
pharmaceuticals

Article

A Radiobrominated Tyrosine Kinase Inhibitor for EGFR with
L858R/T790M Mutations in Lung Carcinoma

Muammar Fawwaz 1,2 , Kenji Mishiro 3 , Ryuichi Nishii 4, Akira Makino 5, Yasushi Kiyono 5, Kazuhiro Shiba 6,
Seigo Kinuya 7 and Kazuma Ogawa 1,3,*

����������
�������

Citation: Fawwaz, M.; Mishiro, K.;

Nishii, R.; Makino, A.; Kiyono, Y.;

Shiba, K.; Kinuya, S.; Ogawa, K.

A Radiobrominated Tyrosine Kinase

Inhibitor for EGFR with L858R/T790M

Mutations in Lung Carcinoma.

Pharmaceuticals 2021, 14, 256.

https://doi.org/10.3390/ph14030256

Academic Editor: Irina Velikyan

Received: 7 February 2021

Accepted: 10 March 2021

Published: 12 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa,
Ishikawa 920-1192, Japan; muammar.fawwaz@umi.ac.id

2 Faculty of Pharmacy, Universitas Muslim Indonesia, Urip Sumoharjo KM. 10, Makassar 90-231, Indonesia
3 Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa,

Ishikawa 920-1192, Japan; mishiro@p.kanazawa-u.ac.jp
4 National Institute of Radiological Sciences (NIRS), QST, Inage-ku, Chiba 263-8555, Japan;

nishii.ryuichi@qst.go.jp
5 Biomedical Imaging Research Center (BIRC), University of Fukui, Eiheiji-cho, Yoshida-gun,

Fukui 910-1193, Japan; amakino@u-fukui.ac.jp (A.M.); ykiyono@u-fukui.ac.jp (Y.K.)
6 Advanced Science Research Center, Kanazawa University, Takara-machi, Kanazawa,

Ishikawa 920-8640, Japan; shiba@med.kanazawa-u.ac.jp
7 Department of Nuclear Medicine, Institute of Medical, Pharmaceutical and Health Sciences,

Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan; kinuya@med.kanazawa-u.ac.jp
* Correspondence: kogawa@p.kanazawa-u.ac.jp; Tel./Fax: +81-76-234-4460

Abstract: Activating double mutations L858R/T790M in the epidermal growth factor receptor
(EGFR) region are often observed as the cause of resistance to tyrosine kinase inhibitors (TKIs).
Third-generation EGFR-TKIs, such as osimertinib and rociletinib (CO-1686), was developed to target
such resistance mutations. The detection of activating L858R/T790M mutations is necessary to select
sensitive patients for therapy. Hence, we aimed to develop novel radiobromine-labeled CO-1686 as a
positron emission tomography (PET) imaging probe for detecting EGFR L858R/T790M mutations.
Nonradioactive brominated-CO1686 (BrCO1686) was synthesized by the condensation of N-(3-[{2-
chloro-5-(trifluoromethyl)pyrimidin-4-yl}amino]-5-bromophenyl) acrylamide with the correspond-
ing substituted 1-(4-[4-amino-3-methoxyphenyl]piperazine-1-yl)ethan-1-one. The radiobrominated
[77Br]BrCO1686 was prepared through bromodestannylation of the corresponding tributylstanny-
lated precursor with [77Br]bromide and N-chlorosuccinimide. Although we aimed to provide a
novel PET imaging probe, 77Br was used as an alternative radionuclide for 76Br. We fundamentally
evaluated the potency of [77Br]BrCO1686 as a molecular probe for detecting EGFR L858R/T790M
using human non-small-cell lung cancer (NSCLC) cell lines: H1975 (EGFR L858R/T790M), H3255
(EGFR L858R), and H441 (wild-type EGFR). The BrCO1686 showed high cytotoxicity toward H1975
(IC50 0.18 ± 0.06 µM) comparable to that of CO-1686 (IC50 0.14 ± 0.05 µM). In cell uptake experiments,
the level of accumulation of [77Br]BrCO1686 in H1975 was significantly higher than those in H3255
and H441 upon 4 h of incubation. The radioactivity of [77Br]BrCO1686 (136.3% dose/mg protein)
was significantly reduced to 56.9% dose/mg protein by the pretreatment with an excess CO-1686.
These results indicate that the binding site of the radiotracers should be identical to that of CO-1686.
The in vivo accumulation of radioactivity of [77Br]BrCO1686 in H1975 tumor (4.51 ± 0.17) was higher
than that in H441 tumor (3.71 ± 0.13) 1 h postinjection. Our results suggested that [77Br]BrCO1686
has specificity toward NSCLC cells with double mutations EGFR L858R/T790M compared to those in
EGFR L858R and wild-type EGFR. However, the in vivo accumulation of radioactivity in the targeted
tumor needs to be optimized by structural modification.
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1. Introduction

Overexpression of epidermal growth factor receptor (EGFR) and mutation in the
tyrosine kinase (TK) domain have been shown to be highly associated with a variety
of tumors, including non-small-cell lung cancer (NSCLC) [1]. Activation of EGFR-TK
is involved in the proliferation, metastasis, angiogenesis, invasion, and suppression of
apoptosis [2]. Therefore, EGFR is an attractive target for tumor imaging and therapy [3].
As the therapeutic effect of EGFR-TK inhibitors (TKIs) depends on EGFR mutation
status, it is important to determine this status before administrating them [3]. Imaging
agents for determining EGFR status could serve as an alternative strategy to predict the
drug efficacy instead of gene diagnosis with repeated invasive biopsy [4,5].

