Accepted Manuscript

Synthesis of tetrahydroindolones and tetrahydrocarbazolones *via* palladium catalyzed C-H activation

Tiantian Zhang, Hongjin Xu, Chuanjun Song, Junbiao Chang

S0040-4039(18)31357-1
https://doi.org/10.1016/j.tetlet.2018.11.029
TETL 50414
Tetrahedron Letters
11 October 2018
3 November 2018
9 November 2018

Please cite this article as: Zhang, T., Xu, H., Song, C., Chang, J., Synthesis of tetrahydroindolones and tetrahydrocarbazolones *via* palladium catalyzed C-H activation, *Tetrahedron Letters* (2018), doi: https://doi.org/10.1016/j.tetlet.2018.11.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Synthesis of tetrahydroindolones and tetrahydrocarbazolones *via* palladium catalyzed C–H activation

Tiantian Zhang,^a Hongjin Xu,^a Chuanjun Song,^{*a} and Junbiao Chang^{*a,b}

^a College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
 ^b Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, China

chjsong@zzu.edu.cn; changjunbiao@zzu.edu.cn

Abstract: The treatment of bromo homoallyl pyrrolyl/indolyl ketone derivatives with $Pd(OAc)_2$ in the presence of PPh₃ and Cs₂CO₃ in DMF resulted in the formation of tetrahydroindolones and tetrahydrocarbazolones in moderate to good isolated yields.

Keywords: palladium; C-H alkenylation; tetrahydroindolone; tetrahydrocarbazolone

Introduction

The indole and carbazole moieties are important structural motifs found in many natural products and bioactive molecules.¹ Therefore, the development of efficient strategies toward these molecules has become a central theme in organic synthesis.^{1d,e,2} Among them, the transition metalcatalyzed intramolecular C–H activation of indoles has emerged as an attractive method to access the scaffolds of carbazoles and analogues.³⁻⁵ However, literature reports concerning the intramolecular C–H functionalization of pyrroles for the assembly of indoles and related analogues are rare.^{3g,5a,c,6} As part of our continued interest in transition metal catalyzed C–H activation^{7,8} and application in natural product synthesis,⁹ we have developed valuable approaches toward indeno[2,1-*b*]pyrrol-8-ones *via* the palladium catalyzed intramolecular C–H arylation of pyrroles.⁸ Herein, we report our recent findings for the synthesis of tetrahydroindolones and tetrahydrocarbazolones *via* palladium catalyzed C–H alkenylation.

Results and Discussion

Our investigation started with compound **1a**. The desired tetrahydroindolone **2a** was obtained in 41% isolated yield after exposing **1a** to Pd(OAc)₂ and K₂CO₃ in DMF^{7c} at 100 °C for 15 h (Table 1, entry 1). Further palladium catalyst screening indicated that Pd(OAc)₂ was the best choice (Entries 2– 8). Next, different bases were explored. No reaction occurred in the presence of the organic base DIPEA (Entry 9) or the strong inorganic base 'BuOK (Entry 12). While K₃PO₄ gave less satisfactory results (Entry 11), Cs₂CO₃ led to the formation of **2a** in much higher yield than K₂CO₃ (Entry 10 vs 1). With Pd(OAc)₂ as catalyst and Cs₂CO₃ as base, other solvents (NMP, DMSO, 1,4-dioxane) were explored. However, none of these provided better yields than DMF (Entries 13–15 vs 10). The reaction could not be driven to completion when the catalyst loading was reduced to 5 mol% (Entry 17 vs 10), while other side reactions began to take place in the presence of 20 mol% catalyst loading (Entry 16 vs 10). Reduced yields were obtained in both cases. Further study indicated that the yield could be

improved to 76% in the presence of added PPh₃ (Entry 18 vs 10). However, no reaction occurred without the base (Entry 21). Finally, the reaction temperatures were briefly screened, and 100 °C gave the highest yield (Entries 19, 20 vs 18).

