### Accepted Manuscript

Chiral ferrocene-based P-S ligands for Ir-catalyzed hydrogenation of minimally functionalized olefins. Scope and limitations

Maria Biosca, Mercè Coll, Florian Lagarde, Emma Brémond, Lucie Routaboul, Eric Manoury, Oscar Pàmies, Rinaldo Poli, Montserrat Diéguez

PII: S0040-4020(15)00102-7

DOI: 10.1016/j.tet.2015.01.047

Reference: TET 26370

To appear in: Tetrahedron

Received Date: 13 November 2014

Revised Date: 9 January 2015

Accepted Date: 22 January 2015

Please cite this article as: Biosca M, Coll M, Lagarde F, Brémond E, Routaboul L, Manoury E, Pàmies O, Poli R, Diéguez M, Chiral ferrocene-based P-S ligands for Ir-catalyzed hydrogenation of minimally functionalized olefins. Scope and limitations, *Tetrahedron* (2015), doi: 10.1016/j.tet.2015.01.047.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



# Chiral ferrocene-based P-S ligands for Ir-catalyzed hydrogenation of minimally functionalized olefins. Scope and limitations

Maria Biosca,<sup>a</sup> Mercè Coll,<sup>a</sup> Florian Lagarde,<sup>b,c</sup> Emma Brémond,<sup>b,c</sup> Lucie Routaboul,<sup>b,c</sup> Eric Manoury<sup>b,c\*</sup>, Oscar Pàmies,<sup>a</sup> Rinaldo Poli,<sup>b,c,d</sup> Montserrat Diéguez<sup>a,\*</sup>

<sup>a</sup> Departament de Química Física i Inorgànica. Universitat Rovira i Virgili. C/ Marcel·li Domingo, s/n. 43007 Tarragona, Spain. Fax: 34-977559563; Tel: 34-977558780; email: montserrat.dieguez@urv.cat.

<sup>b</sup> CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France CNRS. Fax: +33-561553003; Tel: +33-561333174; E-mail: eric.manoury@lcc-toulouse.fr.

<sup>c</sup> Université de Toulouse, INPT, UPS, Toulouse, France.

<sup>d</sup> Institut Universitaire de France, 103, bd Saint-Michel, 75005 Paris, France.

#### Abstract

A family of 12 modular ferrocenyl planar chiral phosphine-thioethers (P,S) has been studied in the asymmetric hydrogenation of minimally functionalized alkenes. These ligands differ by the substituent on sulfur or by the linker between the ferrocene moiety and the sulfur atom (no linker, methylene or methyl substituted methylene linker bearing an additional element of chirality). The cationic iridium(cod) complexes of the different P,S ligands have been efficiently synthesized. For the majority of the ligands, coordination yielded only a single diasteroisomer with full control of the absolute configuration on sulfur. The different iridium complexes have been used in the hydrogenation of various di, tri and tetrasubstituted minimally functionalized olefins. Conversions and enantioselectivities are highly dependent on the ligand and substrate structure. Full conversions and low-to-excellent enantioselectivities could be obtained (maximum ee from 14 to 94% for 1,1-disubsituted alkenes, from 17 to 99% for trisubstituted olefins and 34% for the tetrasubstituted alkene).

#### Introduction

One of the most challenging tasks of organic chemistry is the synthesis of chiral compounds, which are necessary intermediates in the preparation of a wide range of pharmaceutical, agrochemical, fine chemical and natural products.<sup>1</sup> Up to date, asymmetric hydrogenation, the atom-economical addition of  $H_2$  to a C=X (X = C, N or O) bond to obtain chiral compounds is one of the most efficient, sustainable and straightforward chirality-generating process.1<sup>,2</sup> For the enantioselective hydrogenation of minimally functionalized olefins, Ir complexes with chiral P,N ligands have shown to be effective catalysts that complement the well-developed Rh/Ru catalysts for functionalized olefins.<sup>3</sup> Since the application of Ir-phosphine-oxazoline PHOX chiral catalysts in 1998 by Pfaltz and coworkers,<sup>4</sup> researchers have focused on Ir-catalysts based on a wide range of P-oxazoline ligands.<sup>5</sup> These new Ir-catalysts have significantly broadened the substrate scope. Despite the advances in Ir-based P-N catalysts, their activity and selectivity for reducing some significant minimally functionalized olefins still needs to be improved, especially since the demand for new optically active chiral centers has moved researchers into the Ir-catalyzed asymmetric reduction of more "exotic" substrates. This will require novel, highly efficient chiral ligands that are easier to handle, readily accessible, and that enhance the application range. In this respect, research has progressed to heterodonor P,X-ligands bearing more robust X-donor groups than oxazolines (pyridines,<sup>6</sup> amides,<sup>7</sup> thiazoles,<sup>8</sup> thiazolines,<sup>9</sup> oxazoles,<sup>10</sup> etc.). Some of us have recently described the successful use of non-N-donor heterodonor ligands, the phosphorus-thioether ligands, for the enantioselective Ir-catalyzed reduction of minimally functionalized olefins.<sup>11</sup> Ir-complexes modified with two families of Pthioether ligands efficiently catalyzed the hydrogenation of a large range of olefins, with results comparable to the best ones reported in the literature. Despite this success, other thioether-P ligands have not yet been reported and research is in progress to study the possibilities of this new class of ligands for this process.

