidates for organic materials.

19 While copper-mediated Ullmann couplings have been 20 used for a long time for the synthesis of diaryl ethers, these 21 reactions usually require the use of a stoichiometric amount 22 of copper salts as well as high reaction temperatures.³ 23 Recently, a breakthrough was accomplished by the 24 discovery of efficient ligands for Ullmann couplings.⁴ These 25 ligands realize catalytic Ullmann-type coupling under mild 26 conditions. Another breakthrough is the use of an iron salt 27 as a co-catalyst; several excellent works based on the 28 combination of copper and iron catalysts were recently reported.⁵ Thus, new possibilities have been reported for the 29 30 synthesis of diaryl ethers; however, applying such reactions to the synthesis of diaryl ethers bearing an electron-rich 31 32 heteroaryl, such as benzo[b]thiophene, is challenging 33 because dehalogenation of the substrate often competes with 34 the desired coupling reaction.⁶ Buchwald and co-workers reported that picolinic acid was an efficient ligand for Cu-35 catalyzed Ullman-type etherifications.7 They reported the 36 37 reaction of 3-bromo-2-formyl-benzo[b]thiophene, but the reaction of 3-bromobenzo[b]thiophene, which could be used 38 39 for thieno[3,2-b]furan, was not reported. Quite recently, Ma 40 and co-workers reported CuI/N-(2-phenylphenyl)-N'-benzyl 41 oxalamide-catalyzed diaryl ether syntheses.⁸ While the 42 catalytic system could be used for the synthesis of a wide 43 variety of diaryl ethers, they used 3-iodobenzo[b]thiophene 44 as the benzo[b]thiophene source. To the best of our 45 knowledge, there has been no efficient method for a Cu-46 catalyzed etherification using 3-bromobenzo[b]thiophene, which is commercially available and cheaper than 3-47 iodobenzo[b]thiophene. 48

49 We considered that a fine-tuning of the reaction 50 conditions could enhance the efficiency of the Ullmann-type 51 coupling reaction of 3-bromobenzo[b]thiophene, which 52 would be a powerful tool for the synthesis of arvl 53 benzo[b]thienyl ethers. We examined the reaction 54 conditions for an Ullmann-type reaction with 3-55 bromobenzo[b]thiophene, and found an efficient Cu/Fe 56 catalytic system, using triphenylphosphine oxide as a ligand. 57 To the best of our knowledge, there has been no report on a copper- or iron-catalyzed Ullmann-type reaction using 58 59 triphenylphosphine oxide as a ligand.9

60 First, we chose 3-bromobenzo[b]thiophene (1) and pcresol as model compounds and performed a screening of 61 copper salts for the Cu/Fe-cocatalyzed etherification 62 63 between them (Table 1). In the presence of a Cu source 64 ([Cu], 5 mol %), Fe(acac)₃ (5 mol %), and K₂CO₃ (2.0 65 equiv), 3-bromobenzo[b]thiophene (1) was treated with pcresol (1.5 equiv). Without the Cu source, only a trace 66 67 amount of the desired product was obtained, and most of the 68 starting material 1 was recovered (entry 1). In contrast, with 69 copper powder, the coupling reaction between 1 and p-70 cresol proceeded smoothly to afford the coupling product 2a 71 in 55% yield with a considerable amount (41%) of the dehalogenated compound, benzo[b]thiophene (3) (entry 2). 72 With Cu(I) salts such as CuCl, CuBr, and CuI,^{5f,5h} 2a was 73 74 obtained in the respective yields of 48%, 50%, and 57% 75 (entries 3-5). When the reaction was performed without 76 $Fe(acac)_3$, the yield of 2 decreased and that of 3 increased 77 (entry 4). Among several Cu(I) salts, copper thiophene-2-78 carboxylate (CuTC) provided the best result. With CuTC, 79 the desired compound 2a was obtained in 60% yield, but 3 80 was also obtained in 33% yield (entry 8). We then examined 81 several Cu(II) salts (entries 9-13) and found that the use of 82 $Cu(acac)_2$ afforded **2a** in the highest yield (62% yield, entry 83 13).

