LANGMUIR

Subscriber access provided by ECU Libraries

Interface Components: Nanoparticles, Colloids, Emulsions, Surfactants, Proteins, Polymers

Soft Chemical Method for Synthesizing Intermetallic Antimonide Nanocrystals from Ternary Chalcogenide

Yilan Jiang, Long Yuan, Yanyan Xu, Jiaojiao Ma, Yu Sun, Xia Gao, Keke Huang, and Shouhua Feng Langmuir, Just Accepted Manuscript • DOI: 10.1021/acs.langmuir.9b01774 • Publication Date (Web): 04 Nov 2019

Downloaded from pubs.acs.org on November 11, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

SoftChemicalMethodforSynthesizingIntermetallicAntimonideNanocrystalsfromTernary Chalcogenide

Yilan Jiang[#], Long Yuan[#], Yanyan Xu, Jiaojiao Ma, Yu Sun, Xia Gao, Keke Huang^{*}, Shouhua Feng State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun

130012, People's Republic of China

Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China

KEYWORDS: Antimonide, Desulfurization, Synthesis, Ternary chalcogenide, Trialkylphosphine

ABSTRACT: The synthesis of intermetallic antimonides usually depends on either the high temperature alloying technique from high purity metals or the flux method in highly poisonous Pbmelt. In this paper, we introduced a soft chemical method to synthesize intermetallic antimonides from ternary chalcogenide precursors under argon atmosphere below 200 °C. Powder X-ray

diffraction and compositional analysis clearly indicate that a new phase of Ag₃Sb nanocrystal was synthesized from the Ag₃SbS₃ precursors. Three types of trialkylphosphine (TAP) were applied as desulphurization agent and the transformation mechanism was elucidated. The capability of desulphurization agent is followed the sequence of triphenylphosphine (TPP) >tributylphosphine (TBP) >trioctylphosphine (TOP). Besides, this TAP-driven desulfurization route to synthesize intermetallic phase could also be possible for AgSbSe₂ and Sb₂S₃. Therefore, this paper provides an efficient mild technique for the fabrication of intermetallic nanocrystals.

INTRODUCTION

Antimonide-based intermetallic phase compounds receive important materials with interesting increasing concerns as physical properties (such as superconductivity and halfchemistry of diverse structural anionic metallity) and substructures¹, that endow this family of materials potential applications in magnetic material², alloy-based anode materials for Li-ion batteries³, catalysts⁴, and thermoelectric materials⁵. Intermetallic antimonides are important members of nonclassic Zintl phases, which are intermediate between 2-center-2-electron with delocalized multicentre chemical bonding⁶. As one of the most important antimonide-based intermetallic phase compounds,

ACS Paragon Plus Environment

Langmuir

silver antimonides have been reported as anode materials for secondary lithium-ion batteries^{7,8} and Pb-free solder alloys^{9,10}. The alloy of antimonial silver has two members: dyscrasite (Ag₃Sb) and ε -phase of allargentum (Ag₆Sb). The last phase has been found in mineral that intimately intergrown with antimonial silver¹¹. Ag₃Sb is the primary exsolution phase from Ag-Sb liquid alloys according to a theoretical model¹².

The synthesis of intermetallic compounds is majorly dependent on the alloying technique by mixing high purity metal as high temperature¹³. starting materials at However, the stoichiometry of Ag/Sb varies dependent on the preparation temperature in alloying methods¹⁴. Single crystal of antimonide intermetallic compound could be synthesized by high vacuum solid state reaction¹⁵, the microwave - assisted polyol process¹⁶ and Snor Pb-flux method at over 900 °C^{17,18}. High quality of Ag₃Sb film has only been reported under ultra-high vacuum conditions via vapour epitaxy growth technique¹⁹. According to a previous study on the formation phase boundaries of Ag_3Sb , this phase is formed at 562 °C with controlled stoichiometry²⁰. Kulifay reported a low temperature method for the synthesis of several intermetallic compounds via a route of reducing metal cations by N_2H_4 • 2 HCl and H₃PO₂, however, the resulted products are usually impure with separated metal elements²¹. Zhao and Song et.al. have reported a chemical reduction route to synthesize Aq-Sb composite by

ACS Paragon Plus Environment

directly reducing the metal cations of Ag^+ and Sb^{3+} by $NaBH_4$, however, it is difficult to control the degree of reductive reaction and mixed phases of Sb element and Ag_3Sb was obtained²². Therefore, it still remains a great challenge to synthesize Sbbased intermetallic phase nanocrystal with a convenient method at ambient condition.