Some of us have been involved for several years in the development of chiral ferrocene-based ligands for asymmetric catalysis.<sup>12</sup> Ferrocene-based ligands have been successfully employed in asymmetric catalysis for more than three decades.<sup>13</sup> They are particularly interesting because of the facile introduction of different chiralities (planar and central), their particular stereoelectronic properties and their high stability. Although they have emerged as a privileged ligand structures for asymmetric catalysis, their use in the Ir-catalyzed hydrogenation of minimally functionalized olefins has been scarce.<sup>14</sup>

Because we are interested in more versatile and robust Ir-catalysts, we took one further step and tested new ligands that incorporate the advantages of ferrocenes and the robustness of the thioether moiety. To this end, we tested a family of modular ferrocene phosphine-thioether ligands **1-12** (Figure 1) in the Ir-catalyzed hydrogenation of 34 minimally functionalized alkenes, including concrete examples with neighboring polar groups. The selection of chiral ligands contemplates systematic variations of the electronic and steric properties of the thioether moiety (ligands **1-9**),<sup>15</sup> the removal of the methylene spacer between the ferrocene and the thioether groups (ligand **10**),<sup>16</sup> as well as introducing a second stereogenic center in the methylene spacer (ligands **11-12**)<sup>17</sup>.



Figure 1. Ferrocene-based phosphine-thioether ligands 1-12

#### **Results and discussion**

#### Synthesis of Ir-catalyst precursors

The Ir-catalyst precursors were prepared in a two-step, one-pot procedure (Scheme 1). In the first step, the appropriate ligand reacts with 0.5 equivalent of  $[Ir(\mu-Cl)(cod)]_2$  for 1 h at reflux. Then, Cl<sup>-</sup>/BAr<sub>F</sub><sup>-</sup> counterion exchange was achieved by a reaction with sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBAr<sub>F</sub>) (1 equiv) in the presence of water at room temperature. The iridium catalyst precursors were isolated in pure form as air-stable orange solids in excellent yields (89-91%).



Scheme 1. Preparation of Ir-catalyst precursors [Ir(cod)(1-12)]BAr<sub>F</sub>

The elemental analyses were in agreement with the assigned structures. The HRMS-ESI spectra of  $[Ir(cod)(1-12)]BAr_F$  displayed the heaviest ions at m/z which correspond to the loss of the BAr<sub>F</sub> anion from the molecular species. Crystals suitable for X-ray diffraction analysis of  $[Ir(cod)(4)]BAr_F$  complex were also obtained in order to determine the coordination mode of the ferrocene-based phosphine-thioether ligands (Figure 2). The six-membered chelate ring adopted a boat conformation, with the thioether substituent in an equatorial position and the sulfur in an *R* configuration as has already been observed for similar complexes.<sup>18</sup>



**Figure 2.** X-ray structure of  $[Ir(cod)(4)]BAr_F$  (CCDC 1033867) (the hydrogen atoms and  $BAr_F$  anion have been omitted for clarity)

The <sup>1</sup>H, <sup>13</sup>C, and <sup>31</sup>P NMR spectra show the expected pattern for these  $C_1$ -complexes. The VT-NMR spectra in CD<sub>2</sub>Cl<sub>2</sub> (+35 to -75 °C) indicate the presence of a single isomer in all cases except for [Ir(cod)(8)]BAr<sub>F</sub> and [Ir(cod)(12)]BAr<sub>F</sub> that were mixtures of two isomers in equilibrium at a ratio of 1:2 and 1:6, respectively. These isomers may be attributed to the two possible diastereoisomers formed when the thioether coordinates to the metal atom (note that the coordinated S atom is a stereogenic center), to different conformers for the six-membered chelate ring, or to both. To obtain the spatial orientation of the thioether substituent and the conformation adopted by the sixmembered chelate ring we initially performed NOESY experiments of [Ir(cod)(4)]BAr<sub>F</sub> and [Ir(cod)(12)]BAr<sub>F</sub>. Since the NOE contacts for Ir/4 were not conclusive, we studied the [Ir(cod)(9)]BAr<sub>F</sub> analogue instead.

For complex  $[Ir(cod)(9)]BAr_F$  and the major isomer of  $[Ir(cod)(12)]BAr_F$ , the NOE indicated interactions between one of the methyl groups of the thioether xylyl substituent and the phenyl group of the phosphine moiety and of that same methyl group with either the methyl substituent (for Ir/12) or one of the hydrogen atoms (for Ir/9) at the alkyl backbone chain (Figure 3a). In addition, the NOE indicated interactions of the other xylyl methyl group with the other hydrogen of the alkyl backbone chain and with the unsubstituted cyclopentadiene ring. These interactions can be explained assuming an equatorial disposition of the thioether group and a boat conformation of the six-

membered chelate ring with an *R* configuration of the sulfur atom (Figure 3a), as in the X-ray structure of  $[Ir(cod)(4)]BAr_F$  (see Figure 2).



**Figure 3.** Main NOE contacts for (a)  $[Ir(cod)(9)]BAr_F$  (X= H) and major isomer of  $[Ir(cod)(12)]BAr_F$  (X= Me) and (b) minor isomer of  $[Ir(cod)(12)]BAr_F$ .