Table 1. Reaction conditions optimization for the synthesis of tetrahydroindolone 2a.							
	N	O ON B	le r		DMe	218	
	I	1a		2a	6		
Entry	Catalyst	Ligand ^a	Base ^b	Solvent	Temp (°C)	Yield (%) ^c	
1	$Pd(OAc)_2^{d}$	-	K ₂ CO ₃	DMF	100	41	
2	$PdCl_2^{d}$	-	K_2CO_3	DMF	100	18	
3	$PdCl_2(PPh_3)_2^{d}$	-	K_2CO_3	DMF	100	13	
4	PdCl ₂ (CH ₃ CN) ₂ ^d	-	K ₂ CO ₃	DMF	100	24	
5	PdCl ₂ (dppf) ^d	-	K ₂ CO ₃	DMF	100	0	
6	Pd/C ^d	-	K ₂ CO ₃	DMF	100	0	
7	$Pd(dba)_3^d$	-	K ₂ CO ₃	DMF	100	16	
8	$Pd(PPh_3)_4^d$	-	K ₂ CO ₃	DMF	100	30	
9	$Pd(OAc)_2^{d}$	-	DIPEA	DMF	100	0	
10	$Pd(OAc)_2^{d}$	-	Cs ₂ CO ₃	DMF	100	70	
11	$Pd(OAc)_2^d$	-	K_3PO_4	DMF	100	24	
12	$Pd(OAc)_2^d$	-	^t BuOK	DMF	100	0	
13	$Pd(OAc)_2^{d}$	-	Cs_2CO_3	NMP	100	40	
14	$Pd(OAc)_2^{d}$	-	Cs_2CO_3	DMSO	100	24	
15	$Pd(OAc)_2^d$	-	Cs_2CO_3	1,4-dioxane	100	56	
16	$Pd(OAc)_2^e$	-	Cs_2CO_3	DMF	100	49	
17	Pd(OAc) ₂ ^f	-	Cs_2CO_3	DMF	100	64	
18	$Pd(OAc)_2^d$	PPh ₃	Cs ₂ CO ₃	DMF	100	76	
19	$Pd(OAc)_2^{d}$	PPh ₃	Cs_2CO_3	DMF	90	71	
20	$Pd(OAc)_2^{d}$	PPh ₃	Cs_2CO_3	DMF	110	65	
21	$Pd(OAc)_2^{d}$	PPh ₃	-	DMF	100	0	

Table 1. Reaction conditions optimization for the synthesis of tetrahydroindolone 2a.

^{*a*} 10 mol%; ^{*b*} 2 equiv.; ^{*c*} Isolated yield; ^{*d*} 10 mol%; ^{*e*} 20 mol%; ^{*f*} 5 mol%.

With the optimal conditions in hand, the substrate scope was explored (Table 2). A variety of 2-(2-bromoallyl)-3-(N-methylpyrrolyl)-3-oxo-1-carboxylates 1a-f could be effectively converted into the corresponding tetrahydroindolones 2a-f in good isolated yields. Under the reaction conditions, the N-methylindolyl derivatives 1g,h could also be successfully converted into tetrahydrocarbazolones 2g,h, although slightly higher reaction temperatures were required to drive the reaction to completion.

Next, the palladium catalyzed intramolecular C–H alkenylation of the benzyl group protected substrates **1i**,**j** was investigated, which provided tetrahydrocarbazolones **2i**,**j** in moderate isolated yields. Similarly, the reaction of *N*-butenylindole derivative **1k** proceeded to give tetrahydrocarbazolone **2k** in 51% isolated yield, ring-closing metathesis of which provided tetrahydropyrido[3,2,1-*jk*]carbazolone **3** in an unoptimized 67% isolated yield (Scheme 1). Finally, we explored the palladium catalyzed C–H alkenylation reaction of **11**. Without an extra 2-substituent, this type of 2-(2-bromoallyl)-1,3-dicarbonyl compound can easily give rise to the formation of furans.^{7a,10} Gratifyingly, under our reaction conditions, indole-5-carboxylate **4** could be isolated in 35% yield (Scheme 2). We believe that compound **4** was formed through the desired palladium catalyzed pyrrolyl C–H alkenylation and subsequent double-bond isomerization.

 Table 2. Substrate scope for the synthesis of tetrahydroindolones and tetrahydrocarbazolones via

 palladium catalyzed C–H alkenylation.

Scheme 1. Synthesis of tetrahydropyrido[3,2,1-jk]carbazolone 3 via ring-closing metathesis of 2k.

Scheme 2. Synthesis of indole-5-carboxylate 4 via palladium catalyzed C-H alkenylation of 11.

Conclusion

In summary, we have developed an efficient strategy toward the synthesis of tetrahydroindolones and tetrahydrocarbazolones *via* palladium catalyzed intramolecular C–H alkenylation of the corresponding pyrrolyl and indolyl derivatives. This strategy is well adapted to the synthesis of indole and carbazole natural products, which is currently underway in our laboratory.

Acknowledgment

We are grateful to the NSFC (#81330075) for financial support.