Metal cations in sulphides are more mobile than that of oxides due to the weak electronegativity of S^{2-} than O^{2-} , which endows cation exchange reaction in-situ evolution in the crystal lattice for synthesizing new controllable mixed phase sulphide nanocrystals²². The phase selective extraction of Se and S from nanoscale metal chalcogenides by TOP has been reported as an effective strategy to synthesize less S, Se/metal ratio nanomaterials²³. Recently, Yu et. al. report a TAP-driven chemical transformation route to synthesize series а nanostructures of Aq, Bi metal and mixed sulphide nanocrystals from Aq- or Bi-based sulphide precursors²⁵. However, the research on the complete desulfurization of ternary Sb-based sulphide nanocrystals to synthetic Ag₃Sb by cationic exchange has not been studied.

In our previous work, we have generally studied the synthesis of ternary Sb-based sulphide nanocrystals by hot-injection method with various phases and morphologies²⁶. In this paper, we report a method to synthesize antimonide-based intermetallic

Langmuir

Aq₃Sb nanocrystal by ternary sulphide nanocrystal. The conversion of Aq₃Sb intermetallic nanocrystal from Aq₃SbS₃ was conducted in a mild condition at ambient pressure below 200 °C. PXRD and TEM results clearly indicate the desulfurization. Three types of TAP were applied as desulfurization agent and the transformation mechanism was elucidated. The capability of desulfurization agent is followed the sequence of TPP > TBP > TOP. Besides, the TAP-driven desulfurization method could also be used to retract metal phase from $AgSbSe_2$ and Sb_2S_3 . The intermetallic phase extraction route illustrated in paper provides a fundamental understanding practical method and for synthesis of intermetallic nanocrystal.

EXPERIMENTAL SECTION

Chemicals. Silver nitrate (AgNO₃, 99.8 %) was purchased from Sinopharm Chemical Reagent Co.Ltd. Sublimed sulfur (S, 99.5 %), selenium (Se, 99.9 %), oleylamine (OLA, 90 %), TPP, TBP and TOP were obtained from Aladdin. Antimony (III) trichloride (SbCl₃, 99.0 %), sodium diethyldithiocarbamatetrihydrate (Na(S₂CNEt₂) • 3H₂O, 98 %), 1-octa-decene (ODE, 90%) and oleic acid (OA, 90 %) were purchased from Alfa AesarCo., Inc. Hexane (99.7 %, A.R.) and ethanol (95.5 %, A.R.) were Beijing Chemical Industrial Group Co., Ltd. All chemicals were directly used without any further purification.

ACS Paragon Plus Environment

Synthesis of Sb(S₂CNEt₂)₃ precursor. Sb(S₂CNEt₂)₃ was prepared as followed procedure. 10 mmol of SbCl₃ and 30 mmol of Na(S₂CNEt₂)·3H₂O were dissolved respectively in absolute ethanol. Then both of solutions were mixed and kept stirring for 30 min. The yellow precipitate was isolated through filtration, then washed with H₂O and dried at 60 °C.

Preparation of Ag₃SbS₃ nanocrystals. The hot-injection route synthesis of Ag_3SbS_3 nanocrystals followed our previous work²⁷. In a typical procedure, 3 mmol of AgNO₃, 1 mmol of SbCl₃ and 3 mmol S powders were added into a 100 mL three-necked flask containing ODE (8 mL), OLA (4 mL) and OA (2 mL) at room temperature. Then the mixture was decassed at 80-110 °C for removing water and the low boiling point impurities under vacuum for 20 min. The solution was heated up to 190 °C under an Ar atmosphere and kept for 1 h, during which the color of the mixture appeared yelloworange. Then the resulting solution was cooled naturally at room temperature. Afterwards, Ag₃SbS₃ nanocrystals were dispersed and precipitated respectively using toluene and ethanol, and centrifugation was followed. The samples were purified several cycles and dried under vacuum condition.

Preparation of Ag₃Sb nanocrystals. In order to obtain the Ag₃Sb nanocrystals, 5 mL of OLA and 300μ L (or 0.3 g) of TAP were added into the three-necked flask containing 25 mg of as-prepared

Langmuir

2	
5	
4	
5	
6	
7	
/	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
20	
50	
31	
32	
33	
31	
25	
35	
36	
37	
38	
20	
29	
40	
41	
42	
43	
11	
45	
45	
46	
47	
48	
10	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
50	
20	
59	
60	

 Ag_3SbS_3 nanocrystals at room temperature. Then the following procedure was same as that for the Ag_3SbS_3 nanocrystals.