EGFR-TKIs are effective molecular targeted drugs for NSCLC patients with L858R
mutation [6,7]. However, almost all patients acquired resistance to the first-generation
EGFR-TKIs, such as gefitinib and erlotinib [8]. A secondary EGFR mutation in codon 790
(threonine-790 to methionine) of exon 20 of this gene has been reported in approximately
50% of all cases that develop resistance to EGFR-TKI therapy [6]. Crystal structure analysis
showed that T790M hinders the interaction of EGFR with the first-generation EGFR-TKIs [7].
This mutation is believed to be induced by the treatment with first-generation TKIs because
it is rarely detected in untreated patients [8]. Thus, to overcome the resistance, the third-
generation EGFR-TKIs possessing a high-affinity against EGFR with L858R/T790M double
mutations were developed. At the same time, companion diagnosis is also important for
the third-generation EGFR-TKIs. We recently synthesized and evaluated a radiotracer,
[125I]ICO1686, which is a derivative of one of the third-generation EGFR-TKIs, CO-1686,
with a high affinity for EGFR with L858R/T790M double mutations. [125I]ICO1686 could
detect the EGFR with L858R/T790M double mutations in vitro; however, it showed insuffi-
cient tumor uptake and low tumor/blood ratio of radioactivity [9].

Radiobromine has some advantages over other radiohalogens. For example, 76Br is
a promising radionuclide for positron emission tomography (PET) with a relatively long
half-life (16.2 h). It makes it possible to deliver the radiopharmaceuticals to distant sites
and to take delayed PET imaging, such as at one day postinjection, which is impossible
for 18F-labeled probes. Meanwhile, bromine has chemical properties similar to those of
iodine. Therefore, for the synthesis of a radiobromine-labeled probe, a synthetic scheme
for a radioiodine-labeled probe can be applied without substantial modification. More-
over, the smaller size of bromine than for iodine may not hinder the binding site [10].
Hence, we aimed to provide a novel radiobromine-labeled CO-1686 to determine the
EGFR L858R/T790M mutation for the selection of patients sensitive to third-generation
EGFR-TKIs.

In this study, a non-radioactive brominated N-(3-{[2-({4-[4-acetylpiperazin-1-yl]-
2-methoxyphenyl}amino)-5- (trifluoromethyl)pyrimidin-4-yl]amino}-5-bromophenyl)
acrylamide (BrCO1686, Scheme 1, 9) and a radioactive brominated 9 ([77Br]BrCO1686,
Scheme 2, [77Br]9) were synthesized and evaluated in vitro and in vivo using three
different human NSCLC cell lines; H1975 (EGFR with L858R/T790M dual mutations),
H3255 (EGFR with L858R mutation), and H441 (wild-type EGFR). Although we are
interested in developing 76Br-labeled probes for PET, in these initial studies, 77Br was
used because of its longer half-life (57.0 h).



Pharmaceuticals 2021, 14, 256 3 of 14
Pharmaceuticals 2021, 14, x FOR PEER REVIEW 3 of 14 
 

 

 
Scheme 1. Synthesis of non-radioactive brominated CO-1686. (a) K2CO3, CH3I, acetone, 0 °C, 5 h; (b) DIPEA, DMA, 90 °C, 
overnight; (c) Pd/C 10%, H2, MeOH, rt, 5 h; (d) H2SO4, NBS, 80 °C, 1.5 h; (e) SnCl2·2H2O, ethanol, rt, 3 h; (f) Boc2O, MeCN, 
50 °C, overnight; (g) 2,4-dichloro-5(trifluoromethyl) pyrimidine, DIPEA, n-butanol, 0 °C, 2 h, rt, 4 h; (h-1) HCl/ethyl acetate, 
rt, 1 h; (h-2) acryloyl chloride, DIPEA, dichloromethane, −30 °C to rt, 2 h; (i) TFA, 1,4-dioxane, 60 °C, 3 h. 

 
Scheme 2. Radiosynthesis of compound [77Br]9. (a) [77Br]Br–, acetic acid, NCS, ethanol, 80 °C, 60 min. 

2. Results 
2.1. Probe Design and Synthesis 

A derivative of CO-1686, brominated compound 9, was prepared by multistep syn-
thesis starting from commercially available 1,3-dinitrobenzene (Scheme 1). A bromine 
atom was introduced in the diaminophenyl group of CO-1686 using N-bromosuccinimide 
(NBS). The bromine was attached in this substituent because this would not substantially 
influence the affinity of CO-1686 toward EGFR L858R/T790M, according to the complex 
crystal structure of CO-1686 and T790M EGFR [11]. The most important substituents play-
ing a pivotal role in the binding of CO-1686 to EGFR L858R/T790M are the anilinopyrim-
idine core, methoxy, and trifluoromethyl groups [11,12]. 

2.2. Cytotoxicity Assays 
The half-maximal inhibitory concentration (IC50) of 9 was determined by 2-(2-meth-

oxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H tetrazolium monosodium 
salt (WST-8) assay. Our previous study showed that iodinated CO-1686 (ICO1686) has a 
similar cytotoxicity effect with parent compound CO-1686 toward mutated NSCLC. In 
this study, the cytotoxicity of 9 toward H1975 and H3255 was similar to those of ICO1686 
and CO-1686, as shown in Table 1. This suggests that the bromine substituent on 9 did not 
significantly influence the activity toward mutated EGFR, in terms of both active mutant 
L858R EGFR and double mutations L858R/T790M EGFR. In contrast, the IC50 of 9 toward 
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Scheme 1. Synthesis of non-radioactive brominated CO-1686. (a) K2CO3, CH3I, acetone, 0 ◦C, 5 h; (b) DIPEA, DMA, 90 ◦C,
overnight; (c) Pd/C 10%, H2, MeOH, rt, 5 h; (d) H2SO4, NBS, 80 ◦C, 1.5 h; (e) SnCl2·2H2O, ethanol, rt, 3 h; (f) Boc2O, MeCN,
50 ◦C, overnight; (g) 2,4-dichloro-5(trifluoromethyl) pyrimidine, DIPEA, n-butanol, 0 ◦C, 2 h, rt, 4 h; (h-1) HCl/ethyl acetate,
rt, 1 h; (h-2) acryloyl chloride, DIPEA, dichloromethane, −30 ◦C to rt, 2 h; (i) TFA, 1,4-dioxane, 60 ◦C, 3 h.
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2. Results
2.1. Probe Design and Synthesis

A derivative of CO-1686, brominated compound 9, was prepared by multistep synthe-
sis starting from commercially available 1,3-dinitrobenzene (Scheme 1). A bromine atom
was introduced in the diaminophenyl group of CO-1686 using N-bromosuccinimide (NBS).
The bromine was attached in this substituent because this would not substantially influ-
ence the affinity of CO-1686 toward EGFR L858R/T790M, according to the complex crystal
structure of CO-1686 and T790M EGFR [11]. The most important substituents playing a
pivotal role in the binding of CO-1686 to EGFR L858R/T790M are the anilinopyrimidine
core, methoxy, and trifluoromethyl groups [11,12].

