Accepted Manuscript

Unexpected acid-catalyzed ferrocenylmethylation of diverse nucleophiles with vinyloxymethylferrocene

Ludmila A. Oparina, Alexander V. Artem'ev, Oksana V. Vysotskaya, Olga A. Tarasova, Vladimir A. Shagun, Irina Yu. Bagryanskaya, Boris A. Trofimov

PII: S0040-4020(16)30525-7

DOI: 10.1016/j.tet.2016.06.012

Reference: TET 27826

To appear in: Tetrahedron

Received Date: 24 April 2016

Revised Date: 23 May 2016

Accepted Date: 3 June 2016

Please cite this article as: Oparina LA, Artem'ev AV, Vysotskaya OV, Tarasova OA, Shagun VA, Bagryanskaya IY, Trofimov BA, Unexpected acid-catalyzed ferrocenylmethylation of diverse nucleophiles with vinyloxymethylferrocene, *Tetrahedron* (2016), doi: 10.1016/j.tet.2016.06.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

Unexpected acid-catalyzed ferrocenylmethylation Leave this area blank for abstract info. of diverse nucleophiles with vinyloxymethylferrocene L. A. Oparina, A. V. Artem'ev, O. V. Vysotskaya, O. A. Tarasova, V. A. Shagun, I. Yu. Bagryanskaya, B. A. Trofimov TFA ٨e 0. (Nu Nu-H via (1-5 mol%) up to 91% $Nu = O_{-}, N_{-}, S_{-}$ and Se-nucleophiles

Tetrahedron journal homepage: www.elsevier.com

Unexpected acid-catalyzed ferrocenylmethylation of diverse nucleophiles with vinyloxymethylferrocene

Ludmila A. Oparina,^a Alexander V. Artem'ev,^a Oksana V. Vysotskaya,^a Olga A. Tarasova,^a Vladimir A. Shagun,^a Irina Yu. Bagryanskaya,^{b,c} Boris A. Trofimov^{a*}

^a A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation ^b N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Ave., 630090, Novosibirsk, Russian Federation

^c Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russian Federation

ARTICLE INFO

Article history: Received Received in revised form Accepted Available online

Keywords: Electrophilic Addition Enol Ethers Ferrocene Regioselectivity Nucleophiles

ABSTRACT

A new efficient approach for the ferrocenylmethylation of various alcohols, OH-, SH- and SeH-acids (carboxylic, thio- and selenophosphinic) as well as 1H-triazoles is elaborated based on the acid-catalyzed reaction with available vinyloxymethylferrocene. The reaction readily occurs under mild conditions to afford product of O-, N-, S- and Se-ferrocenylmethylation of the corresponding nucleophiles in good to high yields.

2009 Elsevier Ltd. All rights reserved.

1. Introduction

Ferrocene derivatives have attracted ever-growing attention over the last few decades because of their numerous valuable characteristics.¹ A plethora of ferrocenes nowadays finds a wide application in medicine,² materials science,³ catalysis,^{3,4} organometallic⁵ and polymer chemistry,⁶ molecular recognition⁷ and organic synthesis.^{1,3,4}

Among a variety of ferrocene derivatives, functionalized molecules bearing the methylferrocene moiety are of special interest owing to their useful properties. These compounds have been shown to serve as potential drugs (anticancer,⁸ antitumor,⁹ antimalarial,¹⁰ antiplasmodial,¹¹ antimycobacterial,¹² antimalarial,¹⁰ antiplasmodial,¹¹ antimycobacterial,¹² antimicrobial,¹³ anticandidal¹⁴ and antiproliferative¹⁵ agents), efficient ligands for catalysis,^{3,4} monomers for functional polymers,¹⁶ ionic liquids¹⁷ and molecular sensors.¹⁸ Today, one of the most efficient and straightforward approaches to access methylferrocene derivatives is the reaction of various nucleophiles with ferrocenylmethylating reagents,¹⁹ among which $[FcCH_2NMe_3]I$, $FcCH_2NMe_2$ and $FcCH_2OH$ are the most available. Although the methods for ferrocenylmethylation with the first two reagents are quite well developed, they have some principal limitations.¹⁹ In this regard, hydroxymethylferrocene is a more versatile reagent, however for its activation, stoichiometric amounts of Brønsted acids (HSO3F, HBr, HBF4, $HClO_4$, CH_3CO_2H , etc.)^{19,20} are usually required (with a few

exceptions²¹), that impose some restrictions on the substrate scope. In recent years, much attention has been paid to nucleophilic substitution of the OH group in hydroxymethyl ferrocene using various metal-based catalysts. For instance, cerium ammonium nitrate was exploited for ferrocenylmethylation of diverse N-, O- and S-nucleophiles containing an active hydrogen atom with $FcCH_2OH^{22}$ Later, $Yb(OTf)_3^{23}$ and $Al(OTf)_3^{24}$ were used for this purpose. The complex [RuCl(CO)(PPh_3)(PNS-Me)] was found to be an active catalyst for ferrocenylmethylation of amines.²⁵ Then iron complex [Fp][OTf] (Fp⁺ = $[Fe(CO)_2(Cp)]^+$) was employed for coupling of C-, N-, P- and S-nucleophiles with FcCH₂OH.²⁶ More recently, N-ferrocenylmethylation of sulfonamides with this alcohol catalyzed by $\{Cp*Ir-[6,6'-OH)_2bpy](H_2O)\}[OTf]_2^{27}$ and $[Cp*IrCl_2]_2^{28}$ was accomplished. It is relevant to note, however, that the above metal catalysts are expensive and/or moisture sensitive therefore requiring dry reaction conditions and special apparatus. In this context, development of new metal-catalystfree ferrocenylmethylation methods is a challenging task in organic chemistry.

As a contribution to this field, herein we report on the unexpected ferrocenylmethylation of diverse *O*-, *N*-, *S*- and *Se*-nucleophiles (alcohols, phenol, 1,2,4-triazole, 1,2,3-benzotriazole, methacrylic, dithio- and diselenophosphinic acids) in an acid-catalyzed (CF₃CO₂H as catalyst) reaction with available²⁹ vinyloxymethylferrocene. This novel reaction was

* Corresponding author. Tel.: +7-395-251-1431; fax: (+7) 3952419346; e-mail: boris_trofimov@irioch.irk.ru

Tetrahedron

accidently found by us during the study of acid-catalized M addition of NuH species to vinyloxymethylferrocene that, according to enol ether chemistry,³⁰ should chemo- and regioselectively allow the corresponding non-symmetric acetals. Essentially, we describe a first example of formation of such products as R–Nu in the reaction between vinyl ethers R–O– CH=CH₂ (exemplified by vinyloxymethylferrocene) and various nucleophiles (NuH).

2. Results and Discussion

Reaction with alcohols and phenol

Our experiments have shown that vinyloxymethylferrocene (1) in the presence of catalytic amounts of CF_3CO_2H (2 mol%) easily reacts with diverse alcohols 2a-e. The reaction conditions, structures and ratios of isolated products are summarized in Table 1. As seen from these data, the reaction of 1 with methanol (2a) selectively occurs at ambient temperature to afford the Markovnikov adduct, isolated in 86% yield (entry 1). Under similar conditions, alcohols with donating and bulkier substituents, e.g. s-BuOH (2b) and t-BuOH (2c), add to 1 slower (4 and 6 h, correspondingly vs. 2 h for MeOH), giving adducts 3b,c in 67 и 72% isolated yields (entries 2, 3). Also, in both cases, 1,1-bis(ferrocenylmethoxy)ethane (4) as by-product was isolated in 17 and 19% yield (entries 2, 3). Note that under the harsher conditions (45 °C), the reaction with t-BuOH delivers bis(ferrocenylmethyl) ether (6) as almost the only product (75% yield), while the expected adduct 3c is formed just in traces (entry 4).

 $\label{eq:table_$

Entry	R	T, °C	Time, h	Products (yield, %) ^b			
				3	4	5	6
1	Me (2a)	rt	2	3a (86)	none	5a (none)	traces
2	<i>s</i> -Bu (2b)	rt	4	3b (67)	17	5b (none)	traces
3	<i>t</i> -Bu (2c)	rt	6	3c (72)	19	5c (none)	traces
4	<i>t</i> -Bu (2c)	45	3	3c (traces)	traces	5c (none)	75
5	All (2d)	rt	1.5	3d (61)	15	5d (trace)	traces
6	All (2d)	45	5	3d (traces)	none	5d (55)	32
7	All (2d)	rt	72	3d (traces)	traces	5d (58)	31
8	CHF ₂ CF ₂ CH ₂ (2e)	rt	1.5	3e (traces)	traces	5e (38)	39

^aReaction conditions: vinyl ether **1** (1 mmol), alcohol **2a-e** (1 mmol), CF_3CO_2H (2 mol%, as 0.025 M solution in DME), stirring. ^bIsolated yields (after chromatographic purification).