Preparation of AgSbSe₂ nanocrystals. In a typical procedure, 1mmol of AgNO₃, 1 mmol of SbCl₃ and 2 mmol Se powders were added into a 100 mL three-necked flask containing ODE (8 mL), OLA (1 mL) and OA (1 mL) at room temperature. Then the mixture was degassed at 80-110 °C under vacuum for 20 min. The solution was heated up to 200 °C under an Ar atmosphere for 1 h. Then, the resulting solution was cooled naturally. Ethanol was added to precipitate the AgSbSe₂ nanocrystals and centrifugation was followed. The samples were purified several cycles by using toluene and ethanol, and dried under vacuum condition, finally.

Chemical Transformation of AgSbSe₂ nanocrystals to Ag₃Sb and Sb. In a typical procedure, 25 mg of as-prepared AgSbSe₂ nanocrystals and 0.3g TPP were dispersed in 5 mL OLA in a 100 mL three-necked flask. The mixture was degassed at 90 °C and heated up to 190 °C under Ar and kept for 1 h.

Preparation of Sb₂S₃ **nanocrystals and desulfurize to Sb.** The above mentioned Ag₃SbS₃ experimental procedure was also followed for the prepare of Sb₂S₃ nanocyrstals, except that the material was Sb(S₂CNEt₂)₃ and the solvent ratio was tuned to OLA:OA:ODE= 2:1:2. The desulfurization process for Sb₂S₃ nanocrystals is followed the same procedure as that of AgSbSe₂.

Characterization. The crystal structures of the as-prepared products were investigated by powder X-ray diffraction (XRD, D/MAX2550, Rigaku, Japan) with graphite monochromic Cu K α radiation. The 20 range was 10-80°, and the scan speed was 3°/min. The microstructures were characterized by transmission electron microscopy (TEM, Tecnai G2S-Twin F20, FEI, Holland) and the scanning electron microscopy (SEM, Helios NanoLab 600i, FEI, Holland). X-ray photoelectron spectra (XPS) were acquired to analyze the surface composition of materials with an ESCALAB 250Xi electron energy spectrometer from Thermo company, and Al K α (1486.6 eV) served as the X-ray excitation source.

RESULTS AND DISCUSSION

Synthesis of Ag₃Sb by desulfurization from ternary sulfide Ag₃SbS₃ nanocrystals. Ag₃SbS₃ precursor nanocrystals were synthesized follows our previous work.²⁷ Intermetallic Ag₃Sb nanocrystals were obtained by treated Ag₃SbS₃ with various TAP solutions. As shown in Figure 1, Ag₃SbS₃ presents the typical diffraction peaks of trigonal structure (pyrargyrite phase with JCPDS card No. 74-1875) and the the space group of it is R 3c. After been treated with TPP for 1 h, S in Ag₃SbS₃ was removed to form Ag₃Sb. The as-synthesized Ag₃Sb shows a high purity phase. The diffraction peak positions and their intensities match well

with the simulated pattern of orthorhombic structure of Ag₃Sb (simulated from a CIF file with ICSD #52600). The space group of Ag₃Sb is Pmmn with its lattice parameter of a=5.99 Å, b=4.85 Å, c=5.24 Å,

Figure 1. PXRD pattern of TPP-0 min and TPP-60 min.

respectively. No distinguishable diffraction peaks from secondary phases of Ag- or Sb-species could be observed in the XRD patterns of the pattern, suggesting that the as-synthesized Ag_3Sb nanocrystals are pure phase.

Shown in Figure 2a is the SEM graph of Ag_3SbS_3 while Figure 2b is as-synthesized Ag_3Sb nanocrystals obtained by TPP treatment. The size of Ag_3Sb is larger than that of Ag_3SbS_3 nanocrystals and no definite morphology for each Ag_3Sb nanocrystals, which is due to the imbalance in different treatment conditions of TAP

ACS Paragon Plus Environment

solutions and reaction temperatures. The EDS results show that the obtained sample contains only two elements, Ag and Sb, and the atomic ratio of the two elements is about 3:1, indicating that pure Ag_3Sb is obtained.

High-resolution XPS spectra of Ag 3d and Sb 3d for the asprepared Ag₃Sb sample are obtained using C 1s as the reference at 284.6 eV, as shown in Figure 3. Peaks of Ag $3d_{3/2}$ and $3d_{5/2}$ of Ag₃Sb locate at 374.05 and 368.02 eV, respectively, which is higher than that of

Figure 2. (a) SEM image of Ag_3SbS_3 , (b) SEM image of Ag_3Sb , (c) EDS of Ag_3Sb obtained by TPP treated Ag_3SbS_3 nanocrystal precursors.

Ag₃SbS₃ (373.9 eV for Ag $3d_{5/2}$ and 367.8 eV for Ag $3d_{3/2}$). Also, the binding energy peaks for Sb of Ag₃Sb is higher than Ag₃SbS₃, which is located at 539.60 and 530.30 eV for Sb $3d_{5/2}$ and Sb $3d_{3/2}$, respectively. On the one hand, these results indicate a nearly zero valance state of Ag and Sb as an intermetallic phase of the as-synthesized compound.²⁸ On the other hand, we can also

ACS Paragon Plus Environment

learn that the bonding force between Ag and Sb is enhanced after desulfurization.