2.2. Cytotoxicity Assays

The half-maximal inhibitory concentration (IC50) of 9 was determined by 2-(2-methoxy-
4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H tetrazolium monosodium salt
(WST-8) assay. Our previous study showed that iodinated CO-1686 (ICO1686) has a similar
cytotoxicity effect with parent compound CO-1686 toward mutated NSCLC. In this study,
the cytotoxicity of 9 toward H1975 and H3255 was similar to those of ICO1686 and CO-1686,
as shown in Table 1. This suggests that the bromine substituent on 9 did not significantly
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influence the activity toward mutated EGFR, in terms of both active mutant L858R EGFR
and double mutations L858R/T790M EGFR. In contrast, the IC50 of 9 toward H441 was
significantly lower than that of ICO1686 (p = 0.0178). The data were statistically analyzed
and presented as mean ± standard deviation (SD).

Table 1. The IC50 of 9, ICO1686, CO-1686, and gefitinib on NSCLC cell lines by WST-8 assay.

Cells Lines Mutation
Status

IC50 (µM)

9 ICO1686 * CO-1686 * Gefitinib *

H1975 L858R/T790M 0.18 ± 0.06 0.20 ± 0.05 0.14 ± 0.05 >10
H3255 L858R 0.20 ± 0.01 0.50 ± 0.21 0.15 ± 0.02 0.02 ± 0.02
H441 Wild type 0.64 ± 0.04 1.84 ± 0.44 0.26 ± 0.04 >10

Data represent the mean ± SD of three separate experiments. * Data from reference [9].

2.3. Radiosynthesis of [77Br]BrCO1686 ([77Br]9)

The [77Br]9 was synthesized by a bromodestannylation reaction with the correspond-
ing tributyltin precursor 10, as shown in Scheme 2. This radiotracer was synthesized using
N-chlorosuccinimide (NCS) as an oxidizing agent in an acidic solution at 80 ◦C in moderate
radiochemical yield (45%). After purification using reversed phase-high-performance
liquid chromatography (RP-HPLC), the radiochemical purity was over 99%. The identity
of [77Br]9 was confirmed by comparing its retention time with that of nonradioactive 9 in
the HPLC analyses (Figure S1). These analyses showed that the retention time of [77Br]9
(9.13 min) was slightly shorter than that of [125I]ICO1686 (11.76 min).

2.4. Determination of Partition Coefficient

The log p value for [77Br]9 was 1.72 ± 0.21, which indicates that [77Br]9 has appro-
priate lipophilicity for passive membrane penetration. The log p value of [77Br]9 was
significantly lower than that of [125I]ICO1686, which was 1.84 ± 0.01 (p = 0.0097) [9]. This
result is consistent with the reverse-phase HPLC analysis, in which the retention time of
[77Br]9 was shorter than that of [125I]ICO1686.

2.5. Stability Assessment

The stability profile of [77Br]9 in phosphate-buffered saline (PBS) and murine plasma
is presented in Supporting Information (Figure S2). [77Br]9 was >80% intact in PBS and
murine plasma after incubation for 1 h at 37 ◦C. Its purity decreased to 57% after 24 h
of incubation.

2.6. Cellular Uptake Studies

Data on the radioactivity uptake are expressed as percent dose per milligram pro-
tein (% dose/mg protein), as shown in Figure 1. [77Br]9 and [125I]ICO1686 exhibited
preferential accumulation in H1975 (L858R/T790M double mutations EGFR) upon 4 h of
incubation, which was significantly higher than that observed with H3255 (L858R active
mutant EGFR) and H441 (wild-type EGFR). In the in vitro blocking experiment toward
H1975 cells, the accumulation of radioactivity of [77Br]9 (136.3% dose/mg protein) and
[125I]ICO1686 (151.3% dose/mg protein) was reduced to 56.9 and 67.7% dose/mg protein,
respectively, by the pretreatment with an excess CO-1686 (p < 0.0001 and p < 0.0001, respec-
tively). Meanwhile, pretreatment with excess gefitinib toward H1975 was meaningless but
significantly reduced the accumulation of both radiotracers in H3255 cells.
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Figure 1. The cell uptake of (A) [125I]ICO1686 and (B) [77Br]9 in H1975, H3255, and H441 cell lines
after 4 h incubation. Significance was determined using Dunnett’s multiple-comparison test or
unpaired Student’s t-test (* p < 0.05) ns: not significant.

2.7. Biodistribution Studies

The biodistributions of [77Br]9 and [125I]ICO1686 were studied in normal mice, as
summarized in Table 2. These data are expressed as percent injected dose per gram
(% ID/g). At 4 h after injection, the distribution pattern in normal organs was similar
among the groups, with the highest uptake in the intestine and liver. The accumulation
of [77Br]9 in blood was much higher than that of [125I]ICO1686. The accumulation of
both radiotracers in mice bearing H1975 and H441 tumors is summarized in Table 3.
The accumulation of [77Br]9 in H1975 tumor at 1 h postinjection was higher than that of
[125I]ICO1686. As shown in Table 4, regarding the biodistribution of [77Br]bromide ion
in normal mice, it was retained for a long time in the blood and some organs.
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Table 2. Biodistribution of [77Br]9 and [125I]ICO1686 at 10 min, 1, 4, and 24 h after i.v. injection in ddY mice.

