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ABSTRACT: Arsenic ligands have attracted considerable attention in coordination chemistry. Arsenic(III) halides are the most
important starting materials in the preparation of monodentate arsenic ligands. In this work, we optimized the synthetic
methodologies of arsenic(III) halides (AsX3; X = Br, I) and examined the difference of their physical properties such as solubility to
organic solvent and reactivity to nucleophiles. In addition, a wide variety of monodentate arsenic ligands were prepared with the
obtained AsX3. Finally, the obtained monodentate arsenic ligands were utilized for copper-free Sonogashira cross-coupling reaction
in the reaction system with porphyrin. The results showed that monodentate arsenic ligands have higher catalytic activity compared
with triphenylphosphine because of the difference of the electronic features of lone pairs between arsenic and phosphorus atoms.

■ INTRODUCTION

In coordination chemistry, arsenic ligands have attracted
considerable attention because of their unique coordination
ability. Arsenic ligands, in general, possess higher oxidation
tolerance in air, more massive steric hindrance, and poorer σ
donation compared with phosphorus ones.1 The characteristic
nature of arsenic ligands has so far exhibited some advantages
such as high selectivity and reactivity in transition-metal-
catalyzed reactions.2−5 In 1991, for example, Farina and
Krishnan reported reaction rate acceleration in Stille cross-
coupling with triphenylarsine (AsPh3).

2 More recently, a
palladium-catalyzed copper-free Sonogashira cross-coupling
reaction with AsPh3 has been developed.3 A well-designed
arsenic−nitrogen−arsenic pincer-type ligand exhibits high
catalytic selectivity in the dehydrogenative transformation of
benzyl alcohol and benzylamine to form N-benzylidenebenzyl-
amine.4 Considering these pioneering works, it is rational that
arsenic ligands would play pivotal roles in the further
development of transition-metal catalysts. However, there are
few easily accessible arsenic ligands despite the unique catalytic
systems. AsPh3 is employed for almost all cases because it is
one of the extremely limited commercially available mono-
dentate arsenic ligands. This is because traditional synthetic
routes require arsenic chlorides or hydrides, which are misused

as chemical weapons because of their high toxicity and
volatility.6

Recently, we have developed practical synthetic method-
ologies to access organoarsenic compounds. For example,
diiodoarsines7 and arsenic nucleophiles8 are generated in situ
from arsenic homocycles to afford symmetric (AB2),

9

asymmetric (ABC), and bidentate types10 of arsenic ligands
(Scheme 1a). The arsenic homocycles must have low volatility
at room temperature to be easily handled. These synthetic
tools have provided various functional arsenic materials such as
conjugated molecules,11 polymers,12 and transition-metal
complexes.13 On the other hand, C3-symmetrical arsenic
ligands (A3) are still difficult to synthesize because of difficulty
in the preparation of arsenic homocycles bearing various
substituents.14,15

Arsenic(III) trichloride (AsCl3) has been traditionally used
to this end,16 although it has high volatility (vapor pressure =
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10 mmHg at 23.5 °C).17 Actually, AsCl3 and chlorobenzene
are reacted in the presence of sodium metal to obtain AsPh3.

18

The severe concern about the hazardous feature prevents us
from accessing designed A3-type ligands. To circumvent the
usage of AsCl3, we developed arsenic−halogen bond formation
via As−C bond activation with halogen sources to transform
the substituents (Scheme 1b).19 However, this route needs a
multistep synthesis to obtain A3-type ligands, and thus a more
efficient strategy has been desired. AsBr3 (vapor pressure = 1
mmHg at 41.8 °C)17 and AsI3 (vapor pressure = 2.9 mmHg at
164.0 °C)20 should be appropriate species to construct them
because of the remarkably lower vapor pressure than AsCl3.
Previously, the synthetic procedures of AsBr3

21 and AsI3
22

were concisely introduced. However, the safe preparation

method, solubility, and reactivity of arsenic(III) halides (AsX3;
X = Br, I) remain well-studied. There are thus far only a few
reports of using AsBr3

23 and AsI3
24 in actual syntheses of A3-

type ligands. We herein investigated the synthesis and
properties of AsX3. Moreover, the resulting A3-type arsenic
ligands were applied to palladium catalysts for copper-free
Sonogashira coupling reaction (Scheme 1c).

■ RESULTS AND DISCUSSION
Arsenic(III) oxide (As2O3) was selected as a starting material
for the preparation of AsX3. It is known that As2O3, being a
nonvolatile inorganic compound, reacts with HBr to readily
produce AsBr3 and H2O in an equilibrium reaction.21 The
challenge lies in driving the equilibrium reaction to completion
to obtain AsX3 efficiently. In this context, extraction or
precipitation is pivotal in the reaction because the generated
AsX3 should be excluded from the equilibrium in the aqueous
solution. We initially optimized the reaction conditions in the
syntheses of AsX3, and the results are summarized in Table 1.