Figure 3. XPS spectra of Ag_3Sb with the element binding energy of Ag 3d and Sb 3d, respectively.

Effect on Desulfurization. Three types of TAP (i.e. TOP, TPP and TBP) were adopted to desulfurize from ternary sulfide Ag₃SbS₃ nanocrystal precursors with various treatment time. When ternary sulfide treated in TOP for 10 min (TOP-10 min), the XRD pattern shows that it remains Ag₃SbS₃ (JCPDS card No. 74-1875) with a weak sign of getting Ag₃Sb as shown in

Figure 4. Treatment time of TOP on the formation of Ag₃Sb.

Figure 4. When been treated with TOP up to 60 min (TOP-60 min), a clear set of diffraction peaks of Ag_3Sb phase is shown with a slight amount of Ag_3SbS_3 phase, which indicates that the sulfur in Ag_3SbS_3 nanocrystal has been etched from the ternary sulfide crystal lattice with the assistance of TOP molecule.

SEM graphs of Ag₃SbS₃ nanocrystals treated by TOP show clear particle size reduction due to the selective removal of S from Ag₃SbS₃ lattice (Figure 5). The particle size (c.a. 200 nm in length) and shape of TOP-10 min is near with that of assynthesized Aq_3SbS_3 nanocrystals. For the samples treated for 60 min, however, the particle size of TOP-60 min is c.a. 50 nm. Nanorod morphology in the SEM graphs of Figure 5 is also ascribed to the Ag_3Sb phase, because of no secondary phase could be determined from PXRD results. According to Bravais-Friedel-Donnay-Harker theory, crystal growth speed along different directions is proportional to the inverse of crystal lographic plane distances, i.e. the smallest d_{hkl} value position of (010) 18.49° , with a d₀₁₀ of 4.85 Å, grow the fastest that will is diminish in the final crystal morphology^{29,30}. While the peak position of (100) and (001) locates at 14.78° and 16.91°, which corresponded to a d_{100} and d_{001} value of 5.99 and 5.24 Å. This structure characteristic of Ag₃Sb indicates a

Langmuir

obtained Figure 5. SEM of Ag₃Sb by TOP treated Ag₃SbS₃ nanocrystals with different times of min and min, respectively.

preferential growth orientation is <010> direction with the retard growth along <001> and <100>, that may lead to a rod-like morphology of the ideal growth in final products.

For comparison, the same ternary sulfide nanocrystal sample was also treated with TBP for 60 min (TBP-60 min) as shown in Figure 6. Combined with the XRD spectrum of TPP-60 min, it can be seen that pure phase of Ag₃Sb could be obtained via both TPP and TBP solvent. Also, SEM graph of TBP-60 min is shown in the inset of Figure 6. Compared with the particle size of TPP-60 min, which shown in Figure 2b, TBP-60 min is smaller. Average particle size of TPP-60 min and TBP-60 min is 350 nm and 172 nm, respectively, which is much larger than that of TOP-60 min. Both of the Ag₃Sb samples show no definite shape of crystal, which may due to the imbalance in ion diffuse in the TAP solvents.

> Moreover, we used TPP to treat Ag_3SbS_3 for 15, 30, 45, 60 min to better explore the effects of samples over time. This is because the sample obtained by TPP is the most easily observed due to since the obtained samples is larger than others. According to the PXRD pattern from Figure S1, we can see that the phase of Ag_3Sb appears when treated with TPP for 15 min. The phase of Ag_3SbS_3 is completely converted to phase Ag_3Sb at 30 minutes. Continue to extend the time of TPP processing, Ag_3Sb phase remains unchanged. As shown in Figure S2, the particle

Figure 6. PXRD of Ag_3Sb which obtain by treated Ag_3SbS_3 with TBP for 60min and the inset is the SEM image of TBP-60 min.

size and shape of Ag_3SbS_3 -TPP-15 min are similar to that of assynthesized Ag_3SbS_3 nanocrystals. When been treated for 30 minutes, the sample gradually became larger and a rod-like structure appeared, which was similar to the sample treated with

Langmuir

TOP. The SEM images of the obtained Ag₃Sb nanocrystals show significant aggregation as the treatment time continue to extend (Figure S2). High-resolution XPS spectra of Ag 3d, Sb 3d and S 2p for the samples are obtained using C 1s as the reference at 284.6 eV, as shown in Figure S3. After Ag₃SbS₃ is treated with TPP, the peaks of Ag and Sb gradually move toward higher binding energy, indicating that the bonding force between Ag and Sb is enhanced, and the peak of S gradually disappears, indicating of the process of desulfurization.