Then, we examined the effect of the iron source (Table 2) and Fe(acac)₃ was the best iron source among the studied sources. Using FeCl₂•4H₂O, FeCl₃, or FeBr₃, the yield of **2a** decreased to 43%-47% (entries 2-4).

88 The screening of the copper and iron sources revealed 89 that the combination of $Cu(acac)_2$ and $Fe(acac)_3$ was 90 efficient for the Cu/Fe-cocatalyzed etherification of 1 and p-91 cresol; however, dehalogenation of 1 to 3 was still 92 problematic. Therefore, we investigated the effect of ligands 93 (Table 3). Diamine ligands such as 2,2'-bipyridyl (bpy) and 94 1,10-phenanthroline (phen), which are commonly used with 95 Cu, were ineffective for the reactions, and the yield of 2a 96 decreased (entries 1-2). We then evaluated oxygen ligands 97 (entries 3 and 4) and found that with 1,1'-bi-2-naphthol 98 (BINOL),⁵ⁱ the yield of **2a** increased to 51%, but **3** was also

obtained in 41% yield (entry 3). The use of 2,2,6,6-1 tetramethylheptane-3,5-dione (TMHD)^{5a,5j} provided a good 2 result (72% yield, entry 4). The use of phosphine ligands 3 was also investigated and found that the triphenylphosphine 4 5 (PPh₃) was also effective, affording 2a in 73% yield and a 15% suppression of the generation of 3 (entry 5). Further 6 screening revealed that electron-donating phosphine ligands 7 such as $P(p-tol)_3$ and PCy_3 were ineffective (entries 6 and 7). 8 9 In contrast, the etherification proceeded smoothly with P(2-10 furyl)₃, which is a slightly electron-deficient ligand (79% yield), but afforded 3 in 18% yield (entry 8). Other electron-11 12 deficient ligands were not effective (entries 9-11). Finally, 13 we found that dehalogenation of **1** was suppressed by the 14 use of triphenylphosphine oxide (O=PPh₃), affording a 10% yield (entry 12). Using 10 mol % of Cu(acac)₂, and 10 15 mol % of Fe(acac)₃, the yield of **2a** increased to 82% (79% 16 isolated yield) with 12 % yield of 3 (entry 13). The ratio of 17 18 $O=PPh_3$ to $Cu(acac)_2$ and $Fe(acac)_3$ is singnificant. 19 Increasing or decreasing the amount of O=PPh₃, the yields 20 of 2a decreased (entries 14 and 15). The temperature highly 21 influenced the reaction, and the yield of 2a decreased to 22 69% at 135 °C (entry 16). While the reason for the 23 suppression of the dehalogenation of 1 is unclear, we 24 assume that a catalyst bearing O=PPh₃ would be highly 25 active and the cross-coupling reaction would proceed faster 26 than the dehalogenation.

27

30

28 Table 1. Cu/Fe-Cocatalyzed etherification of 29 bromobenzo[*b*]thiophene using several catalysts ^a

$ \begin{array}{c} $						
Entry	[Cu]	Yield of 2a ^b /%	Yield of 3 ^b /%			
1	none	<1	<1			
2	Cu powder	55	41			
3	CuCl	48	25			
4	CuBr	50 (42) ^c	32 (45) ^c			
5	CuI	57	26			
6	Cu ₂ O	54	17			
7	CuCN	53	33			
8	CuTC ^d	60	33			
9	CuCl ₂	46	17			
10	CuBr ₂	54	40			
11	CuO	60	23			
12	Cu(OAc) ₂	47	43			
13	Cu(acac) ₂	62	30			

^a Reaction conditions: **1** (0.5 mmol), *p*-cresol (0.75 mmol), [Cu] (5 mol %), Fe(acac)₃ (5 mol %), K₂CO₃ (2.0 equiv), toluene (0.63 M), 145 °C, 24 h. Performed in a sealed tube. ^b Determined by ¹H NMR. ^c Performed without Fe(acac)₃. ^d CuTC = copper thiophene-2carboxylate.