Tissues
Time after Injection

10 min 1 h 4 h 24 h

[77Br]9
Blood 3.57 (0.21) 3.24 (0.30) 3.19 (0.18) 1.99 (0.28)
Liver 11.04 (0.55) 3.83 (0.38) 3.72 (0.30) 1.04 (0.21)

Kidney 11.68 (0.94) 4.21 (0.67) 2.81 (1.17) 1.33 (0.25)
Small intestine 25.38 (5.45) 26.49 (2.77) 5.23 (1.06) 1.00 (0.15)
Large intestine 2.83 (0.57) 3.18 (0.19) 47.73 (7.88) 0.98 (0.11)

Spleen 5.11 (3.46) 4.83 (1.82) 2.92 (2.02 1.14 (0.46)
Pancreas 3.78 (2.53) 3.58 (0.10) 3.04 (0.28) 1.13 (0.09)

Lung 8.72 (1.25) 4.97 (1.97) 5.08 (0.28) 1.62 (0.22)
Heart 4.57 (0.89) 2.93 (0.24) 1.87 (1.25) 0.80 (0.21)

Stomach ‡ 6.17 (1.45) 7.00 (0.58) 6.68 (1.02) 2.21 (0.33)
Bone 2.76 (0.83) 1.66 (1.18) 1.54 (0.62) 0.89 (0.93)

Muscle 3.18 (0.55) 2.02 (0.55) 1.13 (0.78) 0.47 (0.20)
Brain 0.45 (0.30) 0.95 (0.14) 0.74 (0.50) 0.42 (0.09)
Urine - - - 13.48 (1.28)
Feces - - - 35.01 (6.85)

[125I]ICO1686
Blood 1.41 (0.38) 0.17 (0.02) 0.06 (0.01) 0.13 (0.06)
Liver 19.21 (2.04) 7.40 (1.01) 6.45 (1.21) 1.40 (0.17)

Kidney 9.66 (1.19) 2.40 (0.56) 0.75 (0.18) 0.54 (0.10)
Small intestine 36.32 (12.00) 40.99 (4.13) 6.08 (1.99) 0.30 (0.11)
Large intestine 0.94 (0.18) 1.65 (0.34) 81.54 (10.19) 0.52 (0.55)

Spleen 2.73 (0.56) 0.55 (0.09) 0.20 (0.07) 0.13 (0.04)
Pancreas 2.03 (0.20) 0.86 (0.15) 0.12 (0.04) 0.05 (0.01)

Lung 3.61 (0.40) 0.59 (0.25) 0.16 (0.03) 0.14 (0.02)
Heart 2.24 (0.49) 0.30 (0.08) 0.08 (0.04) 0.20 (0.25)

Stomach ‡ 2.60 (1.23) 1.64 (0.71) 0.76 (0.61) 0.05 (0.02)
Bone 0.74 (0.19) 0.16 (0.03) 0.05 (0.08) 0.09 (0.05)

Muscle 1.20 (0.14) 0.23 (0.09) 0.04 (0.01) 0.04 (0.02)
Brain 0.08 (0.01) 0.01 (0.01) 0.01 (0.00) 0.00 (0.00)

Urine ‡ - - - 1.63 (0.24)
Feces ‡ - - - 71.54 (6.53)

Data presented as % ID/g tissue. Each value represents mean ± SD for four mice. ‡ Presented as % ID/organ.

Table 3. Biodistribution of double tracers [77Br]9 and [125I]ICO1686 at 1 and 6 h after i.v. injection in tumor-bearing mice.

Tissues
Time after Injection

1 h 6 h 1 h 6 h

[77Br]9 [125I]ICO1686
Blood 5.64 (0.19) 5.35 (0.99) 0.50 (0.20) 0.17 (0.03)
Liver 15.89 (0.72) 6.76 (1.78) 30.32 (2.78) 10.16 (3.50)

Kidney 7.75 (0.85) 4.91 (0.80) 2.64 (1.45) 1.05 (0.41)
Small intestine 64.52 (3.35) 12.46 (5.93) 86.29 (2.99) 11.72 (8.01)
Large intestine 24.33 (17.81) 59.40 (18.22) 27.65 (21.75) 95.22 (32.67)

Spleen 9.19 (2.12) 2.04 (2.36) 1.80 (0.75) 0.25 (0.07)
Pancreas 12.95 (5.14) 4.28 (0.91) 2.71 (0.87) 0.36 (0.22)

Lung 11.42 (1.52) 6.29 (0.52) 1.62 (0.67) 0.37 (0.15)
Heart 5.36 (1.07) 2.99 (1.05) 0.61 (0.20) 0.53 (0.86)

Stomach ‡ 1.31 (0.39) 1.27 (0.89) 1.49 (0.52) 1.17 (1.68)
Bone 1.93 (1.51) 1.95 (2.50) 0.42 (0.16) 0.22 (0.15)

Muscle 3.42 (1.19) 1.79 (0.30) 0.36 (0.18) 0.10 (0.05)
Brain 1.49 (0.16) 1.39 (0.17) 0.04 (0.01) 0.02 (0.03)
H1975 4.51 (0.17) 3.48 (0.50) 0.68 (0.11) 0.10 (0.02)
H441 3.71 (0.13) 3.30 (0.54) 0.44 (0.06) 0.19 (0.06)

Data presented as % ID/g tissue. Each value represents mean ± SD for four mice. ‡ Presented as % ID/organ.
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Table 4. Biodistribution of [77Br]bromide at 15 min, 1, 4, and 24 h after i.v. injection in ddY mice.