To check the effectiveness of the method to synthesize Ag_3Sb intermetallic phase nanocrystal, we also applied this method to treat AqSbSe₂ nanocrystals. As shown in Figure S4a, PXRD result show the AqSbSe₂ is pure phase (JCPDS #12-0379). After been treated with TPP for 60 min, it shows clear evidence of the deselenium from ternary chalcogenide phase with the main product of Aq₃Sb and some impurity of Sb element (JCPDS card No. 35-0732). Shown in Figure S4b is the SEM image of AqSbSe2, the rodlike shape is obtained by the synthetic method. However, Ag₃Sb sample obtained from AqSbSe₂ shows no definite shape of crystal (Figure S4c), which may due to the imbalance in ion diffuse in the TPP solvents. The desulfurization effect is also possible shown in TPP treated Sb_2S_3 as shown in Figure S5. The primary synthesized Sb_2S_3 shows the typical diffraction peaks of

> orthorhombic structure (JCPDS #42-1393) and the space group of it is Pbnm (Figure S5a). After treated with TPP for 60 min, it changes into trigonal structure (space group is R 3m), which corresponded to Sb phase (JCPDS #42-1393). SEM images in Figure S6 show that the samples agglomerated before and after treatment, and the size of ions decreased slightly after treatment. This result indicates that the de-chalcogenide method by TAP could be applied to synthesize most of Sb-based intermetallic alloys from their multi-chalcogenide precursors.

Mechanism for desulfurization from ternary sulfide. In order to understand the mechanism of desulfurization effect of TAP from ternary sulfide nanocrystal, the molecule structure and function should be analyzed in advance. In our experiment, three types of TAP have been used to etch S^{2-} or Se^{2-} from Ag₃SbS₃ and AgSbSe₂ precursors. They are all characterized with 4 sp³ hybrid orbitals with 3 of them bonded with different alkyl groups, i.e. butyl-, octyl- and phenyl-group. The un-bonded orbital of P is occupied with one pair of lone electrons, which endows the reductive properties of TAP in most of chemical reactions. TOP has been regarded as an promoter to enhance cation exchange processes due to its strong binding affinity to $Cu(I)^{31}$. The desulfurization capability of TAP is mainly dependent on this binding effect to Ag and Sb in the ternary chalcogenide in our experiment. Factors

Langmuir

that determine the capability of TAP are dominated by the alkyl group that bonding to center P-atom through steric hindrance effect and

Figure 7. Molecule structure of three types of TAP.

charge transfer effect. Octyl-group is a long chain of $-(CH_2)_{7}$ -CH₃, which may hinder the interaction between the sole pair electrons of sp³ hybrid P with Ag or Sb in the crystal lattice of Ag₃SbS₃. Phenyl-group is a phenyl ring with delocalized electrons from conjugated orbital of the sp² hybrid C atoms, which may provide additional electrons that could transfer to the orbital of sp³ hybrid P atom to increase its electron negativity and binding affinity to metal cations in ternary chalcogenide nanocrystals. Butyl-group is a short akyl-chain of $-(CH_2)_3$ -CH₃, that neither such strong steric effect to lower its affinity, nor electron transfer effect to increase its negativity.

According to the desulfurization process in our experiment, the strongest desulfurization agent of TAP is TPP, followed by

> TBP, and weakest TOP. For the same Aq₃SbS₃ nanocrystal precursor treatment with same time, TPP results in poorly crystalized Aq₃Sb; TBP results in the samples with good crystallinity; and results in the mixture of unreacted Ag_3SbS_3 and Ag_3Sb TOP intermetallic phase. In order to understand the transformation mechanism from Ag₃SbS₃ to Ag₃Sb, ex-situ TEM was measured for the untreated Ag_3SbS_3 and treated samples with increasing time from 10 min to 4 h as shown in Figure 8. Ag_3SbS_3 sample with the initial morphology of tetrahedral shape nanocrystals was used to discriminate the morphology evolution process. Typical tetrahedral structure shape nanocrystal with rounded corners is shown in Figure 8a. The surface of the nanocrystal is smooth without any other particle attachment. After this sample is treated with TOP for 10 min, small particles were grown on the surface of the Aq₃SbS₃ nanocrystal, which can be seen in Figure 8b marked with red circle. The Aq₃Sb phase grows gradually with the increasing the interaction between TOP and Ag₃SbS₃ that induced to a rod morphology of the intermetallic phase (Figure 8c). After treatment of Aq_3SbS_3 in TOP for 4 h, the shape of Aq₃Sb is consisted with long nanorod and small nanoparticles (Figure 8d). These results are in agreement with the PXRD in previous discussions of this paper. In addition, HRTEM results of Aq_3SbS_3 show typical (211) and (110) crystal plane distances

of 0.33 and 0.55 nm, respectively, (Figure 8e) while Ag_3Sb shows (021) and (200) crystal plane