For the minor isomer of  $[Ir(cod)(12)]BAr_F$ , we found NOE interactions between one of the xylyl methyl groups and the phenyl group of the phosphine moiety and with the hydrogen at the alkyl backbone chain (Figure 3b). We also observed NOE contacts between the methyl substituent at the alkyl backbone chain and the substituted cyclopentadiene ring. All these NOE contacts are in agreement with a boat conformation of the six-membered chelate ring and the thioether substituent in an equatorial disposition but, in contrast to previous isomers, with an *S* configuration of the sulfur atom (Figure 3b). The assignments of the isomers of  $[Ir(cod)(12)]BAr_F$  were further confirmed by DFT studies. Figure 4 shows these calculated structures and the relative values of the formation enthalpy, being the isomer with an *R* configuration of the sulfur atom the most stable. Complexes  $[Ir(cod)(8)]BAr_F$  and  $[Ir(cod)(12)]BAr_F$  are the first examples of incomplete control of the sulfur chirality upon coordination for ferrocenyl phosphine-thioethers with this type of backbone: only one diastereoisomer was observed for all previously reported complexes, whatever the metal or the oxidation state.<sup>18,19</sup>



Major isomer (0 KJ/mol)



Minor isomer (11.8 KJ/mol)

**Figure 4.** Calculated structures (DFT) for cationic species of complex  $[Ir(cod)(12)]BAr_F$  and their relative formation enthalpies.

#### Asymmetric Ir-catalyzed hydrogenation

Asymmetric hydrogenation of minimally functionalized olefins is highly sensitive to the steric demands of the substrate.3 Unlike trisubstituted olefins, 1,1-disubstituted olefins have not been successfully hydrogenated until very recently.3<sup>e,h</sup> This is because the catalyst must control not only the face selectivity coordination (only two substituents compared with the three in trisubstituted olefins), but also the isomerization of the olefins to form the more stable *E*-trisubstituted substrates, which are hydrogenated to form the opposite enantiomer. Tetrasubstituted olefins also remain an unsolved class of substrate.3<sup>f,h</sup> The only Ir-catalysts that react with them with high yields and enantioselectivities contain the less bulky phosphanylmethyloxazoline ligands **1-12** in the hydrogenation of olefins with different steric demands, we initially tested them in the asymmetric reduction of the model tri-, di- and tetrasubstituted substrates **S1-S3** (Table 1).

Although low-to-moderate enantioselectivities were achieved in the reduction of tetrasubstituted substrate **S3**, high enantioselectivities were obtained in the hydrogenation of model tri- and disubstituted substrates (ee's up to 85% and 82% for **S1** and **S2**, respectively). The results also indicated that the ligand components need to be properly tuned for each substrate to maximize the enantioselectivities. For instance,

while for **S1** the best enantioselectivities were obtained with ligand **12** (entry 12), containing both planar and central chirality and a bulky 2,6-dimethylphenyl thioether substituent, the highest enantioselectivities for **S2** were achieved with ligands **4** and **10** (entries 4 and 10), containing only planar chirality and a bulky *tert*-butyl thioether group. Interestingly, for disubstituted substrate **S2** both enantiomers of the hydrogenated products could be obtained in high enantioselectivity by simply selecting the planar chirality.

|       |        | o si                |                   |  |                     |                   |                     |                   |  |
|-------|--------|---------------------|-------------------|--|---------------------|-------------------|---------------------|-------------------|--|
| Entry | Ligand | % Conv <sup>b</sup> | % ee <sup>c</sup> |  | % Conv <sup>b</sup> | % ee <sup>c</sup> | % Conv <sup>b</sup> | % ee <sup>c</sup> |  |
| 1     | 1      | 100                 | 25 (S)            |  | 100                 | 22 (S)            | 75                  | 9 ( <i>R</i> )    |  |
| 2     | 2      | 100                 | 0                 |  | 100                 | 30 ( <i>S</i> )   | <5                  | nd                |  |
| 3     | 3      | 100                 | 10 (S)            |  | 100                 | 33 ( <i>S</i> )   | <5                  | nd                |  |
| 4     | 4      | 100                 | 50 (R)            |  | 100                 | 81 ( <i>S</i> )   | 70                  | 32 ( <i>R</i> )   |  |
| 5     | 5      | 100                 | 46 ( <i>S</i> )   |  | 100                 | 73 ( <i>S</i> )   | 60                  | 34 ( <i>R</i> )   |  |
| 6     | 6      | 100                 | 11 ( <i>S</i> )   |  | 100                 | 34 ( <i>S</i> )   | 85                  | 6 ( <i>R</i> )    |  |
| 7     | 7      | 100                 | 30 ( <i>S</i> )   |  | 100                 | 16 ( <i>S</i> )   | 35                  | 8 ( <i>R</i> )    |  |
| 8     | 8      | 100                 | 24 (S)            |  | 100                 | 32 ( <i>S</i> )   | 65                  | 6 ( <i>R</i> )    |  |
| 9     | 9      | 100                 | 50 (R)            |  | 100                 | 26 (S)            | 49                  | 10 (S)            |  |
| 10    | 10     | 100                 | 15 (S)            |  | 100                 | 82 ( <i>R</i> )   | 95                  | 4(R)              |  |
| 11    | 11     | 100                 | 29 (S)            |  | 100                 | 3 ( <i>R</i> )    | 100                 | 9 ( <i>R</i> )    |  |
| 12    | 12     | 100                 | 85 (S)            |  | 100                 | 46 ( <i>R</i> )   | 100                 | 12 (S)            |  |

Table 1. Ir-catalyzed hydrogenation model substrates S1-S3<sup>a</sup>

<sup>a</sup> Reactions carried out at room temperature using 0.5 mmol of substrate and 1 mol% of Ir-catalyst precursor at 100 bar of  $H_2$  (for substrates **S1** and **S3**) and 1 bar (for **S2**) with dichloromethane (2 mL) as solvent. <sup>b</sup> Conversion measured by <sup>1</sup>H-NMR after 4 h (for **S1** and **S2**) and after 18 h (for **S3**). <sup>c</sup> Enantiomeric excess determined by GC.

