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ABSTRACT: A regiodivergent catalytic method for
direct conversion of aldehydes to branched or linear
alkyl ketones is described. Rhodium complexes modified
by PtBu2Me catalyze formate-mediated aldehyde−vinyl
bromide reductive coupling−redox isomerization to form
branched ketones. Use of the less strongly coordinating
ligand, PPh3, promotes vinyl- to allylrhodium isomer-
ization en route to linear ketones. This method bypasses
the 3-step sequence often used to convert aldehydes to
ketones involving the addition of pre-metalated reagents
to Weinreb or morpholine amides.

Ketones are of commercial significance across the
pharmaceutical, agrochemical, and flavor−fragrance in-

dustries. Convergent manufacturing routes to ketones from
aldehydes often rely on 3-step sequences involving the addition
of stoichiometric organometallic reagents to alkoxy-amides,1

such as theWeinreb amide2,3 or morpholine amides (Figure 1).4

Alternatively, 2-step ketone syntheses can be achieved through
the addition of vinylmetal reagents to aldehydes followed by
internal redox isomerization of the resulting allylic alcohols.5,6 In
connection with long-standing efforts to develop reductive C−C
couplings via transfer hydrogenation,7,8 we envisioned a direct
protocol for the conversion of aldehydes to ketones wherein
vinyl halide−carbonyl reductive coupling is followed by internal
redox isomerization. This transformation finds precedent in our
recently reported rhodium-catalyzed aryl halide−aldehyde
reductive coupling mediated by sodium formate,9,10 as well as
related redox-neutral aryl halide−aldehyde C−C couplings to
form aryl ketones.11 As described herein, our pursuit of this goal
has resulted in the development of a direct, regiodivergent12

vinyl bromide−aldehyde reductive coupling to form either linear
or branched ketone products.13−16

In an initial experiment, piperonal 1a (100 mol%) and 2-
bromopropene 2a (200 mol%) were exposed to NaO2CH (300
mol%) and Cs2CO3 (100 mol%) in the presence of the catalyst
assembled from Rh(acac)(CO)2 (5 mol%) and PtBu2Me (11
mol%) in DME (0.2 M) at 130 °C.9 The anticipated branched
ketone product 3a was formed in 45% yield after isolation by
flash column chromatography (Table 1, entry 1). A survey of
phosphine ligands was undertaken (Table 1, entries 1−10).
Remarkably, use of PPh3 under otherwise identical conditions
led to a 48% yield of the linear ketone product 4a.13 The isolated

yield of linear ketone 4a was elevated to 77% yield upon use of
KO2CH (300 mol%) and K2CO3 (100 mol%) (Table 1, entry
12). Finally, by lowering the loading of K2CO3 (70 mol%), the
formation of a competing elimination side product, 5-(1-
butenyl)-1,3-benzodioxole, could be attenuated, enabling
formation of linear ketone 4a in 92% yield (Table 1, entry
13). Dry KO2CH (vide inf ra) and dry DME were required for
optimal isolated yields. Using PtBu2Me as ligand under these
conditions delivered the branched ketone 3a in 54% yield
(Table 1, entry 14), and at higher concentration (0.4 M) the
isolated yield of 3a was increased to 80% (Table 1, entry 15).
Notably, while optimal conditions for formation of the linear
and branched ketones 3a and 4a differ primarily on the basis of
ligand (Table 1, entries 13 vs 15), virtually complete partitioning
of these constitutionally isomeric products was observed (>40:1
isomeric ratios were observed by 1H NMR analysis of crude
reaction mixtures).
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Figure 1. Classical and contemporary strategies for the convergent
construction of linear or branched alkyl ketones.
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To evaluate reaction scope, optimal conditions identified for
the conversion of piperonal 1a to the constitutionally isomeric
branched and linear ketone products 3a and 4a were applied to
diverse aldehydes 1a−1r (Table 2). Aromatic aldehydes 1a−1k,
heteroaromatic aldehydes 1l−1m, and aliphatic aldehydes 1n−
1r were converted to the respective branched ketones 3a−3r or
linear ketones 4a−4r in generally good yields. With the
exception of branched ketone 3m, the chromatographically
isolated products appeared to be isomerically pure by 1H NMR
analysis. For 3m, delocalization of the pyrazole nitrogen might
deactivate the aldehyde toward insertion, providing a kinetic
window for competing branched-to-linear isomerization. For
optimal results, it was necessary to use freshly distilled DME and
KO2CH recrystallized from ethanol. The recrystallized KO2CH
was collected by filtration and washed with diethyl ether under
an inert atmosphere. If wet KO2CH is used, significant quantities
of aldehyde reduction and oxidative esterification are observed.
For reactions run on a 1 mmol scale, it was important to utilize a
narrow reaction vessel at low volume (10−20%).
The feasibility of utilizing alternate vinyl bromides 2b and 2c

in regiodivergent reductive coupling−internal redox isomer-
ization was briefly investigated in reactions of piperonal 1a.
Under optimal conditions using PtBu2Me as ligand, the
anticipated branched ketones 3s and 3t were formed in good
yields (eq 1). However, when optimal conditions for formation

Table 1. Selected Optimization Experiments in the Rhodium-
Catalyzed Reductive Coupling of 2-Bromopropene 2a with
Piperonal 1a To Form the Isomeric Ketones 3a and 4aa

aYields are of chromatographically isolated isomerically pure (>20:1)
material. PtBu2Me·HBF4, P

tBu3·HBF4, and PtBu2Ph (PhMe, 50 wt%)
were used. Bidentate ligands (5.5 mol%). See Supporting Information
for experimental details. bK2CO3 (70 mol%). cDME (0.4 M).