References:

For reviews, see: (a) S. Hibino, T. Choshi *Nat. Prod. Rep.*, **2002**, *19*, 148–180; (b) K. A. McArthur,
 S. S. Mitchell, G. Tsueng, A. Rheingold, D. J. White, J. Grodberg, K. S. Lam, B. C. M. Potts *J. Nat. Prod.*, **2008**, *71*, 1732–1737; (c) A. J. Kochanowska-Karamyan, M. T. Hamann *Chem. Rev.*, **2010**, *110*, 4489–4497; (d) Knölker, H.-J.; Reddy, K. R. *Chem. Rev.*, **2002**, *102*, 4303–4428; (e) Schmidt, A. W.;
 Reddy, K. R.; Knölker, H.-J. *Chem. Rev.*, **2012**, *112*, 3193–3328.

For reviews, see: (a) G. W. Gribble J. Chem. Soc., Perkin Trans. 1, 2000, 1045–1075; (b) S. Cacchi,
 G. Fabrizi Chem. Rev., 2005, 105, 2873–2920; (c) N. K. Garg, B. M. Stoltz Chem. Commun., 2006, 3769–3779; (d) G. R. Humphrey, J. T. Kuethe Chem. Rev., 2006, 106, 2875–2911; (e) D. F. Taber, P. K. Tirunahari Tetrahedron, 2011, 67, 7195–7210; (f) M. Inman, C. J. Moody Chem. Sci., 2013, 4, 29–41.

3. (a) E. M. Ferreira, B. M. Stoltz J. Am. Chem. Soc., 2003, 125, 9578–9579; (b) C. Liu, X. Han, X. Wang, R. A. Widenhoefer J. Am. Chem. Soc., 2004, 126, 3700–3701; (c) C. Liu, R. A. Widenhoefer J. Am. Chem. Soc., 2004, 126, 10250–10251; (d) X. Han, R. A. Widenhoefer Org. Lett., 2006, 8,

3801–3804; (e) X. Han, X. Lu Org. Lett., 2009, 11, 2381–2384; (f) M. Bandini, A. Bottoni, M. Chiarucci, G. Cera, G. P. Miscione J. Am. Chem. Soc., 2012, 134, 20690–20700; (g) J. A. Schiffner, T. H. Wöste, M. Oestreich Eur. J. Org. Chem., 2010, 174–182.

4. (a) Q.-F. Wu, C. Zheng, S.-L. You Angew. Chem. Int. Ed., **2012**, *51*, 1680–1683; (b) K.-J. Wu, L.-X. Dai, S.-L. You Org. Lett., **2012**, *14*, 3772–3775.

5. (a) M. Bandini, A. Melloni, F. Piccinelli, R. Sinisi, S. Tommasi, A. Umani-Ronchi J. Am. Chem. Soc., 2006, 128, 1424–1425; (b) J.-R. Chen, C.-F. Li, X.-L. An, J.-J. Zhang, X.-Y. Zhu, W.-J. Xiao Angew. Chem. Int. Ed., 2008, 47, 2489–2492; (c) C.-X. Zhuo, Q.-F. Wu, Q. Zhao, Q.-L. Xu, S.-L. You J. Am. Chem. Soc., 2013, 135, 8169–8172.

C.-X. Zhuo, Q. Cheng, W.-B. Liu, Q. Zhao, S.-L. You Angew. Chem. Int. Ed., 2015, 54, 8475–8479.
 (a) P. Chen, Y. Meng, Q. Yang, J. Wu, Y. Xiao, D. R. Gorja, C. Song, J. Chang RSC Adv., 2015, 5, 79906–79914;
 (b) P. Chen, Y. Meng, H. Wang, F. Han, Y. Wang, C. Song, J. Chang Org. Lett., 2016, 18, 3914–3917;
 (c) T. Zhang, C. Song, Y. Meng, P. Chen, H. Xu, J. Chang J. Org. Chem., 2017, 82, 9905–9909.

(a) S. Wang, Q. Yang, J. Dong, C. Li, L. Sun, C. Song, J. Chang *Eur. J. Org. Chem.*, 2013, 2013, 7631–7634;
 (b) J. Chang, L. Sun, J. Dong, Z. Shen, Y. Zhang, J. Wu, R. Wang, J. Wang, C. Song *Synlett*, 2012, 2704–2706.

C. Song, H. Liu, M. Hong, Y. Liu, F. Jia, L. Sun, Z. Pan, J. Chang J. Org. Chem., 2012, 77, 704–706.
 L. Chen, Y. Fang, Q. Zhao, M. Shi, C. Li *Tetrahedron Lett.*, 2010, 51, 3678–3681.

- Palladium catalyzed synthesis of tetrahydroindolones has been developed;
- Acctinition Palladium catalyzed synthesis of tetrahydrocarbazolones has been developed; •