Figure 8. Ex-situ TEM graphs of time dependent desulfurization processes from Ag₃SbS₃ to Ag₃Sb treated in TOP. (a) Ag₃SbS₃ nanocrystal, Ag₃SbS₃ treated with TOP for (b) 10 min, (c) 1 h, and (d) 4 h, respectively. Red circles in (b) and (c) are indicated to show the Ag₃Sb-decorated Ag₃SbS₃ nanocrystals. Blue circle indicates the formation of Ag₃Sb rod after treatment with TOP for 1 h. (e) HRTEM of Ag₃SbS₃ (f) HRTEM of TOP-60 min, (g) Schematic of the transformation process from Ag₃SbS₃ to Ag₃Sb by the desulfurization effect of TAP. Ag: grey balls; Sb: red balls; S: blue balls. (h) Reaction of TAP with Ag₃SbS₃.

distances of 0.22 and 0.30 nm, respectively. (Figure 8f) In comparison, the chemical formula of Ag_3SbS_3 and Ag_3Sb could simply subtract S from the former compound.

For clarity, the crystal unit cell structure of Ag₃SbS₃ and Aq₃Sb were plotted in Figure 8q. Aq_3SbS_3 is known as the mineral name of pyrargyrite that crystalized into a trigonal crystal system with a space group of R 3c (161). In each unit cell of Aq_3SbS_3 , there are six Aq_3SbS_3 isolated unit with Sb occupied at 6a-site, Ag 18b-site and S 18b-site in Wyckoff's position system. The bond length is 2.4609 Å for Sb-S, and 2.4249 Å and 2.4613 Å for Aq-S, respectively. In the lattice of Aq_3SbS_3 , Sb atoms mainly occupied at the corner of each unit cell with the other Sb and Aq inserted that weakly bonded with S^{2-} nominally. With the assistance of the desulfurization from TAP, S is getting removed from the lattice of Ag₃SbS₃, and the remaining metal an intermetallic atoms crystalized into phase of Aq₃Sb simultaneously. The crystal structure of Aq₃Sb is orthorhombic with a space group of Pmmn. The position of Sb in Ag₃Sb lattice is also at the corner of the unit cell (la-site in Wyckoff's notation), with three sites for Aq atoms inside of the crystal lattice, which could be found as a primary model from Aq_3SbS_3 lattice with slightly adjustment of the crystal lographic position after S extraction. Therefore, the transformation from Ag_3SbS_3 to Ag_3Sb with the assistance of TAP is possible. Reaction

ACS Paragon Plus Environment

4 5

6 7

8 9 10

15 16

17 18 19

20 21

22 23

24 25

26 27 28

29 30

31 32

33 34

35 36 37

38 39

40 41

42 43 44

50 51 52

60

Langmuir

of TAP with Ag_3SbS_3 is showed in Figure 8h. Combined with previous research,^[32-35] we speculate that TAP react with Ag_3SbS_3 to give trialkylphosphane sulfide by elimination of one alkyl substituent, and Ag_3Sb generated at the same time.

CONCLUSIONS

have performed the first example In summary, we of transformation of antimonite chalcogenide ternary into intermetallic phase by the extraction effect of TAP under Ar 200 atmosphere below °C. Powder x-ray diffraction and compositional analysis clearly indicate that a new phase of Ag₃Sb nanocrystal was synthesized from the Ag₃SbS₃ precursors. Three types of TAP were applied as desulfurization agent and the transformation mechanism was elucidated. The capability of desulfurization agent is followed the sequence of TPP > TBP > TOP. Besides, this TAP-driven desulfurization route to synthesize intermetallic phase could also be possible for AqSbSe₂ and Sb_2S_3 . This paper illustrates an efficient and safe technique for the preparation of intermetallic nanocrystals.

ASSOCIATED CONTENT

Supporting Information.

ACS Paragon Plus Environment

Additional information including PXRD, SEM and of treatment time of TPP on the formation of Ag_3Sb . PXRD result and SEM graph of octahedral shape Ag_3Sb nanocrystal from the deselenium of $AgSbSe_2$. PXRD and SEM graph of Sb_2S_3 and desulfurized phase of Sb_2S_3 nanocrystals.

AUTHOR INFORMATION

Corresponding Author

*E-mail: <u>kkhuang@jlu.edu.cn</u>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of China (Grant Nos.

21671076, 21427802).