Unlike aliphatic alcohols, allyl alcohol (2d) and 2,2,3,3tetrafluoropropanol (2e) add to vinyl ether 1 more easily, however the resulting adducts 3d,e are less stable under the reaction conditions and tend to extrude acetaldehyde furnishing the products of O-ferrocenylmethylation of the alcohols, viz. 5d,e. Thus, allyl alcohol (2d) at room temperature quantitatively adds to vinyl ether 1 in 1.5 h (vs. 2 h for MeOH) to furnish adduct **3d** and side acetal **4** in 61 and 15% yields (entry 5). ¹H NMR spectroscopic analysis of the reaction mixture shows signals (broad singlets at 2.10 and 9.75 ppm) relative to the protons of acetaldehyde. Further study has shown that conducting the reaction at 45 °C leads to quantitative conversion of the intermediate Markovnikov adduct 3d into allyloxymethylferrocene (5d), the yield of which being 55% (entry 6). A similar result was obtained when the reaction was performed at ambient temperature for 3 days. Noteworthy, 2,2,3,3-tetrafluoropropanol (2e) interacts with vinyl ether 1 under mild conditions (r.t., 1.5 h) giving directly ether 5e along with diferrocenylmethyl ether 6 (entry 8), the expected adduct 3e being formed only in trace amounts (by ¹H NMR spectroscopy).

We believe that the products of *O*-ferrocenylmethylation of alcohols (**5d**,**e**) and other nucleophiles (*vide infra*) are formed due to the elimination of acetaldehyde from the primary Markovnikov adducts according to Scheme 1. The enhanced stability of the initial Markovnikov adducts in the cases of MeOH, *s*-BuOH and *t*-BuOH follows from DFT computation of the fragmentation of **3a** (model compound) to FcCH₂OMe and acetaldehyde (*vide infra*).

 $R = Me, s-Bu, t-Bu, All, CHF_2CF_2CH_2$

Scheme 1. The formation of O-ferrocenylmethylation products with alcohols.

In the reaction of 1 with phenol, the corresponding Markovnikov adduct is so unstable that it cannot be detected by NMR spectroscopy even when the reaction occurs at room temperature. In this case, the fast elimination of acetaldehyde from the initial adduct leads to the formation of phenyloxymethylferrocene (7) in 70% isolated yield (Scheme 2). As in the above cases, bis(ferrocenylmethyl) ether (6) was also isolated in 24% yield.

Scheme 2. CF₃CO₂H-catalyzed reaction of vinyloxymethylferrocene with phenol.

All of the above products were purified by column chromatography on basic alumina. It should be mentioned that the isolation of acetals **3a-d** and **4** was accompanied by their partial hydrolysis with release of ferrocenylmethanol. Compounds **3a-d** are orange oils, soluble in common organic solvents. In their ¹H NMR spectra, each methyne proton, *CH*Me, resonates as a quartet at 4.71-4.95 ppm, whereas Me protons

appear as doublets at 1.29-1.31 ppm. The FT-IR spectra of 3a-d contain four or five C-O acetal bands (1040-1155 cm⁻¹) along with bands of the ferrocene moiety (3090, 1450, 1100, 1010, 820, 480 cm^{-1}).

The formation of bis(ferrocenylmethyl) ether (6) in the reactions studied (Table 1, Scheme 2) most likely starts with symmetrization of acetal 3 by the action of acid catalyst (CF₃CO₂H) followed by elimination of acetaldehyde from the resulting acetal 4 (Scheme 3).

Scheme 3. Tentative pathway for the formation of ether 6.

Reactions with 1H-triazoles

Taking into account the data of the easy non-catalyzed addition of benzotriazole to ethyl vinyl ether under reflux in CCl₄ (1.5 h),³¹ we have carried out the reaction of vinyloxymethylferrocene (1) with benzotriazole under similar conditions. However, no expected adduct was detected (not even in traces) in the reaction mixture, although the reagents were refluxed for as long as 3 h. Eventually, we have found that in the presence of 4 mol% CF₃CO₂H, vinyl ether 1 adds benzotriazole at ambient temperature (3 h) to afford a mixture of N^1 - and N^2 isomeric Markovnikov adducts **8a,b** in the ratio of about 2:1 (¹H NMR spectroscopy) along with 1-ferrocenylmethyl-1H-1,2,3benzotriazole (9) (10% content in the reaction mixture). The adducts 8a,b were not isolated in pure form due to their partial decomposition on chromatography (Al_2O_3) to 9 and acetaldehyde. Upon heating (45 °C, benzene, 3 h), the reaction resulted in Markovnikov adducts 8a,b (in about equimolar amounts) and compound 9 (Scheme 4). This mixture, upon storage for several days, was quantitatively (¹H NMR spectroscopy) converted to benzotriazole 9, the isolated yield being 91%.

 $N^1 / N^2 = 1:1$ (¹H NMR spectroscopy)

Scheme 4. CF₃CO₂H-catalyzed reaction of vinyl ether 1 with 1,2,3benzotriazole.

Unlike benzotriazole, 1,2,4-triazole regioselectively reacts with vinyl ether 1 (5 mol% CF₃CO₂H, 40-45 $^{\circ}$ C, 2-3 h) to give the Markovnikov adduct 10 and 1-ferrocenylmethyl-1H-1,2,4triazole (11) along with a minor amount of 4 (Scheme 5). The solvent nature does not significantly affect the reaction outcome: approximately the same ratio (2.5:1) of 10 and 11 was obtained in benzene, dichloromethane and DME. In contrast to all the previous products, in this case the initial Markovnikov adduct appeared to be stable. The product ratio remained unchanged upon storing the reaction mixture for about 1 month at room temperature. During the chromatographic isolation of these products on basic alumina, compounds 10, 11 and 4 as well as ferrocenylmethanol were isolated in 40, 22, 12 and 10% yield, correspondingly. The latter being resulted from the hydrolysis of the adducts 4, 10 by trace water present in alumina.

Scheme 5. CF₃CO₂H-catalyzed reaction of vinyl ether 1 with 1,2,4-triazole.

Reaction with methacrylic acid

The addition of carboxylic acids to vinyloxymethylferrocene (1) was studied on an example of the reaction with methacrylic acid in the presence of catalytic amounts of CF₃CO₂H (1 mol%). As the ¹H NMR spectroscopic monitoring has shown, the reaction occurs via the formation of an unstable Markovnikov adduct 12, which slowly eliminates acetaldehyde (Scheme 6) to give ester 13. At ambient temperature this process is complete within 10-15 h (¹H NMR spectroscopic data), while upon heating (45 °C), the reaction takes for 2 h to afford only ester 13 and acetaldehyde (detected by ¹H NMR spectroscopy). The compound 13 was isolated in 84% yield and its structure was proved by ¹H and ¹³C NMR spectroscopy.

(detected by ¹H NMR)

Scheme 6. CF₃CO₂H-catalyzed reaction of vinyl ether 1 with methacrylic acid.

Reaction with S-H and Se-H acids

We have observed that the dithiophosphinic acid 14 under mild conditions (r.t., 3 h, Et₂O as solvent) chemo- and regioselectively interacts with vinyloxymethylferrocene (1) to give only the Markovnikov adduct 15, the structure of which was established by ¹H, ¹³C and ³¹P NMR spectroscopy. However, the adduct 15, owing to its instability, readily eliminates acetaldehyde to form dithiophosphinate 16 (Scheme 7). Furthermore, as a parallel reaction, this process takes place along with the formation of primary Markovnikov adduct **15** (³¹P NMR spectroscopic data). The complete conversion of the latter to

Fig. 1. Molecular structure of 16 (40% thermal ellipsoid). Selected bond distances (Å) and angles (°): Cg(1)…Fe(1) 1.638, Cg(2)…Fe(1)1.648, S(1)–P(1) 2.0937(5), S(2)–P(1) 1.9508(5), S(1)–C(6) 1.8467(15), P(1)–C(7) 1.8174(14), P(1)–C(15) 1.8219(13), S(2)–P(1)–S(1) 114.99(2), C(6)–S(1)–P(1) 101.26(5), Cg(1)…Fe(1)…Cg(2) 178.95.

Scheme 7. Reaction of vinyl ether 1 with dithiophosphinic acid 14.

Likewise, the diselenophosphinic acid, generated *in situ* from secondary phosphine **17** and elemental selenium (1:2 molar ratio, 95 °C), also without specially added catalyst reacts with vinyloxymethylferrocene (Scheme 8). The ³¹P NMR spectrum of the reaction mixture shows two major peaks, 50.1 and 48.3 ppm in a ratio of 9:1, assigned to Markovnikov adduct **18** and *Se*-ester **19**, respectively. Upon the storage at room temperature, the product ratio changes for reciprocal one (1:9). The *Se*-ferrocenylmethyl diselenophosphinate **19** was isolated in 59% yield and its structure was also determined by X-ray analysis.

Scheme 8. Reaction of vinyl ether 1 with diselenophosphinic acid.

