Tetrahedron Letters 52 (2011) 1020-1022

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Marc Vimolratana, Jillian L. Simard, Sean P. Brown*

Department of Medicinal Chemistry, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States

ARTICLE INFO

ABSTRACT

Article history: Received 12 November 2010 Revised 15 December 2010 Accepted 19 December 2010 Available online 29 December 2010

A mild and efficient Pd-catalyzed coupling of amides with 2-chloropyrimidines is described. The use of bidentate phosphines, such as Xantphos (**7**), as supporting ligands was found to be crucial for providing high yields of 2-(*N*-acylamino)pyrimidine coupling products **1**.

© 2010 Elsevier Ltd. All rights reserved.

etrahedro

The Pd-catalyzed cross-coupling of amides with aryl halides has emerged as a powerful method for the construction of (*N*-acylamino)arenes.¹ Efficient couplings of both primary and secondary amides with various aryl halides² and sulfonates³ have been reported. In the course of our medicinal chemistry efforts, we required access to substituted 2-(*N*-acylamino)pyrimidines **1** (Fig. 1). However, to our knowledge, there have been no reports of C–N cross-coupling reactions between amides and 2-halopyrimidines.⁴ Inspired by the broad functional group tolerance and robust nature of Pd-catalyzed processes, we set out to develop a related protocol for the synthesis of diverse pyrimidines **1**. In this Letter, we describe a method for the N-arylation of amides with 2-chloropyrimidines using a Pd catalyst derived from the bidentate phosphine ligand Xantphos (**7**) (Fig. 1).

Figure 1. 2-(N-Acylamino)pyrimidine architecture and phosphine ligands.

* Corresponding author. Tel.: +1 650 244 2258; fax: +1 650 244 2015. *E-mail address:* sebrown@amgen.com (S.P. Brown).

0040-4039/\$ - see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.12.088

 Table 1

 The effect of ligand on the Pd-catalyzed amidation of 2-chloropyrimidine

O Ph NH ₂	$\begin{array}{c c} N & \hline \\ Cl & N \end{array} & \begin{array}{c} Pd_2(dt) \\ \hline Cs_2CO_3, d \end{array}$	oa) ₃ , ligand ioxane, 100 °C	Ph N N H 8
Entry ^a	Ligand	Pd ₂ (dba) ₃ (%)	Yieid ^b (%)
1	None	0	2
2	None	5	2
3	XPhos (2)	5	29
4	XPhos (2)	5	43 ^c
5	BrettPhos (3)	5	35
6	Me ₄ tBuXPhos (4)	5	3
7	Me ₄ tBuXPhos (4)	5	41 ^d
8	BINAP (5)	5	89
9	dppf (6)	5	89
10	dppf (6)	5	92 ^c
11	Xantphos (7)	5	94
12	Xantphos (7)	5	91 ^c
13	Xantphos (7)	1	82

 a Reaction conditions: 2-chloropyrimidine (1.2 equiv), benzamide (1 equiv), Pd₂(dba)₃ (5 mol % or as otherwise indicated), ligand (1.5 equiv to Pd), Cs₂CO₃ (1.4 equiv), 1,4-dioxane (0.5 M), 100 °C.

^b Yields refer to pure isolated product after a reaction time of 16 h and are unoptimized.

^c Toluene and 110 °C were used instead of dioxane and 100 °C, respectively.

 $^{\rm d}~{\rm K_3PO_4}$ and t-BuOH was used instead of ${\rm Cs_2CO_3}$ and dioxane, respectively.

In our initial studies, we sought to define suitable conditions for the Pd-catalyzed coupling of benzamide with 2-chloropyrimidine (Table 1). Recently, Buchwald and co-workers have demonstrated the utility of monodentate biaryl phosphine ligands, such as XPhos (**2**), BrettPhos (**3**), and Me₄tBuXPhos (**4**) (Fig. 1), in the Pd-catalyzed amidation of aryl halides and sulfonates.^{2b-e,3b-e} Unfortunately, in our hands, Pd catalysts derived from these ligands performed poorly in the amidation of 2-chloropyrimidine (entries 3, 5, and 6). Given this surprising result, we hypothesized that the amidation product **8** may be interfering with catalyst turnover by promoting the formation of an inactive Pd-chelate complex. We, therefore, surmised that switching to bidentate phosphine ligands would prove beneficial. To our delight, Pd catalysts derived from

several bidentate phosphines, including BINAP (**5**), dppf (**6**), and Xantphos (**7**), all afforded excellent yields of the coupled product **8** (entries 8, 9, and 11).^{5,6} Xantphos (**7**), in particular, has been widely employed as a supporting ligand in Pd-catalyzed amidation reactions^{2a,3a,3h,7} and, on this basis, was chosen for further evaluation in this process.