We next evaluated the new Ir/1-12 catalyst precursors in the hydrogenation of a selected range of trisubstituted substrates, most of them with neighbouring polar groups.

The reduction of substrates with neighbouring polar groups has a large interest because they are relevant intermediates for the synthesis of highly valued chemicals. The most remarkable results are shown in Figure 5 (see SI for a complete set of results).



**Figure 5.** Selected results for the hydrogenation of trisubstituted olefins **S4-S23** using  $[Ir(cod)(1-12)]BAr_F$  catalyst precursors. Reaction conditions: 1 mol % catalyst precursor,  $CH_2Cl_2$  as solvent, 100 bar  $H_2$ , 4 h. <sup>a</sup> Reaction carried out for 18 h.

We first considered the reduction of aryl/alkyl substrates with Z-geometry S4-S6, which are usually hydrogenated less enantioselectively than *E*-trisubstituted olefins like S1.3 Unfortunately, as previous studies had already suggested, enantiocontrol was only moderate (ee's up to 46%). On the other hand, [Ir(cod)(4)]BAr<sub>F</sub> was very efficient in the reduction of several  $\alpha$ , $\beta$ -unsaturated esters S7-S11.<sup>21</sup> The ee's were between 95-98% and quite independent on the electronic nature of the substrate phenyl ring and on the substituent *cis* to the ester group. Being able to hydrogenate  $\alpha$ , $\beta$ -unsaturated esters at

such high ee's is of great importance because chiral carboxylic ester derivatives with tertiary benzylic aliphatic stereogenic centres are found in many fragrances, pharmaceuticals and natural products.<sup>22</sup> This methodology represents a more sustainable route for producing these chiral carboxylic esters than other common methods such as the Co-catalyzed asymmetric conjugated reduction of  $\alpha$ ,  $\beta$ -unsaturated esters using sodium borohydride<sup>23</sup> and the Cu- and Rh-catalyzed 1.4-reduction using very moisturesensitive hydrosilane reagents<sup>24</sup>. We then studied the reduction of alkenylboronic esters S12 and S13 which would form versatile chiral C-B bonds that can later become C-N, C-O and C-C bonds. The hydrogenation of alkenes containing one or two pinacolatoboron groups proceeded smoothly with enantioselectivities as high as 76%. Another important class of substrates that is receiving much attention are the  $\alpha,\beta$ -unsaturated enones. The hydrogenation of these substrates is an elegant path for obtaining ketones with a stereogenic center in the  $\alpha$  position of the carbonyl moiety. Nonetheless, they have been less studied and less successfully hydrogenated than other trisubstituted olefins.5<sup>i,u,v,25</sup> The hydrogenation of the model  $\alpha$ ,  $\beta$ -unsaturated enone **S14** proceeded with moderate enantiocontrol (ee's up to 47%). However, it was very interesting to find that enantioselectivities increased up to 85% in the hydrogenation of more challenging cyclic enones S15 and S16.5<sup>v</sup> These latter results prompted us to focus on the hydrogenation of other difficult olefins, such as enamide **S17**,<sup>26</sup> lactone **S18**<sup>27</sup> and enol **S19-S23**<sup>28</sup>. Very few catalytic systems can provide phosphinates high enantioselectivities for these substrates so it was remarkable that we could achieve highto-excellent enantioselectivities in all of them by carefully tuning the ligand components. Thus, in the reduction of enamide S17 and lactone S18, the highest enantioselectivities (up to 90%) were achieved using [Ir(cod)(11)]BAr<sub>F</sub> and  $[Ir(cod)(10)]BAr_F$ , respectively. [Ir(cod)(10)]BArF was also extremely efficient in the reduction of a range of sterically demanding enol phosphinates, including examples of pure alkyl-substituted enol phosphinates (Figure 5; S19-S23), providing comparable high enantioselectivities to those achieved with the best ones reported (ee's between 92-99%). The effective hydrogenation of this type of substrates opens up an appealing

route for obtaining chiral organophosphinates, which can be easily transformed into high-value compounds such as alcohols and phosphines.

Then we focused our attention on extending the range of disubstituted substrates (Figure 6). Our results with several  $\alpha$ -alkylstyrenes bearing decreasingly sterically demanding alkyl substituents (S2, S24 and S25) indicated that enantioselectivity is affected by the nature of the alkyl chain (ee's ranging from 14% to 82%). A plausible explanation is the competition between direct hydrogenation and isomerization. This is supported by the fact that the hydrogenation of substrate S2 bearing a *tert*-butyl group, which cannot isomerize, provides the highest enantioselectivity. We then tested a wide range of  $\alpha$ -*tert*-butylstyrene type substrates (S26-S32) to evaluate how the electronic and steric properties of the aryl group of the substrate affected the catalytic performance. The highest enantioselectivities (up to 90%) of the series were achieved in the reduction of substrates S26 and S27).