Tissues
Time after Injection

15 min 1 h 4 h 24 h

Blood 6.96 (0.58) 6.98 (0.45) 6.42 (0.64) 3.48 (0.36)
Liver 2.45 (0.29) 2.61 (0.17) 2.35 (0.30) 1.18 (0.12)

Kidney 5.10 (0.83) 4.58 (0.21) 4.51 (0.58) 2.62 (0.34)
Small

intestine 3.94 (0.24) 3.92 (0.16) 3.18 (0.29) 1.99 (0.22)

Large
intestine 3.12 (0.44) 2.78 (0.22) 2.37 (0.30) 1.55 (0.16)

Spleen 4.74 (0.31) 4.30 (0.26) 3.75 (0.73) 2.25 (0.36)
Pancreas 5.09 (0.78) 4.38 (0.27) 3.80 (0.37) 2.22 (0.32)

Lung 8.02 (0.95) 7.12 (0.48) 5.81 (0.59) 3.62 (0.32)
Heart 3.72 (0.47) 3.23 (0.09) 2.41 (0.20) 1.50 (0.19)

Stomach ‡ 3.94 (0.54) 4.59 (1.18) 5.44 (1.23) 4.18 (1.00)
Bone 3.72 (0.44) 3.25 (0.24) 3.00 (0.38) 1.78 (0.30)

Muscle 2.28 (0.18) 1.92 (0.11) 1.63 (0.14) 0.98 (0.04)
Brain 1.08 (0.13) 1.49 (0.07) 1.45 (0.14) 0.84 (0.09)

Neck ‡ 2.45 (0.50) 3.02 (0.35) 2.46 (0.42) 1.27 (0.28)
Urine ‡ - - - 20.74 (4.69)
Feces ‡ - - - 1.33 (0.49)

Data presented as % ID/g tissue. Each value represents mean ± SD for four mice. ‡ Presented as % ID/organ.

3. Discussion

The modulation of EGFR expression has been used as a target for therapy and diag-
nosis due to its highly specific targeting capability. The therapeutic effects of EGFR-TKIs
in NSCLC can be assessed by PET imaging of EGFR, which can provide more accurate
information to aid in the selection of patients for individualized therapy [13]. In recent
years, several PET probes based on EGFR-TKI derivatives for detecting EGFR mutation
and/or predicting treatment response in NSCLC have been reported [13].

In our previous study, an in vitro kinase inhibition assay with ICO1686 and CO-1686
showed their high selectivity toward double mutations EGFR L858R/T790M compared
with that toward wild-type EGFR [9]. Therefore, we conducted a further study by designing
and synthesizing radiobrominated [77Br]9 as a surrogate of [76Br]9, which can be used as a
molecular imaging agent for EGFR L858R/T790M because bromine could be a bioisostere
of iodine. A bromine atom was introduced in the diaminophenyl group of CO-1686, as
was done with the iodine derivative in the previous study. As expected, introducing
bromine at this position did not significantly affect the CO-1686 affinity toward EGFR
L858R/T790M because it does not play a key role in the binding activity of CO-1686 to
EGFR L858R/T790M based on the complex crystal structure analysis [11]. As a result, the
IC50 of 9 was similar to that of the iodinated compounds ICO1686 and CO-1686.

Concerning 77Br labeling, radiobromination was achieved in the presence of an oxidiz-
ing agent NCS with a moderate radiochemical yield of approximately 45%. Radiobromine
was directly introduced to the aromatic group by a destannylation reaction with a positively
charged radiobromine generated in situ [14].

Cellular uptake studies of both the radiotracers showed a significant difference among
the three cells. Preferential accumulation of [77Br]9 and [125I]ICO1686 was seen in H1975,
which has EGFR double mutations. In the in vitro blocking studies, both the radiotracers
showed specificity in H1975 cells. The methoxyl group contributes to the specificity of CO-
1686 toward EGFR, and the trifluoromethyl substituent of CO-1686 is beneficial for forming
hydrophobic interactions with Met790, which is not afforded by a wild-type gatekeeper
residue with Thr790 [11]. The specificity of both the radiotracers toward H1975 cells
was evaluated by two independent experiments using two blocking agents, CO-1686 and
gefitinib. As expected, the uptake of [77Br]9 and [125I]ICO1686 in H1975 was significantly
reduced by almost 60% upon pretreatment with CO-1686, which is known to bind to
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EGFR-TK with L858R/T790M double mutations. In contrast, the uptake of [77Br]9 and
[125I]ICO1686 in H1975 was not significantly reduced with gefitinib, which is known to
be ineffective to EGFR-TK with L858R/T790M double mutations. These results indicate
that the radiotracers bound to EGFR-TK with L858R/T790M double mutations compete
with CO-1686. Moreover, gefitinib only reduced the radioactivity uptake of radiotracers in
H3255. Although H1975 cells carry the EGFR L858R mutation, the presence of secondary
mutation T790M interferes with the affinity of first-generation TKIs, such as gefitinib, to
the ATP binding site [15,16].

In the biodistribution study, [77Br]9 and [125I]ICO1686 were co-injected into the mice
to minimize the number and increase the reliability of the data in the biodistribution study.
At 4 h postinjection, the distribution patterns in normal organs were similar among the
groups, with the highest uptake in the intestine and liver. High uptake in the liver and
small intestine indicated that radiotracers were mainly eliminated through hepatobiliary
clearance because both radiotracers have relatively hydrophobic structures. However, the
clearance rate of [77Br]9 was slow from the blood and other organs. The [125I]ICO1686
was eliminated at a rate of up to 71% in feces, while only 35% of [77Br]9 was eliminated
at 24 h postinjection. The high radioactivity of radiobromine-labeled tracers in the blood
is strongly related to the free bromide ions [17–19]. Therefore, the radioactivity in the
blood can be used as an index of the debromination of radiobromine-labeled compounds
in vivo [20]. In this study, the accumulation of [77Br]9 in the blood was much higher
than that of [125I]ICO1686, which suggested that debromination occurred in vivo. Our
experiment on the biodistribution of [77Br]bromide showed long-term retention in the blood
and some organs (Table 4). In this context, we confirmed that radioactivity in the blood
after the injection of [77Br]9 should be caused by free bromide ions from debrominated
[77Br]9. Debromination has also been observed with some radiotracers, such as 4-[76Br]-
bromo-α-methyl-L-phenylalanine (4-[76Br]BAMP) and 3-[76Br]-bromo-α-methyl-L-tyrosine
([76Br]BAMT) [14,21].

In biodistribution studies using tumor-bearing mice, the accumulation of [77Br]9 was
higher than that of [125I]ICO1686 in H1975 tumors (Table 3). According to a biodistribution
study of [77Br]bromide, the blood clearance of [77Br]bromide was slow, and free bromide
was distributed throughout the whole body (Table 4). The accumulation of free radiobro-
mide generated by the debromination of [77Br]9 would contribute to its high uptake in
the tumor and all organs. Thus, we assume that after injection of [77Br]9, the specificity to
tumors with EGFR L858R/T790M mutations should be low. Therefore, it is desirable to
develop more stable and selective analogs that highly accumulate in target tumors.