The structures of esters **16** and **19** are shown in Figures 1 and 2. Despite their similar structures, these compounds crystallized in P-1 and P2₁/c space groups, correspondingly. Within both molecules, the ferrocene unit has a nearly eclipsed conformation with the bond lengths and angles typical for monosubstituted ferrocenes. The phosphorus atoms, as expected, exhibit a distorted tetrahedral geometry. The lengths of the P–S [2.0937(5) Å] and P=S [1.9508(5) Å] bonds in **16** as well as the P–Se [2.2415(19) Å] and P=Se [2.0816(18) Å] bonds in **19** are consistent with literature values.^{32, 33}

Fig. 2. Molecular structure of **19** (30% thermal ellipsoid). Selected bond distances (Å) and angles (°): Cg(1)…Fe(1) 1.640, Cg(2)…Fe(1) 1.652, Se(1)–P(1) 2.0816(18), Se(2)–P(1) 2.2415(19), Se(2)–C(1) 1.997(6), P(1)–C(12) 1.800(7), P(1)–C(20) 1.826(6), Se(1)–P(1)–Se(2) 114.31(8), C(1)–Se(2)–P(1) 98.0(2), Cg(1)…Fe(1)…Cg(2) 179.26.

Theoretical study

With the aim to interpret the different chemoselectivity in the reaction of vinyloxymethylferrocene (1) with the above nucleophiles (formation of ferrocenylmethylation products *versus* stable Markovnikov adducts), we have carried out preliminary DFT [B3LYP/6-311+G(d,p), gas] computations for fragmentation of Markovnikov adducts, key reaction intermediates, to the corresponding ferrocenylmethylation products (FcCH₂Nu) and acetaldehyde. As model compounds, adducts with methanol **3a** and 1,2,4-triazole **10** having enhanced stability, as well as the unstable adduct with methacrylic acid **12** have been chosen.

The computations reveal that elimination of acetaldehyde from adduct **3a** occurs through high-energy transition state **TS1** leading to methoxymethylferrocene (**5a**). The corresponding free energy profile is shown in Figure 3. The activation barrier of this stage, being essentially an intramolecular 1,3-shift of the [FcCH₂] group to another oxygen atom, is 57.0 kcal/mol. Although taking into account that solvent effect should decrease this value, the barrier of such order is insuperable under common reaction

4

conditions. Similarly, extrusion of acetaldehyde from the adduct MANU SCRI 10 leading to 1-ferrocenylmethyl-1*H*-1,2,4-triazole (11) is associated with overcoming a high activation barrier, 54.6 kcal/mol (**TS2**, **Figure S1**).

Fig. 3. Free energy profile for fragmentation of 3a to 5a and acetaldehyde.

The fragmentation of the Markovnikov adduct with methacrylic acid **12** to ester **13** and acetaldehyde may principally occur either through a 1,5-intramolecular shift of the $[FcCH_2]$ group to carbonyl oxygen (C=O) or through a 1,3-shift of this group to another oxygen atom (Scheme 9). While the first pathway is less favorable (activation barrier being 37.9 kcal/mol, **Figure S2**), the second one is quite plausible (Figure 4). This is a thermodynamically preferable one-step process including transition state (**TS3**) with activation barrier of 32.9 kcal/mol. The further transformation of **TS3** leads to the weakly bonded complex of *O*-ferrocenylmethyl methacrylate (**13**) with acetaldehyde. The overall change in the Gibbs free energy of reaction being -12.6 kcal/mol.

Scheme 9. Two possible mechanisms for fragmentation of adduct 12.

Fig. 4. Free energy profile for fragmentation of adduct 12 to 13 and acetaldehyde.

Thus, the significantly lower activation barrier of fragmentation of adduct 12 (32.9 kcal/mol) in comparison with that of adducts 3a and 10 (57.0 and 54.6 kcal/mol), explains why the reaction of vinyloxymethylferrocene (1) with acids proceeds directly to ferrocenylmethylation products, whereas interaction of 1 with MeOH, *s*-BuOH, *t*-BuOH and 1,2,4-triazole gives stable Markovnikov adducts.

3. Conclusion

In summary, we have found and the elaborated ferrocenylmethylation of diverse O-, N-, S- and Se-nucleophiles (alcohols, carbonic acids, triazoles, thio- and selenophosphinic hased acids) on the reaction with available vinyloxymethylferrocene. The latter under mild acid-catalyzed (1-5 mol% CF₃CO₂H as catalyst) conditions easily adds these nucleophiles to afford initial Markovnikov adducts, which then readily eliminate acetaldehyde to give the corresponding ferrocenylmethylation products in good to high yields. Exceptions are methanol, butyl alcohols as well as 1,2,4-triazole, which form stable Markovnikov adducts with vinyloxymethylferrocene. The study establishes for the first time a novel type of reactivity of vinyl ethers R-O-Vin, i.e., when the latter reacting with Nu-H species produced products of R-Nu type. Furthermore, the results obtained contribute to the basic chemistry of ferrocene providing a synthetically valuable approach to ferrocenylmethylation of various nucleophiles (including biologically important molecules).

4. Experimental section

4.1. General

¹H NMR spectra were recorded with Bruker DPX 400 and Bruker AV-400 spectrometers (400.13 MHz); chemical shifts are expressed with respect to residual protonated solvent ($\delta = 7.27$ ppm for CHCl₃), which served as an internal standard. ¹³C NMR spectra were recorded with a Bruker DPX 400 (100.62 MHz) instrument; chemical shifts are expressed with respect to the deuterated solvent ($\delta = 77.0$ ppm for CDCl₃). The ³¹P NMR spectra were recorded on a Bruker DPX 400 spectrometer (161.98 MHz, respectively) and referenced to H₃PO₄ (³¹P NMR). Coupling constants (*J*) are reported in Hz. FT-IR Spectra were recorded on a Bruker Vertex 70 spectrometer. The C, H, N microanalyses were performed on a Flash EA 1112 elemental analyzer, while the P and Fe contents were determined by

combustion methods. Melting points (uncorrected) Twee Mstarting vinyl ether 1. Then, the reaction mixture was stirred at rt determined on a Kofler micro hot stage.

Vinyloxymethylferrocene (1) was synthesized by KOH/DMSO-catalyzed vinylation of ferrocenylmethanol with acetylene according to reported procedure.³⁴ Alcohols 2a-e were dried over 4.0 Å molecular sieves prior to use. Dithiophosphinic acid 14^{35} and secondary phosphine 17^{36} were prepared as described in the literature. All the solvents used were purified and dried by standard methods. Basic Al₂O₃ and *n*-hexane/Et₂O as eluent were used for column chromatography. All reactions were monitored by TLC on silica gel plates 60 F254 (50% nhexane/Et₂O). Visualization was done with iodine vapor.

4.2. Crystallography

Single crystals of 16 and 19 were obtained by slow evaporation of their hexane solutions at ambient temperature. The data were collected on a Bruker Kappa Apex II CCD diffractometer using φ, ω -scans of narrow (0.5°) frames with MoK_{α} radiation ($\lambda = 0.71073$ Å) and a graphite monochromator. The structures were solved by direct methods and refined by fullmatrix least-squares method against all F^2 in anisotropic approximation using the SHELX-97 programs set.³⁷ The hydrogen atoms positions were calculated with the riding model. Absorption corrections were applied using the empirical multiscan method with the SADABS program.³

CCDC 994803 (16), 1450492 (19) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

4.3. Synthesis

4.3.1. General procedure [1for synthesis of(alkoxy)ethoxy]methylferrocene 3a-d

To a mixture of vinyloxymethylferrocene (1) (242 mg, 1 mmol) and alcohol 2a-d (1 mmol), a solution of CF₃COOH [2% in 1,2-dimethoxyethane (DME), 0.1 mL, ~ 2 mol%] was added. The resulting mixture was stirred at ambient temperature for 1.5-6 h (Table 1). After complete conversion of starting vinyl ether 1 (TLC control), K₂CO₃ (14 mg, 0.1 mmol) and diethyl ether (2 mL) were added and the mixture was stirred for ~0.5 h. After removal of volatiles, the crude residue was separated by column chromatography (basic Al_2O_3 , 1.5×10 cm): Markovnikov adduct 3a-d was washed off first with hexane, and then acetal 4 and ferrocenylmethanol were washed off with hexane/diethyl ether (1:1) and diethyl ether, respectively.

4.3.2. Synthesis of (2-propenyloxy)methylferrocene (5d)

To a mixture of vinyloxymethylferrocene (242 mg, 1 mmol) and allyl alcohol (2d) (58 mg, 1 mmol), a solution of CF₃COOH (2% in DME, 0.1 mL, 2 mol%) was added. The resulting mixture was stirred for 5 h at 45 °C and then quenched with 1% aqueous solution NaHCO₃ (10 mL), and extracted with diethyl ether (5 \times 5 mL). The extract was dried over Na₂SO₄. The residue after removing of the volatiles was passed through a chromatographic column (basic Al₂O₃, 1.5×10 cm): the first product 5d was washed off with hexane, and then ferrocenylmethyl ether (6) was washed with hexane/diethyl ether, 3:1.

