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Abstract A facile protocol involving Tebby zwitterions (PPh3-acetylen-
ic esters) and the Knoevenagel condensation product of acenaphth-
ylene-1,2-dione with malononitrile or ethyl cyanoacetate for the selec-
tive synthesis of a new series of perinaphthenone derivatives is
described. Triphenylphosphine plays a catalytic role in these transfor-
mations. The structure of a typical product was confirmed by X-ray
crystallography. The merits of this method include high yields of prod-
ucts, good atom economy, and a metal-free catalyst.

Key words perinaphthenones, acenaphthylenedione, alkynoate esters,
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The yellow dye perinaphthenone (A; 1H-phenalen-1-
one) is an aromatic ketone used as a singlet oxygen sensi-
tizer in photochemistry and photobiology.1 Some natural
perinaphthenone derivatives, for example B–E (Figure 1),
have been reported and their photodynamic fungicidal ac-
tivity has been demonstrated.2–4 The synthesis of novel fun-
gicides based on the structures of perinaphthenone-type
natural products is considered to be a promising strategy.4

The α,β-unsaturated carbonyl group in perinaphthe-
none is responsible for its remarkable photophysical and
photochemical properties. The nature of the lowest singlet
and triplet excited states of aromatic ketones (n, π*) or (π,
π*) is highly dependent on the interaction between the car-
bonyl group and the arene system.5–7

Some derivatives of 1-oxo-1H-phenalene-2,3-dicarbo-
nitrile have important applications as molecular fluores-
cent sensors and as anticancer drugs.8 The synthesis these
derivatives has some similarities to that of the new com-
pounds described in this letter.

During our previous studies on applications of trivalent
phosphorus nucleophiles in syntheses of organic com-
pounds,9–12 we discovered a novel reaction between acety-

lenic esters and the Knoevenagel condensation product of
acenaphthylene-1,2-dione13 with malononitrile or ethyl cy-
anoacetate (1 and 2, respectively) in the presence of triph-
enylphosphine as a catalyst in dry CH2Cl2 at 0 °C to room
temperature, which led to a new series of perinaphthe-
nones in moderate to good yields.14

Initially, we studied the effects of the amount of PPh3,
the temperature, and various solvents on the reaction of
DMAD (3a) with adduct 1 as a model reaction. First, the ef-
fects of various amounts of PPh3 in CH2Cl2 at 0 °C to room
temperature were investigated (Table 1, entries 1–7). The
use of 10 mol% of PPh3 gave product 4a in 84% yield (entry
2). We then tested the effects of EtOH, MeCN, THF, and tolu-
ene as solvents (entries 8–16), but none gave an improved
yield of the product. Therefore, the best reaction conditions
for this transformation are CH2Cl2 as solvent in the presence
of 10 mol% of PPh3 at 0 °C to room temperature.

With the optimal reaction conditions in hand, we pro-
ceeded to explore the substrate scope of this reaction. The
Knoevenagel condensation products of acenaphthylene-
1,2-dione with malononitrile or ethyl cyanoacetate (1 and
2, respectively) were successfully applied in the reaction to
give perinaphthenone derivatives 4a–j in satisfactory yields
(Table 2).14

Figure 1  Perinaphthenone (A) and some natural perinaphthenone 
derivatives B–E
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The structures of products 4a–j were fully assigned
from their IR, 1H NMR, 13C NMR, and mass spectra. The IR
spectrum of 4a revealed the presence of carbonyl (1728 and
1654 cm–1) and nitrile groups (2194 cm–1). The 1H NMR
spectrum of 4a showed signals for two methoxy groups at
δ = 3.94 and 4.02 ppm. The 13C NMR spectra clearly showed
signals for CN, CO2R, and C=O groups in the appropriate re-
gions of the spectrum.

The structure of compound 4c was also confirmed by
single-crystal X-ray analysis (Figure 2).15 Similar structures
were assumed for derivatives 4a, 4b, and 4f–h on the basis
of the similarities of their NMR spectra. The olefinic pro-
tons of compounds 4d, 4e, 4i, and 4j appeared at about
δ = 7.10–7.43 ppm, which is consistent with an E-geometry
of the double bond.16

A plausible mechanism for the formation of perinaph-
thenone derivatives 4a–j is shown in Scheme 1. It is con-
ceivable that the initial addition of PPh3 to the acetylenic
ester 3 affords the reactive zwitterionic intermediate 5.
Next, addition  of intermediate 5 to the Knoevenagel con-
densation product 1 or 2 gives intermediate 6. On the basis
of a mechanism reported in the literature,17 we propose a

reaction path involving cyclization to provide intermediate
7. This intermediate, is converted into 9 by ring expansion
and elimination of a cyanide ion. This cyanide ion then un-
dergoes Michael addition to intermediate 9 to afford adduct
10, which is converted into product 4 by a retro-Michael
elimination of PPh3.

In conclusion, we succeeded in regioselective syntheses
of perinaphthenone derivatives through the reaction of
acetylenic esters with the Knoevenagel condensation prod-
ucts of acenaphthylene-1,2-dione with malononitrile or
ethyl cyanoacetate in the presence of PPh3 (10 mol%) as a
catalyst at 0 °C to room temperature in dry CH2Cl2. The syn-
thesis is simple and versatile, and the new compounds have
potential applications as dyes or drug precursors.  The pres-

Table 1  Optimization of the Reaction Conditions for the Preparation 
of Perinaphthenone Derivative 4aa

Entry PPh3 (mol%) Solvent Temp (°C) Yieldb (%)

 1   5 CH2Cl2 0 to r.t 72

 2  10 CH2Cl2 0 to r.t 84

 3  20 CH2Cl2 0 to r.t 67

 4  30 CH2Cl2 0 to r.t 61

 5  40 CH2Cl2 0 to r.t 58

 6  50 CH2Cl2 0 to r.t 64

 7 100 CH2Cl2 0 to r.t 78

 8  10 EtOH 0 to r.t 75

 9  10 EtOH 0 to r.t then reflux 69

10  10 THF 0 to r.t 68

11  10 THF 0 to r.t then reflux 60

12  10 MeCN 0 to r.t 74

13  10 MeCN 0 to r.t then reflux 69

14  10 Toluene 0 to r.t 72

15  10 Toluene 0 to r.t then reflux 69

16  10 CH2Cl2 0 to r.t then 40 76
a Reaction conditions: 1 (1 mmol), 3a (1 mmol), solvent (5 mL), 12 h.
b Isolated yield.
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Table 2  Synthesis of Perinaphthenone Derivatives 4a–ja

Entry X R1 R2 Product Yieldb (%)

 1 CN Me CO2Me 4a 84

 2 CN Et CO2Et 4b 80

 3 CN tBu CO2-t-Bu 4c 75

 4 CN Me H 4d 85

 5 CN Et H 4e 88

 6 CO2Et Me CO2Me 4f 86

 7 CO2Et Et CO2Et 4g 83

 8 CO2Et t-Bu CO2-t-Bu 4h 81

 9 CO2Et Me H 4i 88

10 CO2Et Et H 4j 86
a Reaction conditions: 1 or 2 (1 mmol), 3 (1 mmol), CH2Cl2 (5 mL), 12 h.
b Isolated yield.
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Figure 2  X-ray crystal structure of compound 4c
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ent method has the advantage that the reaction is carried
out under mild and metal-free conditions. The reported
method might serve as a convenient strategy for preparing
a variety of perinaphthenone derivatives.
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Scheme 1  Plausible mechanism for the formation of products 4a–j
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