The extraction solvent, amount of acids, temperature, and time
were changed for optimization of the reaction conditions. In
entries 1−3, hexane was the best extraction solvent because it
has poor water solubility to effectively extract AsX3 from the
reaction system. In entries 4−6, excessive amounts of HBr
were effective to drive the reaction, and 15 equiv of HBr was
the best amount. As2O3 was insoluble in HBr at lower
temperatures, and the reaction to form AsBr3 was ineffective
(entries 7 and 8). When the reaction mixture was stirred for 30
min at 100 °C, AsBr3 was obtained in high yield (92%, entry
9). As the reaction time got longer, a decrease of the product
yield was observed (entry 10), although the reason is still
unclear. For the preparation of AsI3 (entries 11−13), there
were no suitable extraction solvents because of its poor
solubility to aprotic solvents (vide infra). Therefore, reaction
conditions such as the amount of HIaq, reaction temperature,
and time were optimized; as a result, 6.4 equiv of HI(aq) was
added to As2O3 and stirred for 5 min at 100 °C to obtain AsI3
in moderate yield (33%, entry 13).

Scheme 1. (a) Practical in Situ Preparation Methods of
Diiodoarsine and Arsenic Nucleophiles for the Synthesis of
AB2-, ABC-, and Bidentate-Type Arsenic Ligands, (b)
Arsenic Halogenation via As−C Bond Cleavage with the
Removal of Iodomethane, and (c) This Work: (1)
Optimization of the Reaction Conditions of the Synthesis of
AsX3 (X = Br, I); (2) Investigation of the Reactivity of AsX3
and Synthesis of A3-Type Arsenic Ligands; (3) Application
for Copper-Free Sonogashira Cross-Coupling Reaction

Table 1. Optimization of the Reaction Conditions in
Syntheses of AsX3 (X = Br, I)

+ +
°

X YoooooooooooooooAAs O equiv of aqueous HX AsX H O
T t

2 3
( C), (min)

3 2

conditions

entry X A (equiv)a T (°C) t (min) extraction solvent yield (%)

1 Br 6 100 120 CH2Cl2 25
2 Br 6 100 120 hexane 38
3 Br 6 100 120 Et2O 34
4 Br 8 100 120 hexane 49
5 Br 15 100 120 hexane 70
6 Br 30 100 120 hexane 58
7 Br 15 0 120 hexane n.d.
8 Br 15 r.t. 120 hexane 17
9 Br 15 100 30 hexane 92
10 Br 15 100 300 hexane 53
11 I 15 100 30 23
12 I 15 100 30 27
13 I 6.4 100 5 33

aThe equivalents against the number of As−O bonds.
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Although AsCl3 is a volatile liquid at room temperature, the
obtained products of AsBr3 and AsI3 were colorless and
reddish-orange solids, respectively. Their melting points were
measured to be within narrow temperature ranges, 31.5−32.1
°C (AsBr3) and 145.8−146.5 °C (AsI3), which correspond to
the literature values.21,22 This result means that the products
obtained in the present procedures have sufficient purity and
that they can be easily handled at room temperature. The
solubility of AsX3 to low-polarity and aprotic solvents was
evaluated (Table 2). AsBr3 exhibited good solubility to most

organic solvents, whereas AsI3 had much poorer solubility. The
dipole moments of AsBr3 and AsI3 were 1.903 and 0.879 D,
respectively, which were calculated by a series of programming
works in molecular modeling software Winmostar (version
9.3.5); the PM3 method in MOPAC6 was utilized for full-
optimization of AsX3 (X = Br, I). Although a lower dipole
moment leads to higher solubility to low-polarity solvents,
AsBr3 showed higher solubility to low-polarity solvents. We
thus assumed that the intermolecular interactions in the crystal
structure made a difference in the solubility between AsBr3 and
AsI3. The crystal structures of AsBr3 and AsI3 were investigated
in previous reports.25,26 Single-crystal X-ray diffraction analysis
revealed that AsI3 had intermolecular As−I and I−I
interactions.25 In contrast, no significant intermolecular
interactions were observed in the crystal of AsBr3.