**Figure 6.** Selected results for the hydrogenation of 1,1-disubstituted olefins **S24-S34** using  $[Ir(cod)(1-12)]BAr_F$  catalyst precursors. Reaction conditions: 1 mol % catalyst precursor,  $CH_2Cl_2$  as solvent, 1 bar  $H_2$ , 4 h. <sup>a</sup> Reactions carried out for 18 h.

Finally, we studied whether the excellent enantioselectivities obtained in the hydrogenation of trisubstituted enol phosphinates (**S19-S23**, Figure 5) are maintained for the even more demanding disubstituted analogues **S33** and **S34**. Again,  $[Ir(cod)(10)]BAr_F$  was able to successfully hydrogenate these substrates with excellent enantioselectivities comparable to the best ones reported.<sup>29</sup>

#### Conclusions

Stable cationic iridium(cod) complexes with different P,S ligands proved to be good precatalysts for the asymmetric hydrogenation of minimally functionalized olefins in terms of activities and enantioselectivities. For many substrates, the ligand fine tuning, thanks to its high modularity, enabled achieving good to excellent levels of enantioselectivity, underlining their promising potential.

#### **Experimental Section**

#### **General considerations**

All reactions were carried out using standard Schlenk techniques under an argon atmosphere. Solvents were purified and dried by standard procedures. Phosphine-thioether ligands **11**<sup>17b</sup> and **12**<sup>30</sup> were prepared as previously reported. <sup>1</sup>H, <sup>13</sup>C, and <sup>31</sup>P NMR spectra were recorded using a 400 MHz or a 300 MHz spectrometer. Chemical shifts are relative to that of SiMe<sub>4</sub> (<sup>1</sup>H and <sup>13</sup>C) as internal standard or H<sub>3</sub>PO<sub>4</sub> (<sup>31</sup>P) as external standard. <sup>1</sup>H and <sup>13</sup>C assignments were made on the basis of <sup>1</sup>H-<sup>1</sup>H gCOSY and <sup>1</sup>H-<sup>13</sup>C gHSQC. Geometries of isomers of [Ir(cod)(**12**)]BAr<sub>F</sub> were optimized using the Gaussian 09 program,<sup>31</sup> employing the B3LYP<sup>32</sup> density functional and the LANL2DZ<sup>33</sup> basis set for iridium and iron and the 6-31G\* basis set for all other elements.<sup>34</sup> Solvation correction was applied in the course of the optimizations using the PCM model with the default parameters of dichloromethane.<sup>35</sup> The complexes were treated with the charge +1 and in singlet state. No symmetry constraints were applied.

The energies were further refined by applying dispersion correction using the DFT-D3<sup>36</sup> model. All energies reported are Gibbs free energies at 298.15 K and calculated as  $G_{reported} = G_{6-31G^*} + E_{DFT-D3}$ 

#### General procedure for the preparation of ligands 1-9

Ligands 1-4 and 6-7 were prepared as previously reported.<sup>15a</sup> The ligands 5, 8 and 9 were prepared using the same method from enantiomerically pure (*R*)-(2-diphenylthiophosphinoferrocenyl)methanol (100 mg, 0.23 mmol)<sup>12c</sup> and the corresponding thiol in protecting form 5-S, 8-S and 9-S as thiophosphine-thioethers. The deprotected (P,S) ligands were obtained by reaction of the protected forms with  $P(NMe_2)_3^{15a}$  and immediately engaged in the coordination reaction.

**5-S**: Yield 131 mg (97%). <sup>31</sup>P{<sup>1</sup>H} NMR (121 MHz, CDCl<sub>3</sub>),  $\delta$ : 41.7. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 1.63 (m, 6H, CH<sub>2</sub>, Ad), 1.75 (m, 6H, CH<sub>2</sub>, Ad), 1.97 (m, 3H, CH, Ad), 3.72 (s, 1H, CH=, Cp), 3.90 (br d, 1H, CH<sub>2</sub>, <sup>2</sup>*J*<sub>H-H</sub> = 13.0 Hz), 3.98 (br d, 1H, CH<sub>2</sub>, <sup>2</sup>*J*<sub>H-H</sub> = 13.0 Hz), 4.29 (s, 1H, CH=, Cp), 4.36 (s, 5H, CH=, Cp), 4.66 (s, 1H, CH=, Cp), 7.55-7.35 (m, 6H, CH=), 7.66 (m, 2H, CH=), 7.86 (m, 2H, CH=). <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 23.7 (CH<sub>2</sub>), 29.7 (CH, Ad), 36.3 (CH<sub>2</sub>, Ad), 43.3 (CH<sub>2</sub>, Ad), 44.8 (C, Ad), 69.0 (d, *J*<sub>C-P</sub> = 10.5 Hz, CH=, Cp), 70.9 (Cp), 73.4 (d, *J*<sub>C-P</sub> = 9.3 Hz, CH=, Cp), 74.0 (d, *J*<sub>C-P</sub> = 94.6 Hz, C, Cp,) 74.2 (d, *J*<sub>C-P</sub> = 12.7 Hz, CH=, Cp), 90.2 (d, *J*<sub>C-P</sub> = 12.0 Hz, C, Cp), 128.0 (d, *J*<sub>C-P</sub> = 3.0 Hz, CH=), 132.1 (d, *J*<sub>C-P</sub> = 10.6 Hz, CH=), 132.3 (d, *J*<sub>C-P</sub> = 10.6 Hz, CH=), 133.6 (d, *J*<sub>C-P</sub> = 86.0 Hz, C), 134.6 (d, *J*<sub>C-P</sub> = 87.1 Hz, C). HR/MS (ESI) *m/e*: 582.1273 (M, 100 %; calculated for C<sub>33</sub>H<sub>35</sub>PS<sub>2</sub>Fe: 582.1267).