We next examined the scope of the amide component in the Pdcatalyzed amidation of 2-chloropyrimidine (Table 2). A variety of amides, including aromatic, aliphatic, and cyclic derivatives, participated in the coupling reaction. Notably, electron-rich, electrondeficient, and *ortho*-substituted benzamides all coupled efficiently (entries 2–4). Considerable variation in the steric requirement of primary aliphatic amides was readily accommodated (entries 5 and 6). In fact, coupling of the sterically encumbered substrate pivalamide furnished the expected acylaminopyrimidine in nearly quantitative yield (entry 6). A cyclic secondary amide (or lactam) also reacted efficiently (entry 7). However, in accordance with previous disclosures, acyclic secondary amides proved to be reluctant coupling partners (entries 8 and 9).^{2a}

Table 2

The Pd-catalyzed coupling of 2-chloropyrimidine with representative amides

^a Reaction conditions: ArCl (1.2 equiv), amide (1 equiv), Pd₂(dba)₃ (5 mol %), Xantphos (15 mol %), Cs₂CO₃ (1.4 equiv), 1,4-dioxane (0.5 M), 100 °C. ^b Yields refer to nure isolated product after a contribution of the second

Table 3

The Pd-catalyzed coupling of benzamide with representative halopyrimidines

^a Reaction conditions: ArX (1.2 equiv), amide (1 equiv), $Pd_2(dba)_3$ (5 mol %), Xantphos (15 mol %), Cs_2CO_3 (1.4 equiv), 1,4-dioxane (0.5 M), 100 °C.

^b Yields refer to pure isolated product after a reaction time of 16 h and are unoptimized.

Significant variation in the halopyrimidine component of the amidation reaction was also permitted (Table 3). Both 2-chloroand 2-bromopyrimidine were suitable substrates for amidation with benzamide (entries 1 and 2). In general, substitution of the halopyrimidine nucleus with electron-withdrawing or electrondonating functional groups did not appreciably alter the efficiency of the reaction (entries 3–5). It is worth noting, however, that couplings of 2-chloro-4-methylpyrimidine (entry 6) and 2-chloro-4,6-dimethylpyrimidine (not shown) did not proceed to full conversion. We suspect that the poor reactivity of chloropyrimidines bearing methyl substituents at the 4- or 6-positions may be attributable to the relative acidity of the conjugated pseudobenzylic protons.

In conclusion, we have described a mild and efficient Pd-catalyzed coupling of amides with 2-chloropyrimidines for the formation of diverse 2-(*N*-acylamino)pyrimidines **1**. The use of bidentate phosphines, such as Xantphos (**7**), as supporting ligands was found to be important for achieving high yields of coupled products. Studies to evaluate the scope of 2-haloazine component of the amidation reaction are underway.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.12.088.

References and notes

For reviews, see: (a) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400; (b) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428; (c) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450; (d) Jiang, L.; Buchwald, S. L. In Metal-Catalyzed Cross-Coupling Reactions; de Meijere, A., Diederich, F., Eds., 2nd ed.; Wiley-VCH: Weinheim, Germany, 2004; (e) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338; (f) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27.

^b Yields refer to pure isolated product after a reaction time of 16 h and are unoptimized.