26 Higher
bond dissociation energy is necessary for cleavage of the
intermolecular interactions of AsI3, resulting in the low
solubility.
In order to investigate the reactivity of AsX3 to nucleophiles,

a substitution reaction with phenylmagnesium bromide
(PhMgBr) and phenyllithium (PhLi) was performed. To a
tetrahydrofuran (THF) solution or dispersion of AsBr3 and
AsI3, respectively, 1 equiv of nucleophiles (against the number
of As−X bonds) was added dropwise at 0 °C. After stirring at
room temperature for 30 min, AsPh3 was obtained. The
reaction conditions and results are summarized in Table 3. In
entries 1 and 3, PhLi gave AsPh3 in high yields for AsBr3
(92%) and AsI3 (85%). In the case of PhMgBr (entries 2 and
4), on the other hand, the isolated yield of AsPh3 generated
from AsBr3 (89%) was much higher than that from AsI3
(54%). These results indicate that the reactivity of AsBr3 is
higher than that of AsI3, which is derived from the difference of
the electronegativity in As−Br and As−I. High solubility to
aprotic solvents is necessary for substitution reactions with
organometallic reagents to prepare A3-type ligands. AsBr3 was
thus employed as an electrophile for the following syntheses of
A3-type ligands because of its higher solubility and higher
reactivity in comparison with those of AsI3.
The syntheses of A3-type arsenic ligands were performed. A

THF solution of AsBr3 was prepared under N2 and added
dropwise to a solution of a nucleophile. The reaction

conditions and results are summarized in Table 4. Organo-
lithium, Grignard, and organocuprate reagents were applicable

as nucleophiles for the substitution reaction. To maximize the
isolated yields, 4.5 equiv of nucleophiles was used here; it was
confirmed that the yields remained the same or declined when
using 3 equiv of nucleophiles. Aryl (entries 1−7), alkyl (entry
8), and heteroaryl (entry 9) groups were introduced by
selecting the corresponding nucleophiles. Tuning of the
electron-donation ability was easily accomplished by the
introduction of electron-donating or -withdrawing groups
(entries 3−6). In entry 10, a bulky substituent such as a
mesityl group was efficiently introduced with the organocopper
reagent prepared from mesityllithium and copper(I) iodide.
The product yields significantly decreased when using
organolithium reagents (entry 11). These results indicate
that AsBr3 is an excellent starting material for the synthesis of
A3-type arsenic ligands.
R2EX (E = element) is a promising precursor for the

development of highly active catalysts, e.g., Buchwald-type
backbone.27 However, it is difficult to prepare R2EX through a
one-step reaction of 1 equiv of EX3 with 2 equiv of nucleophile
(RM; M = metal) because of the generation of byproducts
such as R3E or REX2. In the present case, we confirmed that
the reaction of AsBr3 with 2 equiv of PhLi gave only AsPh3 (for
details, see the Supporting Information). To address this

Table 2. Solubility of AsX3 (X = Br, I) to Aprotic Solvent at
25 °C (g/mL)

X pentane hexane cyclohexane Et2O THF

Br 0.12 0.17 >1.0a >1.0a >1.0a

I <0.001 <0.001 <0.001 0.047 0.062
X 1,4-dioxane benzene toluene xylene

Br 0.71 >1.0a >1.0a >1.0a

I 0.034 0.026 0.020 0.013
aAsBr3 dissolved in the solvents in any proportion.

Table 3. Reaction of AsX3 with PhMgBr and PhLi

conditions

entry X M yieldc (%)

1 Br Lia 92
2 Br MgBrb 89
3 I Lia 85
4 I MgBrb 54

a1.6 M in a hexane solution. b1.0 M in a diethyl ether solution.
cIsolated yield.

Table 4. Synthesis of A3-Type Arsenic Ligands

conditions

entry R M product yieldb (%)

1 p-tolyl MgCl 1 91
2 o-tolyl MgBr 2 81
3 p-anisyl Li 3 85
4 o-anisyl Li 4 68
5 p-trifluoromethylphenyl Li 5 78
6 o-trifluoromethylphenyl Li 6 52
7 naphthyl Li 7 55
8 cyclohexyl MgCl 8c 20c

9 pyridyl Li 9 22
10 mesityl Cua 10 72
11 mesityl Li 10 25

aOrganocopper reagent [RCu] was prepared from mesityllithium and
CuI. bIsolated yield. cThe yield of palladium(II) complex was
calculated because tricyclohexylarsine is easily oxidized in air.
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problem, a redistribution reaction with R3E and EX3 is often
employed. It is well-known that such a redistribution reaction
can be observed in heavy-main-group chemistry such as
antimony and organobismuth in group 15 elements.28 On the
other hand, there are few reports about the redistribution
reaction with arsenic.29 Therefore, we considered that AsBr3
could be converted to bromoarsine derivatives (R2AsBr)
through redistribution reactions with AsR3. We selected
tri(p-tolyl)arsine (1) as a reactant for the redistribution
reaction. A diethyl ether solution of AsBr3 (1 equiv) and 1
(2 equiv) was refluxed overnight, and (p-tolyl)2AsBr was
obtained in 69% yield (Figure S1), which was determined by
1H NMR integration.30 However, we failed to isolate the target
product (p-tolyl)2AsBr because the starting materials and
byproducts were not sufficiently removed. A more versatile
design for arsenic ligands will be attained by using the
redistribution reaction, although there is still a drawback in the
isolation step.
Finally, the obtained A3-type arsenic ligands were utilized for