**5**: Yield 114 mg (92%). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>),  $\delta$ : -23.5. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$ : 1.64 (m, 6H, CH<sub>2</sub>, Ad), 1.77 (m, 6H, CH<sub>2</sub>, Ad), 1.98 (m, 3H, CH, Ad), 3.62 (dd, 1H, CH<sub>2</sub>, <sup>2</sup>*J*<sub>H-H</sub> = 13.2 Hz, *J*<sub>H-P</sub> = 2.4 Hz), 3.73 (b, 1H, CH=, Cp), 3.75 (d, 1H, CH<sub>2</sub>, <sup>2</sup>*J*<sub>H-H</sub> = 13.2 Hz), 4.02 (s, 5H, CH=, Cp), 4.26 (m, 1H, CH=, Cp), 4.55 (m, 1H, CH=, Cp), 7.1-7.3 (m, 5H, CH=), 7.40 (m, 3H, CH=), 7.57 (m, 2H, CH=). <sup>13</sup>C{<sup>1</sup>H} NMR (100

MHz, CDCl<sub>3</sub>),  $\delta$ : 24.5 (d,  $J_{C-P} = 12.2$  Hz, CH<sub>2</sub>), 29.8 (CH, Ad), 36.5 (CH<sub>2</sub>, Ad), 43.4 (CH<sub>2</sub>, Ad), 44.9 (C, Ad), 69.5 (CH=, Cp), 70.0 (CH=, Cp), 71.1 (d,  $J_{C-P} = 3.8$  Hz, CH=, Cp), 71.5 (d,  $J_{C-P} = 3.8$  Hz, C, Cp,) 75.7 (d,  $J_{C-P} = 10.2$  Hz, CH=, Cp), 91.3 (d,  $J_{C-P} = 25.1$  Hz, C, Cp), 125.4 (C), 127.8 (CH=), 128.0 (d,  $J_{C-P} = 6.0$  Hz, CH=), 128.3 (d,  $J_{C-P} = 7.6$  Hz, CH=), 128.4 (C), 129.2 (d,  $J_{C-P} = 6.2$  Hz, CH=), 132.6 (d,  $J_{C-P} = 17.5$  Hz, CH=), 135.3 (d,  $J_{C-P} = 21.3$  Hz, CH=), 137.7 (d,  $J_{C-P} = 8.3$  Hz, C), 140.0 (d,  $J_{C-P} = 9.1$  Hz, C). TOF-MS (ESI+): m/z = 550.1546, calcd. for C<sub>33</sub>H<sub>35</sub>FePS [M]<sup>+</sup>: 550.1547).

**8-S**: Yield 110 mg (83%).<sup>31</sup>P{<sup>1</sup>H} NMR (121 MHz, CDCl<sub>3</sub>),  $\delta$ : 41.4. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 3.83 (m, 1H, CH=, Cp), 4.26 (s, 1H, CH=, Cp), 4.29 (d, 1H, CH<sub>2</sub>, <sup>2</sup>*J*<sub>H</sub>. H = 13.0 Hz), 4.32 (s, 5H, CH=, Cp) 4.42 (s, 1H, CH=, Cp), 4.60 (d, 1H, CH<sub>2</sub>, <sup>2</sup>*J*<sub>H</sub>. H = 13.0 Hz), 7.55-7.35 (m, 10H, CH=), 7.9-7.7 (m, 6H, CH=), 8.23 (m, 1H, CH=). <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 33.5 (CH<sub>2</sub>), 69.2 (d, *J*<sub>C-P</sub> = 10.4 Hz, CH=, Cp,), 71.0 (CH=, Cp), 73.8 (d, *J*<sub>C-P</sub> = 9.2 Hz, CH=, Cp,), 74.1 (d, *J*<sub>C-P</sub> = 96.3 Hz, C, Cp,), 74.6 (d, *J*<sub>C-P</sub> = 12.7 Hz, CH=, Cp,), 88.8 (d, *J*<sub>C-P</sub> = 12.0 Hz, C, Cp,), 125.4 (CH=), 125.5 (CH=), 126.1(CH=), 126.2 (CH=), 127.3 (CH=), 128.1 (d, *J*<sub>C-P</sub> = 2.7 Hz, 2C), 132.1 (d, *J*<sub>C-P</sub> = 10.8 Hz, CH=), 132.2 (d, *J*<sub>C-P</sub> = 10.7 Hz, CH=), 132.9 (C), 133.6 (d, *J*<sub>C-P</sub> = 70.2 Hz, C), 133.9 (C), 134.0 (C), 134.5 (d, *J*<sub>C-P</sub> = 71 Hz, C). HR/MS (ESI) *m/e*: 574.0642 (M, 75 %; calculated for C<sub>33</sub>H<sub>27</sub>PS<sub>2</sub>Fe: 574.0641), 415.0364(M-S(naphthyl), 100 %).