4.3.3. Synthesis of (2,2,3,3-tetrafluoropropoxy)methylferrocene (**5e**)

3a, Following typical procedure the for mg, 1 mmol), 2,2,3,3vinyloxymethylferrocene (242 tetrafluoropropanol (2e) (132 mg, 1 mmol) and a catalytic amount of CF3CO2H (2 mol%) were stirred at ambient temperature for 1.5 h until the complete consumption of the

for additional 3 h. Further treatment was performed in the same way as described for compound 5d.

4.3.4. Synthesis of phenyloxymethylferrocene (7)

Following the typical procedure for 5d, vinyloxymethylferrocene (242 mg, 1 mmol), phenol (94 mg, 1 mmol) and a catalytic amount of CF₃CO₂H (2 mol%) were stirred at ambient temperature for 1.5 h until the complete consumption of the starting vinyl ether 1. Then, the reaction mixture was stirred at rt for additional 3 h. Further treatment was performed as described for compound 5d.

4.3.5. Procedure for the preparation of1-[1-(ferrocenylmethoxy)ethyl]-1Hand 2-[1-(ferrocenylmethoxy)ethyl]-2H-1,2,3-benzotriazole (8a,b)

To a solution of vinyloxymethylferrocene (242 mg, 1 mmol) in DME (2 mL), 1,2,3-benzotriazole (119 mg, 1 mmol) and CF₃CO₂H (5 mg, 4 mol%) were added. The reaction mixture was stirred at ambient temperature for 3 h until the vinyl ether 1 had disappeared. The mixture was quenched with NaHCO₃ (1 % solution, 10 mL) and extracted with diethyl ether (4×5 mL). The organic layer was dried over Na2SO4 and concentrated under reduced pressure. The residue (303 mg), a mixture of α -adducts 8a,b and 1-ferrocenylmethyl-1H-1,2,3-benzotriazole (9) (molar ratio 9:1 by ¹H NMR spectroscopy), was purified by column chromatography on Al₂O₃ using hexane, then hexane/Et₂O (1:1, v/v) as the eluent to afford an inseparable mixture of **8a** and **8b** (68:32, purity ~95% by ¹H NMR spectroscopy).

4.3.6. Procedure for the preparation of 1-ferrocenylmethyl-1H-1,2,3-benzotriazole (9)

To a stirred solution of vinyloxymethylferrocene (1) (242 mg, 1 mmol) in benzene (2 mL), 1,2,3-benzotriazole (119 mg, 1 mmol) and CF₃CO₂H (5 mg, 4 mol%) were added. The reaction mixture was stirred at 45 °C for 3 h and then the solvent was removed under reduced pressure. The crude product, ca. equimolar mixture of products 8a,b and 9 (by ¹H NMR spectroscopy), was allowed to stay 3 days until the complete consumption of the Markovnikov adducts **8a,b**. The mixture was quenched with NaHCO₃ (1 % solution, 10 mL) and extracted with diethyl ether (4×5 mL). The organic layer was dried over Na₂SO₄. Column chromatography (basic Al₂O₃, eluent hexane/Et₂O 1:1) of the crude residue after removal of the solvent gave 9.

4.3.7. Reaction of vinyloxymethylferrocene with 1,2,4-triazole

A mixture of vinyloxymethylferrocene (242 mg, 1 mmol), 1,2,4-triazole (69 mg, 1 mmol) and CF₃CO₂H (6 mg, 5 mol%) in dry DME (2 mL) was stirred at 45 °C for 2 h. After removal of the volatiles, the residue was separated by column chromatography (Al₂O₃, 1.5×10 cm) using hexane/Et₂O (1:1, v/v), then Et₂O as the eluent to afford acetal 4 (27 mg, yield 12%), products 10 and 11, and ferrocenylmethanol (21 mg, 10%).

4.3.8. Reaction of vinyloxymethylferrocene with dithiophosphinic acid **14**

To a solution of vinyloxymethylferrocene (242 mg, 1 mmol) in diethyl ether (5 mL), acid 14 (306 mg, 1 mmol) was added and the solution was stirred at ambient temperature for 3 h. Then the reaction mixture was passed through a layer of Al₂O₃ (0.5 cm), the latter was additionally washed with diethyl ether (5 mL). The volatiles were removed in vacuo to give product, consisting of compound **15** with an admixture of **16** (molar ratio $\approx 7 : 1$ by ³¹P

4.3.9. Reaction of vinyloxymethylferrocene with diselenophosphinic acid (generated in situ from phosphine 17 and selenium)

Bis(2-phenethyl)phosphine (17) (242 mg, 1 mmol) and powdered grey selenium (158 mg, 2.0 mmol) were added consecutively to a solution of 1 (242 mg, 1 mmol) in 1,4-dioxane (8 mL) at ambient temperature. The suspension was stirred at 95-100 °C until dissolution of the selenium powder (*ca.* 1 h) to give an orange transparent solution consisting of corresponding Markovnikov adduct 18 in an admixture with *Se*-ester 19 in the molar ratio of 9:1 (by ³¹P NMR spectroscopy, δ_P 50.1 and 48.3 ppm). After vacuum treatment of the reaction mixture at 50–60 °C (1–2 mm Hg) adduct 18 was converted to *Se*-ester 19. The latter was purified by column chromatography (basic Al₂O₃, 1.5 × 10 cm, hexane as eluent).

4.4. Characterization data for synthesized compounds

4.4.1. [1-(Methoxy)ethoxy]methylferrocene (3a)

Orange oil. Yield: 236 mg (86%). $R_f = 0.51$ (hexane/Et₂O, 1:1). FT-IR (film): $\tilde{v} = 3094$, 1449, 1013, 819, 483 (Fc), 1140, 1125, 1106, 1091, 1040 (OCHO) cm⁻¹.¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.29$ (d, ${}^{3}J = 5.4$ Hz, 3 H, Me), 3.31 (s, 3 H, OMe), 4.14 (br s, 7 H, C₅H₅, H_{\beta} in Fc), 4.23 (s, 2 H, H_{\alpha} in Fc), 4.27, 4.38 (2d, ${}^{2}J = 11.1$ Hz, each 1 H, OCH₂Fc), 4.71 (q, ${}^{3}J = 5.4$ Hz, 1 H, HCMe). 13 C NMR (100.62 MHz, CDCl₃): $\delta = 18.9$ (Me), 51.5 (OMe), 68.2 (C_{\beta} in Fc), 68.4 (C₅H₅), 69.1 (C_{\alpha} in Fc), 71.6 (CH₂Fc), 83.6 (C_{\alpha} in Fc), 99.1 (CH). Anal. Calcd. for C₁₄H₁₈FeO₂ (274.14): C, 61.34; H, 6.62; Fe, 20.37. Found: C, 61.66; H, 6.44; Fe, 20.81.

4.4.2. [1-(1-Methylpropoxy)ethoxy]methylferrocene (3b)

Orange oil. Yield: 213 mg (67%). An inseparable 1:1 mixture of two diastereoisomers. $R_f = 0.65$ (hexane/Et₂O, 1:1). FT-IR (film): $\tilde{v} = 3096$, 1456, 1021, 819, 484 (Fc), 1155, 1106, 1087, 1040 (OCHO) cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 0.90$, 0.98 (2t, ³J = 7.3 Hz, each 1.5 H, MeCH₂), 1.13, 1.22 (2d, ³J = 6.1 Hz, each 1.5 H, MeCHCl₂), 1.33 (d, ³J = 5.4 Hz, 3 H, MeCHO), 1.43-1.66 (m, 2 H, CH_2 Me), 3.60-3.69 (m, 1 H, MeCHEt), 4.14 (br s, 7 H, C₅H₅, H_β in Fc), 4.22, 4.24 (2br s, each 1 H, H_a in Fc), 4.30, 4.40 (2d, ²J = 11.0 Hz, each 1 H, OCH₂Fc), 4.80, 4.83 (2q, ³J = 5.4 Hz, 1 H, HCMe). ¹³C NMR (100.62 MHz, CDCl₃): $\delta = 9.6$, 10.2 (MeCH₂), 19.6, 20.7 (MeCHCH₂), 20.5 (MeCHO), 29.3, 30.2 (CH_2 Me), 62.4 (CH_2 Fc), 68.2 (C_5 H₅), 68.3, 69.1 (C_5 H₄), 72.5, 73.6 (CHO), 83.8 (C_i in Fc), 97.0, 98.2 (HCMe). Anal. Calcd. for C_{17} H₂₄FeO₂ (316.22): C, 64.57; H, 7.65; Fe, 17.66. Found: C, 64.69; H, 7.97; Fe, 17.59.