palladium-catalyzed copper-free Sonogashira cross-coupling
reaction. It is a powerful tool for substrates sensitive to the
presence of copper. For example, in the case of structural
modification of metal-centered-porphyrins, copper-free Sono-
gashira cross-coupling reaction is necessary because trans-
metalation from the centered metal to copper could occur in
porphyrins to give contamination of the byproducts.31

Entering the 2000s, some chemists reported that the weaker
σ donation of the arsenic ligand can improve the efficiency of
the coupling reaction compared with phosphorus ones.3 AsPh3
was the only applicable ligand in those reports because it is one
of the few commercially available arsines. We thus applied the
A3-type arsenic ligands obtained in the present work to the
copper-free Sonogashira cross-coupling reaction of 515-bis-
(ethynyl)-substituted zinc(II) porphyrin derivative (Zn-POR;
Table 5). For the reaction conditions, refer to the literature
procedure,3a and details are described in the Supporting
Information. In entry 1, the target 5,15-diphenyl-10,20-
bis(phenylethynyl)-substituted porphyrin (Zn-POR-PA) was

obtained with PPh3 in low yield (12%); small amounts of free-
base porphyrin were concomitantly obtained. On the other
hand, no side reactions were observed in the case of AsPh3
(entry 2). This result exhibited that the weaker coordination
ability of arsenic suppressed decomplexation of the Zn ions
from the porphyrin. In entries 3−6, the yields of Zn-POR-PA
from the ligands possessing electron-donating groups were
higher than those from arsenic ligands containing an electron-
withdrawing group such as a trifluoromethylphenyl one. This is
probably because the rate-limiting step in copper-free
Sonogashira cross-coupling reaction is an oxidative addition
in the catalytic cycle, and the electron-rich ligands lowered the
activation energy. In entries 9 and 11, the bulky ligands gave
quite low yields (up to 5%), suggesting that the steric
hindrance prevented coordination to the palladium center. In
fact, we confirmed that the mesityl-group-substituted ligand 10
did not coordinate to palladium(II) through the reaction with
cis-PdCl2(PhCN)2. To understand the relationship between
the steric hindrance and catalytic activity, single-crystal X-ray
diffraction analysis was carried out for the palladium dichloride
complexes of 1−5. The results are summarized in Tables S1−
S8. The Tolman ligand cone angles of PdCl2(ligand)2 (ligand
= AsPh3, 1, 2, 3, 4, and 5) were 145°,

32 147°, 173°, 142°, 179°,
and 151°, respectively. This result implies that a less sterically
hindered arsenic ligand tended to show higher catalytic activity
when the electron-donating ability is the same. The screening
that we conducted here successfully demonstrates the
structure−catalytic activity relationships between monodentate
arsenic ligands.

■ CONCLUSION
We optimized the reaction conditions for syntheses of AsX3 (X
= Br, I) by changing the molar ratio of hydrohalic acid,
reaction temperature, reaction time, and extraction solvents to
AsX3. AsBr3 was employed as the starting material to
synthesize monodentate arsenic ligands because of its higher
reactivity and solubility to aprotic solvents in comparison with
those of AsI3. The substitution reaction with nucleophiles
readily provided monodentate arsenic ligands possessing
various substituents such as aryl, alkyl, electron-withdrawing,
electron-donating, bulky, and heteroaryl groups. Finally, the
monodentate arsenic ligands were applied for the palladium-
catalyzed copper-free Sonogashira cross-coupling reaction of
Zn-POR with bromobenzene. Upon screening of the arsine
ligands, the coupling reaction with tri-p-anisylarsine 3 afforded
the highest yield of Zn-POR-PA among the prepared arsenic
ligands. In the present work, we demonstrated that AsBr3 is a
proper starting material for safely accessing various mono-
dentate arsenic compounds and believe that it has the potential
for accessing the novel arsenic ligands utilized in outstanding
transition-metal-catalyzed reaction systems.
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Table 5. Copper-Free Sonogashira Cross-Coupling Reaction
in the Reaction System with Porphyrin

entry ligand yield (%)
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7 5 n.d.
8 6 n.d.
9 7 5
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