8: Yield 92 mg (89%).<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>),  $\delta$ : -24.1. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$ : 3.86 (m, 1H, CH=, Cp), 4.04 (s, 5H, CH=, Cp), 4.21 (b, 2H, CH<sub>2</sub>), 4.29 (m, 1H, CH=, Cp), 4.43 (m, 1H, CH=, Cp), 7.33 (m, 5H, CH=), 7.4-7.5 (m, 4H, CH=), 7.53 (m, 3H, CH=), 7.61 (m, 2H, CH=), 7.76 (m, 1H, CH=), 7.85 (m, 1H, CH=), 8.30 (m, 1H, CH=). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : 34.6 (d,  $J_{C-P} = 12.2$  Hz, CH<sub>2</sub>), 69.8 (CH=, Cp,), 70.0 (CH=, Cp), 71.6 (d,  $J_{C-P} = 3.8$  Hz, CH=, Cp,), 71.8 (d,  $J_{C-P} = 3.8$  Hz, CH=, Cp,), 76.1 (d,  $J_{C-P} = 8.4$  Hz, C, Cp,), 89.9 (d,  $J_{C-P} = 25.9$  Hz, C, Cp,), 125.6 (d,  $J_{C-P} = 6.8$  Hz, CH=), 126.3 (d,  $J_{C-P} = 5.9$  Hz, CH=), 127.6 (CH=), 128.1 (CH=), 128.2 (d,  $J_{C-P} = 6.1$  Hz, CH=), 128.4 (d,  $J_{C-P} = 5.9$  Hz, CH=), 128.6 (CH=), 129.3 (CH=), 132.6 (CH=), 132.7 (CH=), 133.2 (C), 134.0 (C), 134.3 (C), 135.1 (CH=), 135.4 (CH=), 128.4 (CH=), 128.4 (CH=), 128.3 (CH=), 128.4 (CH=), 128.4

137.6 (d,  $J_{C-P} = 7.6$  Hz, C), 139.7 (d,  $J_{C-P} = 9.1$  Hz, C). TOF-MS (ESI+): m/z = 542.0919, calcd. for C<sub>33</sub>H<sub>27</sub>FePS [M]<sup>+</sup>: 542.0921).

**9-S**: Yield 118 mg (93%). <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, CDCl<sub>3</sub>),  $\delta$ : 41.3. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$ : 2.42 (s, 6H, CH<sub>3</sub>), 3.78 (m, 1H, CH=, Cp), 3.86 (d, 1H, CH<sub>2</sub>, <sup>2</sup>J<sub>H-H</sub> = 12.7 Hz), 4.30 (m, 1H, CH=, Cp), 4.33 (d, 1H, CH<sub>2</sub>, <sup>2</sup>J<sub>H-H</sub> = 12.7 Hz), 4.34 (s, 5H, CH=, Cp), 4.45 (m, 1H, CH=, Cp), 7.0-7.2 (m, 3H, CH=), 7.4-7.6 (m, 6H, CH=), 7.7-7.8 (m, 2H, CH=), 7.8-7.9 (m, 2H, CH=). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : 22.2 (CH<sub>3</sub>), 33.6 (CH<sub>2</sub>) 69.2 (d,  $J_{C-P} = 10.3$  Hz, CH=, Cp), 70.9 (CH=, Cp), 73.3 (d,  $J_{C-P} = 9.2$  Hz, CH=, Cp), 74.4 (d,  $J_{C-P} = 95.1$ Hz, C, Cp), 74.5 (d,  $J_{C-P} = 12.5$  Hz, CH=, Cp), 89.6 (d,  $J_{C-P} = 12.2$  Hz, C, Cp), 128.0 (CH=), 128.1 (CH=), 128.1 (CH=), 128.2 (CH=), 131.2 (d,  $J_{C-P} = 3.5$  Hz, CH=), 131.3 (d,  $J_{C-P} = 3.5$  Hz, CH=), 132.1 (d,  $J_{C-P} = 10.8$  Hz, CH=), 132.3 (d,  $J_{C-P} = 10.7$  Hz, CH=),133.5 (d,  $J_{C-P} = 85.5$  Hz, C), 134.2 (C), 134.4 (d,  $J_{C-P} = 86.6$  Hz, C), 143.2 (C).

**9**: Yield 101 mg (91%). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>),  $\delta$ : -24.0. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$ : 2.43 (s, 6H, CH<sub>3</sub>), 3.46 (d, 1H, CH<sub>2</sub>, <sup>2</sup>*J*<sub>H-H</sub> = 11.2 Hz), 3.79 (b, 1H, CH=, Cp), 3.84 (d, 1H, CH<sub>2</sub>, <sup>2</sup>*J*<sub>H-H</sub> = 11.2 Hz), 4.00 (s, 5H, CH=, Cp), 4.27 (b, 1H, CH=, Cp), 4.37 (b, 1H, CH=, Cp), 7.07 (m, 3H, CH=), 7.39 (m, 5H, CH=), 7.55 (m, 3H, CH=), 7.59 (m, 2H, CH=). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : 22.0 (CH<sub>3</sub>), 34.3 (d, *J*<sub>C-P</sub> = 12.9 Hz, CH<sub>2</sub>) 69.6 (CH=, Cp), 69.7 (CH=, Cp), 71.3 (b, CH=, Cp), 75.9 (d, *J*<sub>C-P</sub> = 7.6 Hz, C, Cp), 90.4 (d, *J*<sub>C-P</sub> = 25.9 Hz, C, Cp), 127.8 (CH=), 127.9 (CH=), 128.0 (CH=), 128.1 (CH=), 128.2 (CH=), 129.1 (CH=), 132.5 (d, *J*<sub>C-P</sub> = 18.2 Hz, CH=), 134.2 (C), 135.2 (d, *J*<sub>C-P</sub> = 21.3 Hz, CH=), 137.6 (d, *J*<sub>C-P</sub> = 8.3 Hz, C), 139.7 (d, *J*<sub>C-P</sub> = 9.1 Hz, C), 143.1 (C). TOF-MS (ESI+): m/z = 520.1074, calcd. for C<sub>31</sub>H<sub>29</sub>FePS [M]<sup>+</sup>: 520.1077).