Table 2. Rhodium-Catalyzed Reductive Coupling−Internal Redox Isomerization of 2-Bromopropene 2a with Aldehydes 1a−1r
To Form the Branched Ketones 3a−3r or Linear Ketones 4a−4ra

aStandard conditions: Branched: aldehyde 1a−1r (100 mol%), 2-bromopropene (200 mol%), Rh(acac)(CO)2 (5 mol%), PtBu2Me·HBF4
(11 mol%), K2CO3 (70 mol%), KO2CH (300 mol%), DME (0.4 M), 130 °C. Linear: aldehyde 1a−1r (100 mol%), 2-bromopropene (200 mol%),
Rh(acac)(CO)2 (5 mol%), PPh3 (11 mol%), K2CO3 (70 mol%), KO2CH (300 mol%), DME (0.2 M), 130 °C. bK2CO3 (30 mol%). cK2CO3
omitted. dDME (0.2 M), 130 °C. e120 °C. Yields are of chromatographically isolated material. As the isomeric ketone products are inseparable via
conventional flash chromatography, isomeric ratios were determined from 1H NMR analysis of isolated products.
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of the linear products using PPh3 as ligand were applied, the
linear ketones were not obtained in isomerically pure form. This
limitation was easily overcome through use of the isomeric
terminal vinyl bromides iso-2b and iso-2c, which deliver the
constitutionally isomeric linear ketones 4s and 4t, albeit in
modest yield (eq 2).
To gain insight into the catalytic cycle, a series of deuterium

labeling experiments were performed (eqs 3−6). Exposure of
aldehyde deuterio-1a to 2-bromopropene 2a under standard
conditions favoring formation of the branched regioisomer
delivers deuterio-3a, which incorporates a single deuterium atom
(>95% 2H) at the methyl group of the isopropyl ketone (eq 3).
As deuterio-3a is postulated to arise via isomerization of the
corresponding allylic alcohol deuterio-iso-3a, the latter com-
pound was subjected to standard conditions favoring formation
of the branched regioisomer (eq 4). In this case, deuterium was
incorporated at both the methyl group (92% 2H) and the
methine moieties (8% 2H) of the isopropyl ketone. Similarly,
deuterio-1a and the homoallylic alcohol deuterio-iso-4a were
exposed to standard conditions favoring formation of the linear
regioisomer (eqs 5 and 6). The resulting n-propyl ketones
deuterio-4a and deuterio-4a′ display similar but non-identical
patterns of deuterium incorporation. These data corroborate
allylic and homoallylic alcohols as reactive intermediates en route
to the branched and linear ketone products, respectively. The
non-identical patterns of deuterium incorporation between
deuterio-3a vs deuterio-3a′ and deuterio-4a vs deuterio-4a′ suggest
that redox isomerization may occur in part from the kinetic
rhodium alkoxide.
Based on the collective data, the catalytic cycle shown in

Scheme 1 is proposed. Vinyl bromide oxidative addition forms
the indicated vinylrhodium(III) species.17 For the strong σ-

donor ligand PtBu2Me, aldehyde insertion occurs to form a
rhodium alkoxide.18 The bromide moiety of the kinetic rhodium
alkoxide can react with KO2CH to form a hydride, which upon
O−H reductive elimination19 delivers the allylic alcohol and,
therefrom, the branched ketone. Alternatively, the kinetic
rhodium alkoxide can undergo β-hydride elimination to form
an enone, which undergoes conjugate reduction to form the
branched ketone (not shown). For the weak σ-donor ligand
PPh3, phosphine dissociation at the stage of the vinylrhodium-
(III) intermediate triggers β-hydride elimination to form a
transient allene, which upon hydrometalation delivers an
allylrhodium(III) species.13 Aldehyde insertion delivers a
homoallylic rhodium alkoxide,18 which is ultimately converted
to the linear ketone. Coupling products were not formed in
reactions using other weakly coordinating monodentate ligands,
for example, P(OPh)3, P(C6F5)3, or P(2-Fur)3.
In summary, we report a catalytic method enabling direct

conversion of aldehydes to alkyl ketones20−22 and establish
conditions for regiodivergent access to either the branched or

Scheme 1. General Catalytic Mechanism Accounting for Regiodivergence in the Rhodium-Catalyzed Aldehyde Reductive
Coupling of 2-Bromopropene 2a To Form Isomeric Ketones 3a−3r and 4a−4r
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linear ketone isomers. Specifically, using the rhodium catalyst
modified by PtBu2Me, vinyl halide−aldehyde reductive coupling
mediated by formate is followed by redox isomerization of the
resulting allylic alcohol to form branched ketone products. In
contrast, use of a less strongly coordinating ligand, Ph3P,
promotes vinyl- to allylrhodium isomerization en route to linear
ketones. This method bypasses the 3-step sequence often used
to convert aldehydes to ketones involving the addition of
stoichiometric organometallic reagents to Weinreb or morpho-
line amides.
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