4.4.3. [1-(tert-Butoxy)ethoxy]methylferrocene (3c)

Orange oil. Yield: 229 mg (72%). $R_f = 0.64$ (hexane/Et₂O, 1:1). FT-IR (film): $\tilde{v} = 3095$, 1473, 1001, 818, 484 (Fc), 1144, 1120, 1106, 1091, 1040 (OCHO) cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.25$ (s, 9 H, Me_3 C), 1.30 (d, ³J = 5.4 Hz, 3 H, Me), 4.11-4.12 (nr m, 7 H, C₅H₅, H_β in Fc), 4.20, 4.21 (2br s, 2 H, H_α in Fc), 4.25, 4.31 (2d, ²J = 11.0 Hz, each 1 H, OCH₂Fc), 4.95 (q, ³J = 5.4 Hz, 1 H, HCMe). ¹³C NMR (100.62 MHz, CDCl₃): $\delta = 21.9$ (*Me*CHO), 28.8 (3 Me in *t*-Bu), 61.3 (*C*H₂Fc), 68.1, 68.2 (C_α in Fc), 68.4 (C₅H₅), 69.0 (C_β in Fc), 73.7 (C in *t*-Bu), 84.2 (C_i in Fc), 93.5 (HCMe). Anal. Calcd. for C₁₇H₂₄FeO₂ (316.22): C, 64.57; H, 7.65; Fe, 17.66. Found: C, 64.66; H, 7.44; Fe, 17.81.

4.4.4. [1-(2-Propenyloxy)ethoxy]methylferrocene (3d)

A porange out yield: 179 mg (60%). $K_f = 0.62$ (hexane/Et₂O, 1:1). FT-IR (film): $\tilde{v} = 3088$, 1455, 1012, 822, 482 (Fc), 1142, 1123, 1105, 1097, 1040 (OCHO), 1618 (C=C) cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.32$ (d, ³J = 5.4 Hz, 3 H, Me), 3.98-4.14 (m, 9 H, OCH₂CH=, C₅H₅, H_{β} in Fc), 4.21 (br s, 2 H, H_{α} in Fc), 4.30, 4.38 (2d, ²J = 11.3 Hz, each 1 H, OCH₂Fc), 4.81 (q, ³J= 5.4 Hz, 1 H, HCMe), 5.18 (dd, ³J = 10.4 Hz, ⁴J = 1.7 Hz, 1 H, =CH_{cis}), 5.29 (dd, ³J = 17.2 Hz, ⁴J = 1.7 Hz, 1 H, =CH_{trans}), 5.94 (ddt, ³J = 17.2 Hz, ³J = 10.4 Hz, ³J = 5.4 Hz, 1 H, CH=CH₂). ¹³C NMR (100.62 MHz, CDCl₃): $\delta = 19.6$ (*Me*CH), 63.2 (CH₂Fc), 65.5 (OCH₂), 68.3 (C_{β} in Fc), 68.4 (C₅H₅), 69.1, 69.2 (C_{α} in Fc), 83.5 (C_i in Fc), 98.2 (MeCH), 116.5 (CH₂=), 134.8 (CH=CH₂). Anal. Calcd. for C₁₆H₂₀FeO₂ (300.17): C, 64.02; H, 6.72; Fe, 18.60. Found: C, 64.06; H, 6.44; Fe, 18.90.

4.4.5. 1,1-Bis(ferrocenylmethoxy)ethane (4)

Yellow solid, mp 80-82 °C. $R_f = 0.56$ (hexane/Et₂O, 1:1). FT-IR (film): v = 3093, 1105, 1002, 819, 493, 482 (Fc), 1123, 1105, 1097, 1040 (OCHO) cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): $\delta =$ 1.33 (d, ³J = 4.8 Hz, 3 H, Me), 4.15 (s, 10 H, 2C₅H₅), 4.18 (s, 4 H, H_{\beta} in Fc), 4.26 (br s, 4 H, H_{\alpha} in Fc), 4.31, 4.39 (2d, ²J = 11.0 Hz, each 2 H, OCH₂Fc), 4.83 (q, ³J = 4.8 Hz, 1 H, HCMe). ¹³C NMR (100.62 MHz, CDCl₃): $\delta =$ 19.8 (Me), 63.0 (CH₂Fc), 68.4 (C₅H₅), 69.3 (C_{\beta} in Fc), 69.4 (C_{\alpha} in Fc), 83.7 (C_{\alpha} in Fc), 98.0 (CH). Anal. Calcd. for C₂₄H₂₆Fe₂O₂ (458.15): C, 62.92; H, 5.72; Fe, 24.38. Found: C, 63.02; H, 5.78; Fe, 24.09.

4.4.6. (2-Propenyloxy)methylferrocene (5d)

Yellow wax-like solid. Yield: 141 mg (55%). $R_f = 0.76$ (hexane/Et₂O, 1:1). FT-IR (film): $\tilde{v} = 3090$, 1001, 822, 483 (Fc), 1618 (C=C) cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 3.99$ (d, ³J = 5.1 Hz, 2 H, OCH₂CH=), 4.14 (s, 5 H, C₃H₅), 4.16 (br s, 2 H, H_β in Fc), 4.25 (br s, 2 H, H_a in Fc), 4.30 (s, 2 H, OCH₂Fc), 5.19 (d, ³J = 10.3 Hz, 1 H, =CH_{cis}), 5.28 (d, ³J = 17.4 Hz, 1 H, =CH_{trans}), 5.91 (ddt, ³J = 17.4 Hz, ³J = 10.3 Hz, ³J = 5.1 Hz, 1 H, CH=CH₂). ¹³C NMR (100.62 MHz, CDCl₃): $\delta = 68.3$ (CH₂Fc), 68.4 (C₅H₅, C_β in Fc), 69.4 (C_a in Fc), 70.7 (CH₂CH=), 83.3 (C_i in Fc), 116.8 (CH₂=), 134.9 (CH=CH₂). Anal. Calcd. for C₁₄H₁₆FeO (256.12): C, 65.65; H, 6.30; Fe, 21.80. Found: C, 65.76; H, 6.44; Fe, 21.90. Spectroscopic data are in full agreement with those previously reported.³⁹

4.4.7. (2,2,3,3-Tetrafluoropropoxy)methylferrocene (5e)

Orange solid, mp 54-55 °C (hexane). Yield: 130 mg (39%). $R_f = 0.70$ (hexane/Et₂O, 1:1). FT-IR (KBr): $\tilde{v} = 3100$, 1405, 1106, 1001, 834, 483 (Fc) cm⁻¹.¹H NMR (400.13 MHz, CDCl₃): $\delta = 3.78$ (t, ³J = 12.4 Hz, 2 H, OCH₂), 4.16 (br s, 7 H, C₅H₅, H_β in Fc), 4.20, 4.24 (2 br s, 2 H, H_a in Fc), 4.41 (s, 2 H, OCH₂Fc), 5.93 (tt, ²J = 53.3 Hz, ³J = 5.1 Hz, 1 H, HCF₂). ¹³C NMR (100.62 MHz, CDCl₃): $\delta = 66.4$ (t, ²J = 28.9 Hz, CH₂O), 68.5 (C₅H₅), 68.8 (C_a in Fc), 69.4, (C_β in Fc), 70.5 (CH₂O), 81.6 (C_i in Fc), 109.1 (tt, ¹J = 248.8 Hz, ²J = 33.9 Hz, CF₂), 115.2 (tt, ¹J = 250.0 Hz, ²J = 26.4 Hz, CF₂). Anal. Calcd. for C₁₄H₁₄F₄FeO (330.10): C, 50.94; H, 4.27; Fe, 16.92. Found: C, 50.69; H, 4.42; Fe, 16.80.

4.4.8. Bis(ferrocenylmethyl)ether (6)

Orange solid, mp 129-131 °C {ref.⁴⁰ 126-128 °C}. $R_f = 0.55$ (hexane/Et₂O, 1:1). FT-IR (KBr): $\tilde{\nu} = 3103$, 3092, 1103, 1000, 819, 497, 483 (Fc) cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 4.13$ (s, 10 H, C₅H₅), 4.15 (t, ³J = 1.7 Hz, 4 H, H_{β} in Fc), 4.24 (t, ³J = 1.7 Hz, 4 H, H_{α} in Fc), 4.28 (s, 4 H, OCH₂Fc). ¹³C NMR (100.62 MHz, CDCl₃): $\delta = 67.9$ (CH₂Fc), 68.3 (C_{β} in Fc), 68.4 (C₅H₅), 69.3 (C_{α} in Fc), 83.7 (C_{*i*} in Fc). Anal. Calcd. for C₂₂H₂₂Fe₂O (414.10): C, 63.81; H, 5.35; Fe, 26.97. Found: C,

63.96; H, 5.48; Fe, 26.49. Spectroscopic data	are in full M 4.4.13. Ferrocenylmethyl-1H-1,2,4-triazole (11)
agreement with those previously reported. ⁴¹	0

4.4.9. Phenyloxymethylferrocene (7)

Yellow crystals, mp 135-136 °C (hexane). Yield: 204 mg (70%). $R_f = 0.71$ (hexane/Et₂O, 1:1). FT-IR (KBr): $\tilde{v} = 3038$, 1430, 1104, 1000, 814, 504, 485 (Fc) cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 4.20$ (s, 7 H, C₅H₅, H_{β} in Fc), 4.34 (br s, 2 H, H_{α} in Fc), 4.81 (s, 2 H, OCH₂Fc), 6.95-6.99 (m, 3 H, *o*,*p*-H in Ph), 7.28-7.32 (m, 2 H, *m*-H in Ph). ¹³C NMR (100.62 MHz, CDCl₃): $\delta = 66.4$ (CH₂O), 68.5 (C₅H₅, C_{α} in Fc), 69.0 (C_{β} in Fc), 82.7 (C_{*i*} in Fc), 114.7 (*o*-C in Ph), 120.7 (*p*-C in Ph), 129.3 (*m*-C in Ph), 158.7 (*i*-C in Ph). Anal. Calcd. for C₁₇H₁₆FeO (292.15): C, 69.89; H, 5.52; Fe, 19.11. Found: C, 69.62; H, 5.46; Fe, 18.94. Spectroscopic data are in full agreement with those previously reported.⁴¹