38 Table 2. Effect of the Fe source on the Cu/Fe-cocatalyzed 39 etherification reaction ^a

37

3-

	P-cresol (1.5 Br Cu(acac) ₂ (5 [Fe] (5 mo K ₂ CO ₃ (2.0 toluene 145 °C, 2	equiv) mol %) l %) equiv) equiv) e 4 h	2a	+ 5 3	
Entry	[Fe]	Yield of	2a ^b /%	Yield of 3 ^b /%	,
1	Fe(acac) ₃	62		30	
2	FeCl ₂ •4H ₂ O	43		17	
3	FeCl ₃	45		23	
4	FeBr ₃	47		28	
	1 Entry 1 2 3 4	$\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \end{array} \\$	$FeCl_{3} = FeCl_{3} $	$FeCl_{2} \bullet FeCl_{3} $	$\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \end{array} \end{array} \end{array} \xrightarrow{\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \end{array} \end{array} \xrightarrow{\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \end{array} \end{array} \xrightarrow{\begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \end{array} \xrightarrow{\begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \end{array} \xrightarrow{\begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \xrightarrow{\begin{array}{c} & \end{array} \end{array} \xrightarrow{\begin{array}{c} & \end{array} \\ \end{array} \end{array} \xrightarrow{\begin{array}{c} & \end{array} \end{array} \end{array} \xrightarrow{\begin{array}{c} & \end{array} \end{array} \xrightarrow{\begin{array}{c} & \end{array} \end{array} \end{array} \xrightarrow{\begin{array}{c} & \end{array} \end{array} \xrightarrow{\begin{array}{c} & \end{array} \end{array} \end{array} \end{array} \xrightarrow{\begin{array}{c} & \end{array} \end{array} \end{array} \begin{array}{c} & \end{array} \end{array} \end{array} \begin{array}{\begin{array}{c} & \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{\begin{array}{c} & \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{\begin{array}{c} & \end{array} $

41 ^a Reaction conditions: **1** (0.5 mmol), *p*-cresol (0.75 42 mmol), Cu(acac)₂ (5 mol %), [Fe] (5 mol %), K₂CO₃ (2.0 43 equiv), toluene (0.63 M), 145 °C, 24 h. Performed in a 44 sealed tube. ^b Determined by ¹H NMR. 45

46 We then examined the scope of the etherification 47 reactions. Several hydroxyaryls were terated with 3bromobenzo[b]thiophene under optimized conditions (Table 48 4). The reaction with phenol afforded the corresponding 49 50 coupling product 2b in 73% yield. Not only p-cresol but 51 also o- and m-cresol could be used for the reaction to give 52 the corresponding coupling products 2c and 2d in the respective yields of 62% and 69%. Hydroxyaryls bearing 53 54 electron-donating groups, such as *t*-Bu and methoxy groups, gave the coupling products in moderate to good yields (2e: 55 56 71%, 2f: 56%). Reactions with hydroxyaryls bearing an 57 electron-withdrawing group were also examined. Reactions 58 with hydroxyaryls bearing a halogen atom, such as F and Cl, at the *p*-position gave the desired coupling products (2g: 59 76%, 2h: 64%). Hydroxylaryls bearing much stronger 60 electron-withdrawing groups at the p-position, such as 61 trifluoromethyl or nitro groups, were unfortunately not 62 applicable, probably due to their electronic effect. In 63 64 contrast, the reaction with *m*-trifluoromethylphenol, which 65 has an electron-withdrawing group at the *m*-position, proceeded smoothly to give the desired coupling product 2k 66 in 62% yield. We performed out the coupling reaction with 67 68 more π -extended hydroxy aryls. *p*-Phenylphenol could be 69 used for the reaction to afford 21 in 71% yield. With 1naphthol or 2-naphthol, the coupling products 2m and 2n 70 71 were obtained in the respective yields of 15% and 54%. 72