Author Contributions

Y. Jiang and L. Yuan contributed equally to this work.

REFERENCES

(1) Mills, A. M.; Deakin, L.; Mar, A. Electronic Structures and Properties of $RE_{12}Ga_4Sb_{23}$ (RE = La-Nd, Sm) and Superconducting $La_{13}Ga_8Sb_{21}$. Chem. Mater. 2001, 13, 1778-1788.

Langmuir

(2) Chen, X.; Shen, J. N.; Wu L. M.; Chen, L. A Ferrimagnetic
Zintl Phase Pr_4MnSb_9 : Synthesis, Structure, and Physical
Properties. Inorg. Chem. 2013, 52, 7441-7447.
(3) Park, C. M.; Kim, JH.; Kim, H.; Sohn, HJ. Li-alloy
based anode materials for Li secondary batteries. Chem. Soc. Rev.
2010 , <i>39</i> , 3115-3141.
(4) Bauer, J. C., Chen, X.; Liu, Q.; Phan, T. H.; Schaak, R. E.
Converting nanocrystalline metals into alloys and intermetallic
compounds for applications in catalysis. J. Mater. Chem. 2008,
<i>18</i> , 275–282.
(5) Tan, G.; Zhao, L. D.; Kanatzidis, M. G. Rationally
Designing High-Performance Bulk Thermoelectric Materials. Chem.
Rev. 2016, 116, 12123-12149.
(6) Xia S. Q.; Bobev, S. Cation-Anion Interactions as Structure
Directing Factors: Structure and Bonding of Ca_2CdSb_2 and Yb_2CdSb_2 .
J. Am. Chem. Soc. 2007, 129, 4049-4057.
(7) Vaughey, J. T.; Fransson, L.; Swinger, H. A.; Edström, K.;
Thackeray, M. M. Alternative anode materials for lithium-ion
batteries: a study of Ag ₃ Sb. J. Power Sources. 2003, 119–121, 64–
68.

ACS Paragon Plus Environment

(8) Zhang, W. J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources. 2011, 196, 13-24.

(9) Masson, D. B.; Kirkpatrick, B. K. Equilibrium solidification of Sn-Ag-Sb thermal fatigue-resistant solder alloys. J. Electron. Mater. 1986, 15, 349-353.

(10) Lee, H. T.; Chen, M. H.; Jao, H. M.; Hsu, C. J. Effect of adding Sb on microstructure and adhesive strength of Sn-Ag solder joints. *J. Electron. Mater.* **2004**, *33*, 1048-1054.

(11) Somanchi, S.; Clark, L. A. The occurrence of Ag_6Sb phase at Cobalt, Ontario. The Canadian Mineralogist. **1966**, *8*, 610-619.

(12) Singh, B. P.; Adhikari, D.; Jha, I. S. Concentration dependence of the structure and thermodynamic properties of silver-antimony alloys. *J. Non-Crystalline Solids*. **2010**, *356*, 1730-1734.

(13) Ruan, Y.; Wang, N.; Cao, C.; Wei, B. Rapid solidification mechanism of $Ag_{60}Sb_{34}Cu_6$ ternary alloy in drop tube. *Chin. Sci. Bull.* **2004**, *49*, 1801–1805.

(14) Somanchi, S. Subsolidus phase relations in the system Ag-Sb. Canadian J. Earth Sci. 1966, 3, 211-222.

Langmuir

(15) Zheng,W. Z.; Wang, P.; Wu, L. M.; Chen, L. Synthesis, Crystal and Electronic Structures, and Physical Properties of Caged Ternary Cu-Rich Antimonide: BaCu_{7.31(3)}Sb₅. *Inorg. Chem.* 2010, 49, 7491-7496.

(16) Teichert, J.; Heise, M.; Chang, J. H.; Ruck, M. Refinement of the Microwave - Assisted Polyol Process for the Low -Temperature Synthesis of Intermetallic Nanoparticles. *Eur. J. Inorg. Chem.* **2017**, *42*, 4930-4938

(17) Hu, Y.; Chen, C. W.; Cao, H.; Makhmudov, F.; Grebenkemper, J. H.; Abdusalyamova, M. N.; Morosan, E.; Kauzlarich, S. M. Tuning Magnetism of [MnSb₄]⁹⁻ Cluster in Yb₁₄MnSb₁₁ through Chemical Substitutions on Yb Sites: Appearance and Disappearance of Spin Reorientation. J. Am. Chem. Soc. **2016**, 138, 12422-12431.

(18) Zhu, M.; Tan, W.; Wu, Z.; Tao, X. T.; Huang, B.; Xia, S. Q. Sr₄Cu_{25.37(18)}Sb₁₂ and Eu₄Cu_{26.06(13)}Sb₁₂: Copper-Rich AntimonideIntermetallics with Cage Structure. *Cryst. Growth Des*. **2018**, 18, 1722-1729.