Previous studies have suggested that the high and rapid hepatobiliary excretion of
radiotracers must have been derived from the high lipophilicity, which may hinder the
accumulation of these radiotracers in the targeted tumor [22,23]. Some studies have shown
that the introduction of a short-chain PEG in radiotracers improved pharmacokinetics
and accumulation in the tumor, presumably because the hepatobiliary excretion rate was
reduced due to the increased hydrophilicity [12,23,24]. Therefore, we suppose that the
structural modification of [77Br]9, such as PEG introduction, might improve its tumor
accumulation.

4. Material and Methods
4.1. General Chemistry

Solvents and reagents were purchased from Nacalai Tesque, Inc. (Kyoto, Japan), Tokyo
Chemical Industry, Co., Ltd. (Tokyo, Japan), Fujifilm Wako Pure Chemical Corporation
(Osaka, Japan), Kanto Chemical, Co., Inc. (Tokyo, Japan), Merck (Darmstadt, Germany),
and Chemescene (Monmouth Junction, NJ, USA), and used as provided. CO-1686 was
purchased from AdooQ BioScience (Irvine, Canada). Gefitinib was purchased from Fujifilm
Wako Pure Chemical Corporation (Osaka, Japan). Thin-layer chromatography (TLC) was
performed on silica plates 60 F254 (Merck, Darmstadt, Germany).
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Nuclear magnetic resonance (NMR) spectra were recorded on a JNM-ECS400 (400 MHz)
or JNM-ECA600 (600 MHz) spectrometer (JEOL Ltd., Tokyo, Japan). The mass spectrometry
was performed on a JMS-T700 (JEOL Ltd., Tokyo, Japan) on fast atom bombardment mass
spectrometry (FAB-MS). HPLC analyses and purification were carried out on a Shimadzu
Prominence HPLC system (Shimadzu Corp., Kyoto, Japan). The optical density in WST-8
assays were measured on an Infinite® F200 Pro microplate reader (TECAN, Männedorf,
Switzerland). Radioactivity was determined using an auto gamma counter ARC-7010B
(Hitachi, Ltd., Tokyo, Japan).

4.2. Probe Design and Synthesis

Design and synthesis procedures were shown in Schemes 1 and 2. Intermediate
compounds were synthesized according to the previous studies, with a slight modifi-
cation [9,25–28]. For compounds 1–3 and tin precursor 10, materials synthesized in the
previous study [9] were used. NMR spectra are provided in the Supporting Information
(Figures S3–S8).

4.2.1. Synthesis of 1-bromo-3,5-dinitrobenzene (4)

Compound 4 (7.0 g, 70%) was synthesized according to the previous report [28]. 1H
NMR (400 MHz, CDCl3): δ 8.72 (2H, d, J = 1.6 Hz), 9.01 (1H, t, J = 1.6 Hz). 13C NMR
(100 MHz, CDCl3): δ 117.7, 123.8, 132.2, 149.1. HRMS (FAB+) calculated for C6H3BrN2O4
[M + H]+: m/z = 245.9298, found 245.9276.

4.2.2. Synthesis of 5-bromobenzene-1,3-diamine (5)

Compound 5 (5.26 g, 99%) was synthesized according to the previous report [29]. 1H
NMR (400 MHz, CDCl3): δ 3.60 (4H, br s), 5.91 (1H, s), 6.25 (2H, d, J = 2.0 Hz). 13C NMR
(100 MHz, CDCl3): δ 100.1, 108.8, 123.7, 148.5. HRMS (FAB+) calculated for C6H7BrN2
[M + H]+: m/z = 185.9777, found 185.9793.

4.2.3. Synthesis of tert-butyl (3-amino-5-bromophenyl)carbamate (6)

To a stirred mixture of 5 (5.26 g, 28.13 mmol, 1.0 eq.) and acetonitrile (50 mL), di-tert-
butyl dicarbonate (Boc2O) (6.14 g, 28.13 mmol, 1 eq.) was added at 50 ◦C and the mixture
was stirred overnight under nitrogen atmosphere. After the reaction was completed,
the solvent was removed by evaporation. The crude product was purified by column
chromatography on silica gel (hexane/ethyl acetate = 7/3) and concentrated under reduced
pressure to afford 6 (4.45 g, 55%) as a crystal orange. 1H NMR (400 MHz, CDCl3): δ 1.51
(9H, s), 3.73 (2H, s), 6.42 (1H, s), 6.50 (1H, s), 6.79 (2H, s). 13C NMR (100 MHz, CDCl3):
δ 28.2, 80.8, 103.3, 111.3, 112.6, 123.1, 140.5, 148.3, 152.5. HRMS (FAB+) calculated for
C11H15BrN2O2 [M + H]+: m/z = 286.0300, found 286.0317.

4.2.4. Synthesis of tert-butyl(3-{[2-chloro-5-(trifluoromethyl)pyrimidin-4-yl]amino}-5-
bromophenyl)carbamate (7)

To a stirred mixture of 6 (4.45 g, 15.50 mmol, 1.0 eq.) and n-butanol (31 mL), 2,4-
dichloro-5(trifluoromethyl) pyrimidine (2 mL, 1 eq., purchased from Chemscene), N,N-
diisopropylethylamine (DIPEA) (5 mL, 2 eq.) were added at 0 ◦C and stirred for 2 h. The
stirring was continued at room temperature for 4 h. After the reaction was completed,
the solvent was removed by evaporation. The crude product was purified using column
chromatography on silica gel (hexane/ethyl acetate = 7/3) and concentrated under reduced
pressure to afford 7 (4.1 g, 85%) as pale-yellow solid. 1H NMR (400 MHz, CDCl3): δ 1.54
(9H, s), 6.59 (1H, s), 7.00 (1H, s), 7.39 (1H, s), 7.48 (1H, s), 7.66 (1H, s), 8.46 (1H, s). 13C NMR
(100 MHz, CDCl3): δ 28.2, 81.7, 106.8 (q, JCF = 30.5 Hz), 110.6, 118.6, 119.6, 122.8, 123.4
(q, JCF = 271.8 Hz), 137.8, 140.2, 152.3, 156.1 (q, JCF = 4.8 Hz), 157.1, 163.6. HRMS (FAB+)
calculated for C16H15BrClF3N4O2 [M + H]+: m/z = 465.9854, found 465.9842.
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4.2.5. Synthesis of N-(3-{[2-chloro-5-(trifluoromethyl)pyrimidin-4-yl]amino}-5-
bromophenyl)acrylamide (8)