4.4.10. Mixture of 1-[1-(ferrocenylmethoxy)ethyl]-1H- (**8a**) and 2-[1-(ferrocenylmethoxy)ethyl]-2H-1,2,3-benzotriazole (**8b**)

Orange wax-like solid. Ratio of **8a/8b** is 68:32 (¹H NMR). Combined yield: 224 mg (62%). $R_f = 0.36$ (hexane/Et₂O, 1:1). FT-IR (film): $\tilde{v} = 3093$, 1411, 1105, 1001, 816, 482 (Fc), 1150, 1120, 1076, 1040 (OCHN) cm⁻¹. H NMR (400.13 MHz, CDCl₃): $\delta = 1.82$ (d, ${}^{3}J = 6.1$ Hz, 3 H, Me, major), 1.87 (d, ${}^{3}J = 6.0$ Hz, 3 H, Me, minor), 4.03-4.31 (m, 11 H, OCH₂, C₅H₅, H_α, H_β in Fc, major + minor), 6.16 (q, ${}^{3}J = 6.0$ Hz, 1 H, NCHO, minor), 6.35 (q, ${}^{3}J = 6.1$ Hz, 1 H, NCHO, major), 7.38-7.51 (m, 4 H, BTA, major + minor), 7.80 (d, ${}^{3}J = 8.3$ Hz, 1 H, BTA, major), 7.94-7.95 (m, 2 H, Btz, minor), 8.12 (d, ${}^{3}J = 8.3$ Hz, 1 H, BTA, major). ¹³C NMR (100.62 MHz, CDCl₃): $\delta = 21.0$ (Me, major), 21.5 (Me, minor), 66.7 (CH₂O, major), 67.1 (CH₂O, minor), 68.3 $(C_5H_5, major + minor)$, 68.6, 69.7 $(C_{\alpha}, C_{\beta} \text{ in Fc, minor})$, 68.8, 69.1 (C_a , C_β in Fc, major), 81.2 (C_i in Fc, major + minor), 85.6 (NCHO, major), 89.6 (NCHO, minor), 111.3 (2C, BTA, minor), 118.5 (2C, BTA, minor), 120.0, 124.2, 126.6, 127.3 (BTA, major), 131.0 (BTA, major), 144.0 (2C, BTA, minor), 146.8 (BTA, major). Anal. Calcd. for C₁₉H₁₉FeN₃O (361.22): C, 63.18; H, 5.30; N, 11.63. Found: C, 63.03; H, 5.35; N, 11.98.

4.4.11. 1-Ferrocenylmethyl-1H-1,2,3-benzotriazole (9)

Orange solid, mp 134-136 °C (hexane) {ref.⁴³ 134-135 °C}. Yield: 288 mg (91%). $R_f = 0.25$ (hexane/Et₂O, 1:1). FT-IR (KBr): $\tilde{v} = 3091$, 1103, 1000, 813, 482 (Fc) cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 4.17$ (br s, 2 H, C₅H₄), 4.19 (s, 5 H, C₅H₅), 4.32 (br s, 2 H, C₅H₄), 5.61 (s, 2 H, CH₂Fc), 7.35, 7.45 (2t, ³J = 7.6 Hz, each 1 H, CH^{5.6}), 7.52 (d, ³J = 8.3 Hz, 1 H, CH⁴), 8.05 (d, ³J = 8.3 Hz, 1H, CH⁷). ¹³C NMR (100.62 MHz, CDCl₃): $\delta = 47.6$ (CH₂Fc), 68.2, 68.3 (C₅H₄), 68.4 (C₅H₅), 81.3 (C_i in Fc), 109.2 (C⁷), 119.4 (C⁴), 123.2 (C⁶), 126.6 (C⁵), 132.0 (C⁹), 145.5 (C⁸). Anal. Calcd. for C₁₇H₁₅FeN₃ (317.17): C, 64.38; H, 4.77; N, 13.25. Found: C, 63.97; H, 4.36; N, 13.02. Spectroscopic data are in full agreement with those previously reported.^{9a}

4.4.12. 1-(Ferrocenylmethoxy)ethyl]-1H-1,2,4-triazole (10)

Yellow solid, mp 65 °C (hexane). Yield: 125 mg (40%). $R_f = 0.17$ (Et₂O). FT-IR (KBr): $\tilde{\nu} = 3096$, 1102, 1003, 822, 483 (Fc), 1142, 1116, 1049 (OCHN) cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.67$ (d, ${}^{3}J = 6.1$ Hz, 3 H, Me), 4.10 (s, 5 H, C₅H₅), 4.16-4.18 (m, 4 H, C₅H₄), 4.22, 4.31 (2d, ${}^{2}J = 11.4$ Hz, each 1 H, CH₂O), 5.68 (q, ${}^{3}J = 6.1$ Hz, 1 H, CHMe), 8.00, 8.27 (2s, each 1 H, CH^{3.5}). ¹³C NMR (100.62 MHz, CDCl₃): $\delta = 21.6$ (Me), 66.7 (CH₂O), 68.5 (C₅H₅), 68.7, 69.0, 69.2, 69.6 (C₅H₄), 80.8 (C_i in Fc), 84.3 (NCH), 140.7 (C⁵H), 150.9 (C³H). Anal. Calcd. for C₁₅H₁₇FeN₃O (311.16): C, 57.90; H, 5.51; N, 13.50. Found: C, 57.68; H, 5.36; N, 13.39.

Yellow solid, mp 82 °C (hexane) {ref.⁴² 81.2 °C). Yield: 59 mg (22%). $R_f = 0.10$ (Et₂O). ¹H NMR (400.13 MHz, CDCl₃): $\delta = 4.18$ (s, 5 H, C₅H₅), 4.23 (t, ³J = 1.7 Hz, 2 H, H_{β} in Fc), 4.29 (t, ³J = 1.7 Hz, 2 H, H_{α} in Fc), 5.12 (s, 2 H, CH₂), 7.93, 7.98 (2s, each 1 H, CH^{3.5}). Anal. Calcd. for C₁₃H₁₃FeN₃ (267.11): C, 58.46; H, 4.91; N, 15.73. Found: C, 58.32; H, 4.86; N, 15.89. Spectroscopic data are in full agreement with those previously reported.⁴²

4.4.14. O-Ferrocenylmethyl 2-methacrylate (13)

Yellow crystals, mp 76-77 °C (hexane) {ref.⁴² 76.5 °C). Yield: 238 mg (84%). $R_f = 0.65$ (hexane/Et₂O, 1:1). FT-IR (KBr): $\tilde{\nu} =$ 1408, 1104, 1002, 813, 483 (Fc), 1632 (C=C), 1710 (C=O) cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.96$ (s, 3 H, Me), 4.18 (br s, 7 H, C₅H₅, H_β in Fc), 4.30 (s, 2 H, H_α in Fc), 4.97 (s, 2 H, OCH₂Fc), 5.56 (s, 1 H, =CH_{cis}), 6.11 (s, 1 H, =CH_{trans}). ¹³C NMR (100.62 MHz, CDCl₃): $\delta = 18.3$ (Me), 62.9 (OCH₂), 68.5 (C₅H₅), 68.6 (C_a in Fc), 69.3 (C_β in Fc), 81.6 (C_i in Fc), 125.5 (CH=), 136.3 (C=), 167.2 (C=O). Anal. Calcd. for C₁₅H₁₆FeO₂ (284.13): C, 63.41; H, 5.68; Fe, 19.65. Found: C, 63.76; H, 5.68; Fe, 19.88. Spectroscopic data are in full agreement with those previously reported.⁴²

4.4.15. S-[1-(Ferrocenylmethoxy)ethyl]diphenethyldithiophosphinate (15)

This compound was not isolated in pure state. Its structure was determined from a mixture of **15** and **16** (molar ratio of *ca*. 7 : 1) obtained after flash-chromatography. Yellow wax-like solid. Yield: 472 mg (77%). FT-IR (film): $\tilde{v} = 3085$, 1105, 1000, 820 (Fc), 1156, 1100 sh, 1040 (OCHS), 750 (P-C), 698 (P=S), 494 (P-S) cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 1.79$ (d, 3 H, ³J = 5.9 Hz, Me), 2.28-2.54 (m, 4 H, PCH₂), 2.97-3.16 (m, 4 H, PhCH₂), 4.15-4.16 (nr m, 7 H, C₅H₅, H_{β} in Fc), 4.27, 4.33 (2br s, each 1 H, H_{α} in Fc), 4.45, 4.60 (2d, ²J = 11.0 Hz, each 1 H, OCH₂), 5.48-5.56 (dq, ³J = 10.8 Hz, ³J = 5.9 Hz, 1 H, OCHS), 7.27-7.36 (m, 10 H, Ph). ¹³C NMR (100.62 MHz, CDCl₃): $\delta = 25.6$ (Me), 29.0, 29.3 (PhCH₂), 39.6, 39.8 (2d, ¹J = 50.0 and 48.7 Hz, PCH₂), 67.4 (OCH₂), 68.6 (C₅H₅), 68.7, 69.1, 69.5, 69.6 (C₅H₄), 82.5 (C_i in Fc), 86.9 (OCHS), 126.6 (*p*-C in Ph), 128.4 (*o*-C in Ph), 128.8 (*m*-C in Ph), 140.4 (d, ³J = 16.4 Hz, *i*-C in Ph). ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 72.03$.