75 Table 3. Optimization of ligands ^a

73 74

1		$\begin{array}{c} p\text{-}cresol (1.5 equiv)\\ Cu(acac)_2 (5 mol \%)\\ Fe(acac)_3 (5 mol \%)\\ ligand (20 mol \%)\\ \hline\\ K_2CO_3 (2.0 equiv)\\ toluene\\ 145 \ ^{\circ}\text{C}, 24 \text{ h} \end{array}$		+
-	Entry	Ligand	Yield of 2a ^b /%	Yield of 3 ^b /%
	1	bpy ^c	41	35
	2	phen ^d	39	50
	3	BINOL	51	41
	4	TMHD ^e	72	18
	5	PPh ₃	73	15
	6	P(<i>p</i> -tol)	15	0
	7	PCy ₃	0	0
	8	P(2-furyl) ₃	79	18
	9	$P(C_6F_5)_3$	26	0
	10	$P(C_6H_4-p-CF_3)$	56	14
	11	P(OPh) ₃	26	10
	12	O=PPh ₃	73	10
	$13^{\rm f}$	O=PPh ₃	82 (79) ^g	12
	14 ^h	O=PPh ₃	68	8
	15 ⁱ	O=PPh ₃	63	7
	$16^{\mathrm{f},\mathrm{j}}$	O=PPh ₃	69	9

2 ^a Reaction conditions: 1 (0.5 mmol), p-cresol (0.75 3 mmol), Cu(acac)₂ (5 mol %), Fe(acac)₃ (5 mol %), ligand (bidentate: 10 mol %, monodentate: 20 mol %), K₂CO₃ (2.0 4 equiv), toluene (0.63 M), 145 °C, 24 h. Performed in a sealed tube. ^b Determined by ¹H NMR. ^c bpy = 2,2'-bipyridyl. ^d phen = 1,10-phenanthroline. ^e TMHD = 5 6 7 2,2,6,6-tetramethylheptane-3,5-dione. ^f Performed with 8 9 Cu(acac)₂ (10 mol %), Fe(acac)₃ (10 mol %), O=PPh₃ (40 10 mol %). ^g Isolated yield. ^h Performed with Cu(acac)₂ (10 11 mol %), Fe(acac)₃ (10 mol %), O=PPh₃ (20 mol %). Performed with Cu(acac)₂ (10 mol %), Fe(acac)₃ (10 mol %), 12 O=PPh₃ (60 mol %). ^j Performed at 135 °C. 13

14

23

15 This reaction system could also be applied for the synthesis of diethers (Scheme 1). The Cu/Fe 16

17 -catalyzed reaction between resorcinol 3and 1,3-18 bromobenzo[*b*]thiophene afforded (1) bis(benzo[b]thiophen-3-yloxy)benzene (4) in 54% yield. 19 20 Similarly, the reaction with (1,1'-biphenyl)-4,4'-diol (5) 21 gave the corresponding diether 6 in 74% yield. 22

24 25 Table 4. Scope of the Cu/Fe-cocatalyzed etherification ^a

^a Reaction conditions: **1** (0.5 mmol), hydroxyaryl (0.75 28 mmol), Cu(acac)₂ (10 mol %), Fe(acac)₃ (10 mol %), 29 O=PPh₃ (40 mol %), K₂CO₃ (2.0 equiv), toluene (0.63 M), 30 145 °C, 24 h. Performed in a sealed tube. Isolated yield. 31

32 Scheme 1. Sequential double Cu/Fe-cocatalyzed etherification

33

34

35 As an application of the thus-obtained 2, this 36 compound was transformed into thienobenzofurans using a 37 modified Pd-catalyzed dehydrogenative cyclization method, 38 which was reported independently by Satoh and Miura,¹⁰ 39 and by Kanai and Kuninobu.¹¹ In the presence of Pd(OPiv)₂ 40 (10 mol %) and AgOPiv (2.0 equiv) in PivOH, the 41 cyclization of 2f and 2g was performed at 120 °C for 20 h 42 (Scheme 2). The corresponding thienobenzofuran 43 derivatives **7f** and **7g** were obtained in high yields from each 44 precursor, which had an electron-donating or an electron-45 withdrawing group.¹²