A mixture of 7 (4.1 g, 8.77 mmol, 1.0 eq.) and 4.0 M hydrochloric acid (HCl)/ethyl
acetate (1.0 mL) was stirred at room temperature for 1 h. After completion of the reaction,
the mixture was concentrated under reduced pressure to give a corresponding de-Boc
product as a colorless solid. The crude product was used for the next reaction without
further purification. To a stirred mixture of the crude product (3.0 g) and DIPEA (4.3 mL,
24.48 mmol, 3 eq.) in dichloromethane (81 mL), acryloyl chloride (1 mL, 12.24 mmol, 1.5 eq.)
was added at −30 ◦C and warmed to room temperature. After stirring for 2 h, the crude
product was diluted with ethyl acetate, washed with 1 M HCl, saturated aqueous NaHCO3,
and brine successively. The crude product was purified using column chromatography
on silica gel (dichloromethane/methanol = 200/1), crystalized from chloroform/hexane
to afford 8 (200 mg, 10%) as a white solid. 1H NMR (400 MHz, CDCl3): δ 5.84 (2H,
d, J = 7.2 Hz), 6.24 (1H, dd, J = 11.2, 6.8 Hz), 6.47 (1H, d, J = 11.2 Hz), 7.43 (1H, s), 7.50
(1H, s), 7.66 (1H, s), 7.98 (1H, s), 8.63 (1H, s). 13C NMR (100 MHz, (CD3)2SO): δ 101.3
(q, JCF = 70.5 Hz), 109.8, 116.2, 117.6, 121.6, 123.9 (q, JCF = 270.8 Hz), 127.8, 131.8, 140.8, 141.5,
157.0 (q, JCF = 4.8 Hz), 161.3, 163.7, 166.2. HRMS (FAB+) calculated for C14H9BrClF3N4O
[M + H]+: m/z = 419.9702, found 419.9600.

4.2.6. Synthesis of N-(3-{[2-({4-[4-acetylpiperazin-1-yl]-2-methoxyphenyl}amino)-5-
(trifluoromethyl)pyrimidin-4-yl]amino}-5-bromophenyl)acrylamide (9)

To a stirred mixture of compound 8 (120 mg, 0.28 mmol, 1.0 eq.) and 2 M trifluoroacetic
acid (TFA) in dioxane (0.6 mL), compound 3 (70 mg, 0.28 mmol, 1 eq.) was added at room
temperature. The mixture was warmed to 60 ◦C and stirred for 3 h. After completion of
the reaction, the pH of the reaction mixture was adjusted to neutral (7–8) by the addition of
saturated aqueous NaHCO3, and the mixture was extracted with ethyl acetate. The organic
phase was separated, dried over anhydrous Na2SO4, filtered, and concentrated under
reduced pressure. The crude product was purified by an isocratic HPLC system equipped
with a Cosmosil® 5SL-II (20 ID × 250 mm) column (Nacalai Tesque) with a mobile phase
of ethyl acetate/methanol (97/3) at a flow rate of 9.5 mL/min. The column temperature
was maintained at 40 ◦C. The product was concentrated under reduced pressure to afford 9
(80 mg, 45%) as a white solid. 1H NMR (400 MHz, CDCl3): δ 2.16 (3H, s), 3.12–3.20 (4H, m),
3.64 (2H, t, J = 4.4 Hz), 3.79 (2H, t, J = 4.8 Hz), 3.91 (3H, s), 5.80 (1H, d, J = 10.8 Hz), 6.21
(1H, dd, J = 15.2, 10.4 Hz), 6.44 (1H, d, J = 15.6 Hz), 6.54–6.60 (2H, m), 7.11 (1H, s), 7.25
(1H, s), 7.43 (1H, s), 7.56 (1H, s), 7.66 (1H, s), 7.74 (1H, s), 8.07 (1H, d, J = 8.8 Hz), 8.30 (1H, s).
13C NMR (100 MHz, (CD3)2SO): δ 16.9, 41.2, 47.3, 51.0, 51.5, 60.2, 113.0 (q, JCF = 40.5 Hz),
116.2, 124.5, 127.4, 135.3, 136.9, 138.9, 142.1, 146.4 (q, JCF = 334.9 Hz), 147.1, 149.6, 154.8,
165.5, 167.1, 177.1, 180.9, 184.2 (q, JCF = 6.0 Hz), 186.8, 191.2, 194.4, 200.7. HRMS (FAB+)
calculated for C27H27BrF3N7O3 [M + H]+: m/z = 633.1324, found 633.1311.

4.3. Cytotoxicity Assays

WST-8 assay was used to evaluate IC50 of 9 toward NSCLC cell lines (H1975, H441
and H3255) as described previously [9]. The reference compounds; CO-1686, ICO-1686,
and gefitinib, have been evaluated in our previous study using the same source of cell
lines [9].

4.4. Production of Bromine-77
77Br was produced by 77Se(p,n)77Br reaction with and separated according to a previ-

ous study at the University of Fukui [20,30].