4.4.16. S-Ferrocenylmethyldiphenethyldithiophosphinate (16)

Yellow solid, mp 77-78 °C (hexane). Yield: 408 mg (81%). $R_f = 0.67$ (hexane/Et₂O, 1:1). FT-IR (KBr): $\tilde{v} = 3085$, 1105, 1000, 821, 482 (Fc), 749 (P-C), 698 (P=S), 498 (P-S) cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 2.26-2.33$ (m, 4 H, PCH₂), 2.84-3.04 (m, 4 H, PhCH₂), 4.02, 4.05 (2s, each 1 H, H_a in Fc), 4.16 (s, 2 H, H_β in Fc), 4.19 (s, 5 H, C₅H₅), 4.33 (s, 2 H, SCH₂), 7.14-7.31 (m, 10 H, Ph). ¹³C NMR (100.62 MHz, CDCl₃): $\delta = 29.1$ (CH₂Ph), 31.8 (SCH₂), 38.7 (d, ¹J = 49.1 Hz, PCH₂), 68.4 (C₅H₄), 68.9 (C₅H₅), 69.1 (C₅H₄), 82.2 (C_i in Fc), 126.4 (*p*-C in Ph), 128.2 (*o*-C in Ph), 128.6 (*m*-C in Ph), 140.4 (d, ³J = 16.4 Hz, *i*-C in Ph). ³¹P NMR (161.98 MHz, CDCl₃): $\delta = 73.70$. Anal. Calcd. for C₂₇H₂₉FePS₂ (504.52): C, 64.28; H, 5.79; Fe, 11.07; P, 6.14. Found: C, 64.10; H, 5.46; Fe, 10.70; P, 5.70.

4.4.17. Se-[1-(Ferrocenylmethoxy)ethyl]diphenethyldiselenophosphinoate (18)

was identified by ³¹P NMR spectroscopy. ³¹P NMR (161.98 MHz, 1,4-dioxane): δ = 50.15 (satellites: ¹ $J_{P=Se}$ = 755 Hz, ¹ J_{P-Se} = 351 Hz).

4.4.18. Se-Ferrocenylmethyldiphenethyldiselenophosphinate (19)

= 0.60 (hexane/Et₂O, 1:1). FT-IR (KBr): \tilde{v} = 3083, 1103, 1000, 810, 481 (Fc), 734 (P-C), 493 (P=Se), 471 (P-Se) cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): δ = 2.47 (dt, ²J = 8.8 Hz, ³J = 8.6 Hz, 4 H, PCH₂), 2.80-3.02 (m, 4 H, PhCH₂), 4.03, 4.07 (2s, each 1 H, H_a in Fc), 4.11 (s, 2 H, H_{β} in Fc), 4.15 (s, 5 H, $C_{5}H_{5}$), 4.29 (s, 2 H, SeCH₂), 7.10-7.26 (m, 10 H, Ph). ¹³C NMR (100.62 MHz, CDCl₃): δ = 30.2 (d, ²J = 2.6 Hz, CH₂Ph), 31.7 (SeCH₂), 39.1 (d, $^{1}J = 36.0$ Hz, PCH₂), 68.5 (C_a in Fc), 69.0 (C₅H₅), 69.2 (C_b in Fc), 85.1 (C_i in Fc), 126.5 (p-C in Ph), 128.3 (o-C in Ph), 128.6 (*m*-C in Ph), 140.2 (d, ${}^{3}J = 17.3$ Hz, *i*-C in Ph). 31 P NMR (161.98 MHz, CDCl₃): $\delta = 48.58$ (satellites: ${}^{1}J_{P=Se} = 742$ Hz, ${}^{1}J_{P-Se} = 358$ Hz). Anal. Calcd. for C₂₇H₂₉FePSe₂ (598.26): C, 54.21; H, 4.89; Fe, 9.33; P, 5.18. Found: C, 54.50; H, 4.62; Fe, 9.44; P, 5.23.

Acknowledgments

Authors would like to acknowledge the Multi-Access Chemical Service Center SB RAS for XRD measurements. The authors are also grateful to the Baikal Analytical Center for spectral measurements.

Supplementary Material

Supplementary data for this article can be found in the online version, at http://dx.doi.org/10.1016/j.tet.... .

References and notes

- (a) Togni, A.; Halterman, R. L. Metallocenes, Wiley: Weinheim, 1998; 1. (b) Phillips, E. S. Ferrocenes: Compounds, Properties and Applications, Nova Science Publishers, Incorporated, 2011.
- 2 (a) Biot, C. Curr. Med. Chem.: Anti-Infective Agents 2004, 3, 135-147; (b) van Staveren, D. R.; Metzler-Nolte, N. Chem. Rev. 2004, 104, 5931-5986; (c) Wu, X.; Go, M. L. in: Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine (Eds.: Gielen, M.; Tiekink, E. R. T.), Wiley, 2005, pp. 179-200; (d) Jaouen, G. Bioorganometallics: Biomolecules, Labeling, Medicine, Wiley: Weinheim, 2006.
- Stepnicka, P. Ferrocenes: Ligands, Materials and Biomolecules, 3. Wiley: Chichester, 2008.
- (a) Togni, A.; Hayashi, T. Ferrocenes: Homogeneous Catalysis, 4. Organic Synthesis, Materials Science, Wiley: Weinheim, 1995; (b) Dai, L.-X.; Hou, X.-L. Chiral Ferrocenes in Asymmetric Catalysis: Synthesis and Applications, Wiley: Weinheim, 2009.
- For recent examples, see: (a) Shekurova, R. P.; Miluykova, V. A.; 5 Islamov, D. R.; Krivolapov, D. B.; Kataeva, O. N.; Gerasimova, T. P.; Katsyuba, S. A.; Nasybullina, G. R.; Yanilkin, V. V.; Sinyashin, O. G. J. Organomet. Chem. 2014, 766, 40-48; (b) Zirakzadeh, A.; Herlein, A.; Groß, M. A.; Mereiter, K.; Wang, Y.; Weissensteiner, W. Organometallics 2015, 34, 3820–3832; (b) Clegg, W.; Crosbie, E.; Dale-Black, S. H.; Hevia, E.; Honeyman, G. W.; Kennedy, A. R.; Mulvey, R. E.; Ramsay, D. L.; Robertson, S. D. Organometallics 2015, 34.2580-2589.
- For recent examples, see: (a) Gu, H.; Ciganda, R.; Hernandez, R.; 6 Castel, P.; Zhao, P.; Ruiz, J.; Astruc, D. Macromolecules 2015, 48, 6071-6076; (b) Nguema Edzang, R. W.; Lejars, M.; Brisset, H.; Raimundo, J.-M.; Bressy, C. RSC Adv. 2015, 5, 77019-77026; (c) Xiang, J.; Wang, T.-K.; Zhao, Q.; Huang, W.; Ho, C.-L.; Wong, W.-Y. J. Mater. Chem. C 2016, 4, 921-928.
- (a) Manivannan, R.; Elango, K. P. J. Organomet. Chem. 2015, 799-7. 800, 99-107; (b) Kaur, N.; Kaur, P.; Singh, K. Sensor. Actuat. B-Chem. 2016, 229, 499-505; (c) Bizid, S.; Mlika, R.; Haj Said, A.; Chemli, M.; Korri Youssoufi, H. Sensor. Actuat. B-Chem. 2016, 226, 370-380.
- (a) Fouda, M. F. R.; Abd-Elzaher, M. M.; Abdelsamai, R. A.; Labib, 8 A. A. Appl. Organometal. Chem. 2007, 21, 613-625; (b) Ornelas, C. New J. Chem. 2011, 35, 1973-1985; (c) Butler, W. E.; Kelly, P. N.; Harry, A. G.; Tiedt, R.; White, B.; Devery, R.; Kenny, P. T. M. Appl. Organometal. Chem. 2013, 27, 361-365; (d) Babin, V. N.; Belousov, Yu. A.; Borisov, V. I.; Gumenyuk, V. V.; Nekrasov, Yu. S.; Ostrovskaya, L. A.; Sviridova, I. K.; Sergeeva, N. S.; Simenel, A. A.; Snegur, L. V. Russ. Chem. Bull. 2014, 63, 2405-2422.