- 2. (a) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101; (b) Hicks, J. D.; Hyde, A. M.; Martinez Cuezva, A.; Buchwald, S. L. J. Am. Chem. Soc. **2009**, 131, 16720; (c) Ikawa, T.; Barder, T. E.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. **2007**, 129, 13001; (d) Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S. L. Org. Lett. 2008, 10, 3505; (e) Fors, B. P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, S. L. Tetrahedron 2009, 65, 6576; (f) Huang, J.; Chen, Y.; King, A. O.; Dilmeghani, M.; Larsen, R. D.; Faul, M. M. Org. Lett. 2008, 10, 2609; (g) Manley, P. J.; Bilodeau, M. T. Org. Lett. 2004, 6, 2433; (h) Audisio, D.; Messaoudi, S.; Peyrat, J.-F.; Brion, J.-D.; Alami, M. Tetrahedron Lett. 2007, 48, 6928; (i) Messaoudi, S.; Audisio, D.; Brion, J.-D.; Alami, M. Tetrahedron 2007, 63, 10202; (j) Artamkina, G. A.; Sergeev, A. G.; Beletskaya, I. P. Tetrahedron Lett. 2001, 42, 4381; (k) Hartwig, J. F.; Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.; Alcazar-Roman, L. M. J. Org. Chem. 1999, 64, 5575; (1) Ghosh, A.; Sieser, J. E.; Riou, M.; Cai, W.; Rivera-Ruiz, L. Org. Lett. 2003, 5, 2207; (m) Ligthart, G. B. W. L.; Ohkawa, H.; Sijbesma, R. P.; Meijer, E. W. J. Org. Chem. 2006, 71, 375; (n) McLaughlin, M.; Palucki, M.; Davies, I. W. Org. Lett. 2006, 8, 3311; (o) Ye, W.; Mo, J.; Zhao, T.; Xu, B. Chem. Commun. 2009, 3246; (p) Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 7734; (q) Shi, F.; Smith, M. R.; Maleczka, R. E. Org. Lett. 2006, 8, 1411; (r) Shen, Q.; Shekhar, S.; Stambuli, J. P.; Hartwig, J. F. Angew. Chem., Int. Ed. 2005, 44, 1371; (s) Kotecki, B. J.; Fernando, D. P.; Haight, A. R.; Lukin, K. A. Org. Lett. 2009, 11, 947.
- (a) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043; (b) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653; (c) Munday, R. H.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 2754; (d) Dooleweerdt, K.; Fors, B. P.; Buchwald, S. L. Org. Lett. 2010, 12, 2350; (e) Willis, M. C.; Brace, G. N.; Holmes, I. P. Synthesis 2005, 3229; (f) Ganton, M. D.; Kerr, M. A. Org. Lett. 2005, 7, 4777; (g) Klapars, A.; Campos, K.

R.; Chen, C.; Volante, R. P. *Org. Lett.* **2005**, *7*, 1185; (h) Imbriglio, J. E.; DiRocco, D.; Raghavan, S.; Ball, R. G.; Tsou, N.; Mosley, R. T.; Tata, J. R.; Colletti, S. *Tetrahedron Lett.* **2008**, *49*, 4897.

- Example of amidation of 2-chloropyridopyrimidines and 3-chloropurine, respectively: (a) Tikad, A.; Routier, S.; Akssira, M.; Leger, J.; Jarry, C.; Guillaumet, G. Synthesis 2009, 14, 2379; (b) Vilarrasa, J.; Caner, J. J. Org. Chem. 2010, 75, 4880.
- 5. Typical procedure for Pd-catalyzed amidation of 2-chloropyrimidines. A screw-cap vial was charged with benzamide (121 mg, 1.00 mmol), Cs_2CO_3 (456 mg, 1.40 mmol), Xantphos (87 mg, 0.15 mmol), Pd_2(dba)_3 (46 mg, 0.050 mmol), 2-chloropyrimidine (137 mg, 1.20 mmol), and 1,4-dioxane (2 mL). The mixture was sparged with nitrogen for 3 min, stirred for 16 h at 100 °C, and cooled to room temperature. The residue was diluted with dichloromethane, filtered through celite, and concentrated. The crude product was purified by silica gel flash chromatography (40–100% ethylacetate/hexanes) to provide *N*-(pyrimidin-2-yl)benzamide (188 mg, 0.85 mmol, 94% yield) as an amorphous solid (Table 1, entry 8).
- 6. The reaction efficiency observed with dppf (6) as a supporting ligand and toluene as solvent (Table 1, entry 10) is in discord with results disclosed in Ref. 4b pertaining to the amidation of a 3-chloropurine derivative (0% yield). The disparity between these two results accentuates the reactivity variation often observed among differing heterocyclic architectures.
- Example of amidation of 2-iodopurines: (a) Vandromme, L.; Legraverend, M.; Kreimerman, S.; Lozach, O.; Meijer, L.; Grierson, D. S. *Bioorg. Med. Chem.* 2007, 15, 130; (b) Piguel, S.; Legraverend, M. J. Org. Chem. 2007, 72, 7026.