4.5. Radiosynthesis of [77Br]BrCO1686 ([77Br]9)

Radiotracers, [77Br]9 was synthesized by a bromodestannylation reaction of the cor-
responding precursor 10 (Scheme 1). A solution of [77Br]bromide (2.5 MBq, 1 µL) was
charged into a sealed vial containing 10 (1 mg/mL, 10 µL) in ethanol, acetic acid (5%, 30 µL),
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and NCS (20 mg/mL, 10 µL). After vortexed for 5 min, the mixture was shaken at 80 ◦C
for 60 min. The reaction was quenched by aqueous sodium hydrogen sulfite (5 mg/mL,
10 µL), and the reaction solution was purified by a gradient HPLC system equipped with a
Cosmosil® 5C18 MS-II (4.6 ID × 150 mm) column (Nacalai Tesque) with a varying mobile
phase (water/methanol = 30/70–0/100 in 20 min) at a flow rate of 1 mL/min. The col-
umn temperature was maintained at 40 ◦C. The [77Br]9 was isolated after confirmation by
comparing the retention times of the radiobrominated and nonradioactive 9 in the HPLC
analysis. Radioactivity was determined by an auto well gamma counter.

4.6. Determination of Partition Coefficient

To determine the lipophilicity, the partition coefficient of [77Br]9 was measured as
described previously [31]. The partition coefficient (log P) was expressed as the ratio of
radioactivity in n-octanol and radioactivity in 0.1 M phosphate buffer (pH 7.4).

4.7. Stability Assessment

To confirm the stability, we measured the purity of radiotracer after incubation in PBS
and mouse plasma, respectively, as described previously [9].

4.8. Cellular Uptake Studies

H1975 (1 × 105 cells/well), H441 (1 × 105 cells/well), and H3255 (2 × 105 cells/well)
NSCLC cells were cultured in 6 well plates. Cells were incubated in medium with 10%
FBS and 100 IU/mL penicillin–streptomycin at 37 ◦C in a humidified atmosphere with
5% CO2 for 24 h. The cell culture was then incubated in an FBS-free medium containing
[125I]ICO1686, which was prepared by the method reported previously [9] and [77Br]9
(3.7 kBq/well, respectively) for 4 h, and then washed with 1 mL of ice-cold PBS. The cells
were dissolved by a 1.0 M NaOH aqueous solution (0.5 mL × 2). The cell lysate was
transferred into a test tube. The radioactivity of 77Br was measured by an auto well gamma
counter at a 100–600 keV energy range. The crossover of 125I activity into the 77Br channel
was negligible. After one month of experiments, the radioactivity of 125I was measured
at a 16–71 keV energy range because the radioactivity of 77Br was negligible at the time.
In the blocking assays, CO-1686 or gefitinib (100 µM, respectively) was co-incubated with
the radiotracer, and the cellular uptake was assessed using the same method as mentioned
above. The BCA protein assay kit protocol was used to determine the protein concentration.

4.9. Tumor Model

Six weeks old male ddY mice and four weeks old female BALB/c nu/nu mice were
purchased from Japan SLC Inc. (Hamamatsu, Japan). Tumor-bearing mice were prepared
by subcutaneous injection of cells suspended in 100 µL medium to the female BALB/c
nu/nu mice. H1975 cells (5 × 106 cells) were implanted in the right shoulder, and H441
cells (3 × 106 cells) were implanted in the left shoulder. The tumor reached palpable size
after post-inoculation 12 and 9 days for H1975 and H441, respectively.

4.10. Biodistribution Studies

Mice were injected intravenously with double tracers [77Br]9 (10 kBq) and [125I]ICO1686
(25 kBq) in 100 µL of saline solution containing 1% tween-80 and 10% ethanol via the lateral
tail vein. The ddY mice were sacrificed by decapitation at 10 min, 1, 4, and 24 h. Meanwhile,
the tumor-bearing mice were sacrificed at 1 h and 6 h postinjection (4 mice/group). The
selected tissues and organs were collected, weighed, and counted the radioactivity of 77Br
using an auto well gamma counter. One month later, 125I activity was determined. The
biodistribution data were expressed as% ID/g along with the SD. The same procedures
were applied to perform the biodistribution study of [77Br]bromide ion (111 kBq).
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4.11. Statistical Analysis

Statistical methods, one-way ANOVA followed by a Dunnett’s multiple-comparison
test for cellular uptake studies in H1975 cells. Unpaired Student’s t-test was used to confirm
the significances in the cytotoxicity assays, determination of partition coefficient, and the
cellular uptake studies toward H3255 and H441 cells. All values are given as mean ± SD,
and p < 0.05 was considered statistically significant.

5. Conclusions

Radiobrominated [77Br]9 was successfully synthesized with high radiochemical purity.
This radiotracer showed in vitro specificity toward NSCLC cells with EGFR L858R/T790M
double mutations compared with that in EGFR L858R and wild-type EGFR. However, the
in vivo accumulation in the target tumor was insufficient to visualize the tumor. Therefore,
it is desirable to develop more stable and selective analogs that are rapidly cleared from the
body and highly accumulate in the target tumor. The structural modification by introducing
PEG could be an alternative to improve the tumor uptake of [77Br]9.

Supplementary Materials: The followings are available online at https://www.mdpi.com/1424
-8247/14/3/256/s1, Figure S1: The chromatograms of (a) nonradioactive brominated compound
9 (BrCO1686) and (b) radioactive compound [77Br]9 ([77Br]BrCO1686), Figure S2: The stability of
radiolabeled compound [77Br]9 in PBS and plasma, Figure S3: The NMR spectra of 1-bromo-3,5-
dinitrobenzene (4), Figure S4: The NMR spectra of 5-bromobenzene-1,3-diamine (5), Figure S5: The
NMR spectra of tert-butyl (3-amino-5-bromophenyl)carbamate (6), Figure S6: The NMR spectra
of tert-butyl(3-{[2-chloro-5-(trifluoromethyl)pyrimidin-4-yl]amino}-5-bromophenyl)carbamate (7),
Figure S7: The NMR spectra of N-(3-{[2-chloro-5-(trifluoromethyl)pyrimidin-4-yl]amino}-5- bro-
mophenyl)acrylamide (8), Figure S8: The NMR spectra of N-(3-{[2-({4-[4-acetylpiperazin-1-yl]-2-
methoxyphenyl}amino)-5-(trifluoromethyl)pyrimidin-4-yl]amino}-5-bromophenyl)acrylamide (9).
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