1 2 Scheme 2. Representative examples of Pd-catalyzed 3 dehydrogenative cyclization for the synthesis of thienobenzofuran 4 derivatives 7 ^a

7 In summary, we developed Cu/Fe/O=PPh₃-catalyzed etherfication reactions for the 8 synthesis of arvl 9 benzo[b]thienyl ethers. The use of triphenylphosphine oxide 10 a ligand suppresses the dehalogenation of 3as bromobenzo[b]thiopehene, and enables an efficient 11 12 synthesis of aryl benzo[b]thienyl ethers. Further applications 13 of this strategy for other heteroaryl ethers are on-going in 14 our laboratory.

15 This work was supported in part by a Grant-in-Aid for 16 Scientific Research (C) (Nos. 25410042, 16K05695) from 17 JSPS, Japan, Okayama Foundation for Science and 18 Technology, and by JST, ACT-C, Japan. 19

20 Supporting Information available is on http://dx.doi.org/10.1246/cl.*****. 21

22 **References and Notes**

5

6

- For reviews, see: a) M. Mondal, S. K. Bharadwaj, U. Bora, New 1 J. Chem. 2015, 39, 31. b) X. Chen, S. Ding, P. Zhan, X. Liu, Curr. Pharm. Des. 2013, 19, 2829. c) F. Bedos-Belval, A. Rouch, C. Vanucci-Bacque, M. Baltas, Med. Chem. Comm. 2012, 3, 1356. d) E. N. Pitsinos, V. P. Vidali, E. A. Couladouros, Eur. J. Org. Chem. 2011, 1207. e) R. Frlan, D. Kikelj, Synthesis 2006, 2271. f) J. Scott Sawyer, Tetrahedron 2000, 56, 5045. g) F. Theil, Angew. Chem., Int. Ed. 1999, 38, 2345. h) R. Pollard, P. Wan, Org. Prep. Proced. Int. 1993, 25, 1.
- 23 24 25 26 27 29 30 31 32 33 35 36 37 38 39 40 41 2 a) M. Wang, J. Wei, Q. Fan, X. Jiang, Chem. Commun. 2017, 53, 2918. b) D. Chen, D. Yuan, C. Zhang, H. Wu, J. Zhang, B. Li, X. Zhu, J. Org. Chem. 2017, 82, 10920. c) M. Matsumura, A. Muranaka, R. Kurihara, M. Kanai, K. Yoshida, N. Kakusawa, D. Hashizume, M. Uchiyama, S. Yasuike, Tetrahedron 2016, 72, 8085. d) K. Saito, P. K. Chikkade, M. Kanai, Y. Kuninobu, Chem. - Eur. J. 2015, 21, 8365. e) H. Kaida, T. Satoh, K. Hirano, M. Miura, Chem. Lett. 2015, 44, 1125. f) Y. S. Yang, T. Yasuda, C. Adachi, Bull. Chem. Soc. Jpn. 2012, 85, 1186. g) X.-K. Chen, L.-Y. Zou, A.-M. Ren, J.-X. Fan, Phys. Chem. Chem. Phys. 2011, 42 43 13, 19490. h) J.-J. Aaron, C. Parkanyi, A. Adenier, C. Potin, Z. Zajickova, O. R. Martinez, J. Svoboda, P. Pihera, P. Vachal, J. 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 Fluoresc. 2011, 21, 2133. i) A. Machara, M. Kurfurst, V. Kozmik, H. Petrickova, H. Dvorakova, J. Svoboda, Tetrahedron Lett. 2004, 45, 2189. j) P. Pihera, J. Svoboda, Collect. Czech. Chem. Commun. 2000, 65, 58. k) K. Cernovska, M. Nic, P. Pihera, J. Svoboda, Collect. Czech. Chem. Commun. 2000, 65, 1939. 1) P. Pihera, H. Dvorakova, J. Svoboda, Collect. Czech. Chem. Commun. 1999, 64, 389. m) P. Pihera, J. Palecek, J. Svoboda, Collect. Czech. Chem. Commun. 1998, 63, 681.
- J. Lindley, Tetrahedron 1984, 40, 1433. 3
- For reviews, see: a) S. V. Ley, A. W. Thomas, Angew. Chem., Int. 4 Ed. 2003, 42, 5400. b) C. Sambiagio, S. P. Marsden, A. J. Blacker, P. C. McGowan, Chem. Soc. Rev. 2014, 43, 3525. c) I. P. Beletskaya, A. V. Cheprakov, Coorg. Chem. Rev. 2004, 248, 2337.
- 5 a) S. L. Buchwald, C. Bolm, Angew. Chem., Int. Ed. 2009, 48, 5586. b) J. Mao, H. Yan, G. Rong, Y. He, G. Zhang, Chem. Rec. 60 2016, 16, 1096. c) N. Panda, A. K. Jena, Org. Chem. Curr. Res.