(19) Gardiner, T. M.; Stiddard, M. H. B. Epitaxial growth and stabilization of the compound Ag₃Sb on silver {1 1 1}. J. Mater. Sci. 1981, 16, 1522-1526.

ACS Paragon Plus Environment

(20) Feschotte, P.; Monachon, F.; Durussel, Ph. The binary system Sb-Ag: a revision of the Ag₃Sb phase boundaries. *J. Alloy Comp.* **1992**, *186*, L17-L18.

(21) Kulifay, S. M. A Low Temperature Synthesis for Powder-form Intermetallics and Other Compounds. J. Am. Chem. Soc. **1961**, 83, 4916-4919.

(22) Wang, F.; Yao, G.; Xu, M.; Zhao, M.; Zhang, P.; Song, X.
Ag-Sb composite prepared by chemical reduction method as new anode materials for lithium-ion batteries. *Mater. Sci. Engineer.*B. 2011, 176, 442-445.

(23) Luther, J. M.; Zheng, H.; Sadtler, B.; Alivisatos, A. P. Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions. J. Am. Chem. Soc. 2009, 131, 16851-16857.

(24) Sines I. T.; Schaak, R. E. Phase-Selective Chemical Extraction of Selenium and Sulfur from Nanoscale Metal Chalcogenides: A General Strategy for Synthesis, Purification, and Phase Targeting. J. Am. Chem. Soc. **2011**, 133, 1294-1297.

(25) Han, S. K.; Gu, C.; Gong, M.; Yu, S. H. A Trialkylphosphine-Driven Chemical Transformation Route to Agand Bi-Based Chalcogenides. *J. Am. Chem. Soc.* **2015**, *137*, 5390-5396.

Langmuir

(26) Liang, Q.; Huang, K.; Ren, X.; Zhang, W.; Xie R.; Feng, S. Synthesis of Cu-Sb-S nanocrystals: insight into the mechanism of composition and crystal phase selection. *CrystEngComm*. **2016**, *18*, 3703-3710.

(27) Xu,Y.; Yuan, L.; Xie, R.; Wang, L.; Liang, Q.; Geng,
Z.;Liu, H.; Huang, K. Shape Control of Ternary Sulfide
Nanocrystals. Cryst. Growth Des. 2018, 18, 864-871.

(28) Naumkin, A.; Anna Kraut-Vass, V.; Gaarenstroom, S. W.; Powell, C. J. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1, **2012**.

(29) Yuan, L.; Huang, K.; Wang, S.; Hou, C.; Wu, X.; Zou, B.; Feng, S. Crystal Shape Tailoring in Perovskite Structure Rare-Earth Ferrites REFeO₃ (RE = La, Pr, Sm, Dy, Er, and Y) and Shape-Dependent Magnetic Properties of YFeO₃. Cryst. *Growth Des.* **2016**, *16*, 6522-6530.

(30) Wang, S.; Wu, X.; Yuan, L.; Zhang, C.; Lu, D. Shapetuneable synthesis of perovskite structured rare-earth chromites RECrO₃via a mild hydrothermal method. *CrystEngComm*. 2017, 19, 6436-6442.

(31) van der Stam, W.; Bladt, E.; Rabouw, F. T.; Bals, S.; deMello Donega, C. Near-Infrared Emitting CuInSe₂/CuInS₂ Dot

ACS Paragon Plus Environment

Core/Rod Shell Heteronanorods by Sequential Cation Exchange. ACS Nano. 2015, 9, 11430-11438.

(32) Zhang, T.; Schwedtmann, K.; Weigand, J. J.; Doert, T.; Ruck, M. Dissolution behaviour and activation of selenium in phosphonium based ionic liquids. *Chem. Commun.* **2017**, *53*, 7588-7591.

(33) Zhang, T.; Schwedtmann, K.; Weigand, J. J.; Doert, T.; Ruck, M. Understanding the Chemical Reactivity of Phosphonium -Based Ionic Liquids with Tellurium. *Chem. Eur. J.* **2018**, *24*, 9325-9332.

(34) Kaiser, M.; Rasche, B.; Ruck, M. The Topochemical Pseudomorphosis of a Chloride into a Bismuthide. *Angew. Chem. Int. Ed.* **2014**, *53*, 3254-3258.

(35) Kaiser, M.; Baranov, A. I.; Ruck, M. Bi_2Pt (hP₉) by Low -Temperature Reduction of $Bi_{13}Pt_3I_7$: Reinvestigation of the Crystal Structure and Chemical Bonding Analysis. *Z. Anorg. Allg. Chem.* **2014**, 640, 2742-2746.

TOC