- Orange solid, mp 80-82 °C (hexane). Yield: 353 mg (59%), $R_f \land 9$. (a) Snegur, L. V.; Nekrasov, Yu. S.; Sergeev, N. S.; Zhilina, Z. V.; Gumenyuk, V. V.; Starikova, Z. A.; Simenel, A. A.; Morozova, N. B.; Sviridova, I. K.; Babin, V. N. Appl. Organometal. Chem. 2008; 22, 139-147; (b) Simenel, A. A.; Morozova, E. A.; Snegur, L. V.; Zykova, S. I.; Kachala, V. V.; Ostrovskaya, L. A.; Bluchterova, N. V.; Fomina, M. M. Appl. Organometal. Chem. 2009, 23, 219-224; (c) Braga, S. S.; Silva, A. M. S.; Organometallics 2013, 32, 5626-5639; (d) Rodionov, A. N.; Zherebker, K. Ya.; Snegur, L. V.; Korlyukov, A. A.; Arhipov, D. E.; Peregudov, A. S.; Ilyin, M. M.; Ilyin, M. M. Jr.; Nikitin, O. M.; Morozova, N. B.; Simenel, A. A. J. Organomet. Chem. 2015, 783, 83-91.
 - (a) Roux, C.; Biot, C. Future Med. Chem. 2012, 4, 783-797; (b) Salas, 10. P. F.; Herrmann, C.; Orvig, C. Chem. Rev. 2013, 113, 3450-3492.
 - García-Barrantes, P. M.; Lamoureux, G. V.; Pérez, A. L.; García-11. Sánchez, R. N.; Martínez, A. R.; San Feliciano, A. Eur. J. Med. Chem. 2013, 70, 548-557.
 - 12. Maguene, G. M.; Jakhlal, J.; Ladyman, M.; Vallin, A.; Ralambomanana, D. A.; Bousquet, T.; Maugein, J.; Lebibi, J.; Pélinski, L. Eur. J. Med. Chem. 2011, 46, 31-38.
 - Ozbek, H. A.; Aktas, P. S.; Daran, J.-C.; Oskay, M.; Demirhan, F.; 13. Cetinkaya, B. Inorg. Chim. Acta 2014, 423, 435-442.
 - 14. Radulović, N. S.; Mladenović, M. Z.; Stojanović-Radić, Z.; Bogdanović, G. A.; Stevanović, D.; Vukićević, R. D. Mol. Divers. 2014, 18, 497-510.
 - Zheng, Y.; Wang, C.; Li, C.; Qiao, J.; Zhang, F.; Huang, M.; Ren, W.; 15. Dong, C.; Huang, J.; Zhou, H.-B. Org. Biomol. Chem. 2012, 10, 9689-9699
 - 16. Lillethorup, M.; Torbensen, K.; Ceccato, M.; Pedersen, S. U.; Daasbjerg, K. Langmuir 2013, 29, 13595-13604.
 - [17] (a) Geldbach, T. J. in Organometallic Chemistry, Vol. 34 (Eds.: 17. Fairlamb, I. J. S.; Lynam, J. M.), 2008, pp. 58-73; (b) Taylor, A. W.; Licence, P. ChemPhysChem 2012, 13, 1917-1926.
 - 18. (a) Lorenzo, A.; Aller, E.; Molina, P. Tetrahedron 2009, 65, 1397-1401; (b) Sun, R.; Wang, L.; Yu, H.; Abdin, Z.; Chen, Y.; Huang, J.; Tong, R. Organometallics 2014, 33, 4560-4573.
 - Boev, V. I.; Snegur, L. V.; Babin, V. N.; Nekrasov, Yu. S. Russ. Chem. 19. Rev. 1997, 66, 613-636.
 - (a) Casas-Solvas, J. M.; Vargas-Berenguel, A.; Capitán-Vallvey, L. F.; 20. Santoyo-González, F. Org. Lett. 2004, 6, 3687-3690; (b) Jiang, R.; Chu, X.-Q.; Xu, X.-P.; Wu, B.; Ji, S.-J. Aust. J. Chem. 2011, 64, 1530-1537; (c) Snegur, L. V.; Simenel, A. A.; Rodionov, A. N.; Boev, V. I. Russ. Chem. Bull. 2014, 63, 26-36.
 - 21. Shisodia, S. U.; Auricchio, S.; Citterio, A.; Grassi, M.; Sebastiano, R. Tetrahedron Lett. 2014, 55, 869-872.
 - Jiang, R.; Zhang, Y.; Shen, Y.-C.; Zhu, X.; Xu, X.-P.; Ji, S.-J. 22. Tetrahedron 2010, 66, 4073-4078.
 - 23. Jiang, R.; Shen, Y.; Zhang, Y.; Xu, X.; Shao, J.; Ji, S. Chin. J. Chem. 2011, 29, 1887-1893.
 - 24. Allali, N.; Mamane, V. Tetrahedron Lett. 2012, 53, 2604-2607.
 - 25. Ramachandran, R.; Prakash, G.; Selvamurugan, S.; Viswanathamurthi, P.; Malecki, J. G.; Ramkumar, V. Dalton Trans. 2014, 43, 7889–7902.
 - 26. Mazzoni, R.; Salmi, M.; Zacchini, S.; Zanotti, V. Eur. J. Inorg. Chem. 2013, 3710-3718.
 - 27. Qu, P.; Sun, C.; Ma, J.; Li, F. Adv. Synth. Catal. 2014, 356, 447-459.
 - Lu, L.; Ma, J.; Qu, P.; Li, F. Org. Lett. 2015, 17, 2350-2353. 28.
 - 29. Trofimov, B. A.; Oparina, L. A.; Tarasova, O. A.; Artem'ev, A. V.; Kobychev, V. B.; Gatilov, Yu. V.; Albanov, A. I.; Gusarova, N. K. Tetrahedron 2014, 70, 5954-5960.
 - 30. [30] (a) Trofimov, B. A.; Nedolya, N. A. Rev. Heteroatom Chem. 1993, 9, 205-229; (b) Nedolya, N. A.; Baranskii, V. A.; Trofimov, B. A. Russ. J. Org. Chem. 1995, 31, 287-290; (c) Nedolya, N. A.; Baranskii, V. A.; Trofimov, B. A. Russ. J. Org. Chem. 1995, 31, 291-295; (d) Milata, V.; Rádl, S.; Voltrová, S. in Science of Synthesis Product Subclass: (acyclic, cyclic, i.e. endocyclic C=C-O- unit Vol. 32: (Ed.: Mulzer, J.), Thieme, 2008, pp.589-756; (e) Hofmann, E.; Klimisch, H.-J.; Backes, R.; Vogelsang, R.; Franz, L.; Feuerhake, R. Vinyl Ethers, in Ullmann's Encyclopedia of Industrial Chemistry, 2011.
 - Katritzky, A. R.; Rachwal, S.; Rachwal, B. J. Chem. Soc., Perkin 31. Trans. 1 1990, 1717-1725.
 - 32 Oparina, L. A.; Artem'ev, A. V.; Kolyvanov, N. A.; Vysotskaya, O. V.; Chernysheva, N. A.; Smirnov, V. I.; Borodina, T. N.; Gusarova, N. K.; Trofimov, B. A. Heteroatom Chem. 2015, 26, 72-78.
 - 33. Kimura, T.; Murai, T. J. Org. Chem. 2005, 70, 952-959.
 - Trofimov, B. A.; Oparina, L. A.; Tarasova, O. A.; Artem'ev, A. V.; Kobychev, V. B.; Gatilov, Yu. V.; Albanov, A. I.; Gusarova, N. K. Tetrahedron 2014, 70, 5954-5960.

10

- Oparina, L. A.; Artem'ev, A. V.; Kolyvanov, N. A.; Vysotskaya, MANUSCRIPT O. V.; Chernysheva, N. A.; Smirnov, V. I.; Borodina, T. N.; Gusarova, N. K.; Trofimov, B. A. *Heteroatom Chem.* 2015, 26, 72-78.
- Trofimov, B. A.; Brandsma, L.; Arbuzova, S. N.; Malysheva, S. F.; Gusarova, N. K. *Tetrahedron Lett.* 1994, 35, 7647-7650.
- 37. Sheldrick, G. M. SHELX-97, Programs for Crystal Structure Analysis (Release 97-2), University of Göttingen, Germany, 1997.
- 38. SADABS, v. 2008-1, Bruker AXS, Madison, WI, USA, 2008.
- Thakur, A.; Mandal, D.; Sao, S.; Grosh, S. J. Organometal. Chem. 2012, 715, 129-135.
- Toma, Š.; Śiźmáriková, K.; Elečko, P.; Gajda, V. Chem. Papers 1986, 40, 747-754.
- 41. Busetto, L.; Mazzoni, R.; Salmi, M.; Zacchini, S.; Zanotti, V. *RCS Adv.* **2012**, *2*, 6810-6816.
- 42. Gao, Y.; Twamley, B.; Shreeve, J. M. Inorg. Chem. 2004, 43, 3406-4312.
- Kochetkova, N. S.; Boev, V. I.; Popova, L. V.; Babin, V. N. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1985, 34, 1278.