2015, 4, 1000130. d) Y. Su, W. Jia, N. Jiao, Synthesis 2011, 1678. e) Q. Zhou, L. Su, T. Jiang, B. Zhang, R. Chen, H. Jiang, Y. Ye, M. Zhu, D. Han, J. Shen, G. Dai, Z. Li, Tetrahedron 2014, 70, 1125. f) X. Qu, T. Li, Y. Zhu, P. Sun, H. Yang, J. Mao, Org. Biomol. Chem. 2011, 9, 5043. g) J. Mao, G. Xie, M. Wu, J. Guo, S. Ji, Adv. Synth. Catal. 2008, 350, 2477. h) X. Liu, S. Zhang, Synlett 2011, 268. i) Z. Wang, H. Fu, Y. Jiang, Y. Zhao, Synlett 2008, 2540. j) N. Xia, M. Taillefer, Chem. - Eur. J. 2008, 14, 6037

61

62

63

64

65

66

67

68

82

83

84 85

- 69 70 71 72 73 74 75 76 77 78 79 80 81 6 a) J. Ashby, M. Ayad, O. Meth-Cohn, J. Chem. Soc. Perkin 1, 1973. 1104. b) D. J. Sall, D. L. Bailey, J. A. Bastian, J. A. Buben, N. Y. Chirgadze, A. C. Clemens-Smith, M. L. Denney, M. J. Fisher, D. D. Giera, D. S. Gifford-Moore, R. W. Harper, L. M. Johnson, V. J. Klimkowski, T. J. Kohn, H.-S. Lin, J. R. McCowan, A. D. Palkowitz, M. E. Richett, G. F. Smith, D. W. Snyder, K. Takeuchi, J. E. Toth, M. Zhang, J. Med. Chem. 2000, 43, 649.
 - 7 D. Maiti, S. L. Buchwald, J. Org. Chem. 2010, 75, 1791.
 - 8 Y. Zhai, X. Chen, W. Zhou, M. Fan, Y. Lai, D. Ma, J. Org. Chem. 2017, 82, 4964
 - Li and co-workers reported Cu/O=PPh3-catalyzed cyanation 9 reaction, see: R.-J. Song, J.-C. Wu, Y. Liu, G.-B. Deng, C.-Y. Wu, W.-T. Wei, J.-H. Li, Synlett 2012, 23, 2491.
 - 10 a) H. Kaida, T. Satoh, K. Hirano, M. Miura, Chem. Lett. 2015, 44, 1125. b) H. Kaida, T. Satoh, Y. Nishii, K. Hirano, M. Miura, Chem. Lett. 2016, 45, 1069.
- 86 87 K. Saito, P. K. Chikkade, M. Kanai, Y. Kuninobu, Chem. - Eur. J. 11 88 2015, 21, 8365.
- 89 For the details of the dehydrogenative cyclization reactions, see 12 90 the Supporting Information.