#### General procedure for the preparation of [lr(cod)(1-12)]BAr<sub>F</sub>

The corresponding ligand (0.074 mmol) was dissolved in  $CH_2Cl_2$  (5 mL) and  $[Ir(\mu-Cl)(cod)]_2$  (25.0 mg, 0.037 mmol) was added. The reaction mixture was refluxed at 40 °C for 1 hour. After 5 min at room temperature, NaBAr<sub>F</sub> (77.2 mg, 0.080 mmol) and water (5 mL) were added and the reaction mixture was stirred vigorously for 30 min at

room temperature. The phases were separated and the aqueous phase was extracted twice with  $CH_2Cl_2$ . The combined organic phases were dried with MgSO<sub>4</sub>. Evaporation of the solvent gave a brown-orange solid, which was purified by flash chromatography on neutral silica (dichloromethane/petroleum ether (1/1) as eluent) to produce the corresponding complex as an orange solid.

 $[Ir(cod)(1)]BAr_{F}$ : Yield 105.9 mg (89%). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>),  $\delta$ : 9.5 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$ : 1.12 (t, 3H, <sup>3</sup>J<sub>H-H</sub> = 7.6 Hz, CH<sub>3</sub>), 1.56 (m, 1H, CH<sub>2</sub>, cod), 1.71 (m, 1H, CH<sub>2</sub>, cod), 2.06 (m, 1H, CH<sub>2</sub>, cod), 2.32 (m, 1H, CH<sub>2</sub>, cod), 2.45 (m, 3H, CH<sub>2</sub>, cod), 2.64 (m, 1H, CH<sub>2</sub>, Et), 2.78 (d, 1H,  ${}^{2}J_{H-H} = 12.4$  Hz, CH<sub>2</sub>-S), 2.91 (m, 1H, CH<sub>2</sub>, Et), 3.47 (m, 1H, CH=, cod), 3.57 (m, 1H, CH=, cod), 4.00 (d, 1H,  ${}^{2}J_{H-H} =$ 12.4 Hz, CH<sub>2</sub>-S), 4.05 (s, 1H, CH=, Cp), 4.41 (m, 1H, CH=, Cp), 4.47 (s, 6H, CH=, Cp), 4.63 (m, 1H, CH=, cod), 4.94 (m, 1H, CH=, cod), 7.3-7.8 (m, 22H, CH=); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ: 14.6 (CH<sub>3</sub>), 27.4 (CH<sub>2</sub>, cod), 29.2 (CH<sub>2</sub>, cod), 31.2 (CH<sub>2</sub>), 31.6 (CH<sub>2</sub>, cod), 33.7 (CH<sub>2</sub>, Et), 35.0 (CH<sub>2</sub>, cod), 63.7 (d,  ${}^{1}J_{C-P} = 63.6$  Hz, C, Cp), 68.8 (d,  $J_{C-P} = 5.2$  Hz, CH=, Cp), 70.9 (CH=, cod and CH=, Cp), 72.3 (CH=, cod), 73.2 (CH=, Cp), 76.0 (d,  $J_{C-P} = 7.0$  Hz CH=, Cp), 84.3 (d,  ${}^{2}J_{C-P} = 15.5$  Hz, C, Cp), 90.5 (d,  $J_{C-P} = 14.6$  Hz, CH=, cod), 90.7 (d,  $J_{C-P} = 14.6$  Hz, CH=. cod), 117.4 (b, CH=, BAr<sub>F</sub>), 120.4-134.2 (aromatic carbons), 134.7 (b, CH=, BAr<sub>F</sub>), 161.7 (q,  ${}^{1}J_{C-B} = 48.8$  Hz, C-B, BAr<sub>F</sub>). TOF-MS (ESI+): m/z = 745.1336, calcd. for C<sub>65</sub>H<sub>49</sub>BF<sub>24</sub>FeIrPS [M-BAr<sub>F</sub>]<sup>+</sup>: 745.1332). Anal. calcd (%) for C<sub>65</sub>H<sub>49</sub>BF<sub>24</sub>FeIrPS: C, 48.55; H, 3.07; S, 1.99; found: C, 48.34; H, 3.06; S, 1.95.

[**Ir**(**cod**)(**2**)]**BAr**<sub>F</sub>: Yield 108.0 mg (90%). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>), δ: 9.1 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ: 1.18 (d, <sup>3</sup>*J*<sub>H-H</sub> = 6.8 Hz, 3H, CH<sub>3</sub>, <sup>*i*</sup>Pr), 1.41 (d, 3H, <sup>3</sup>*J*<sub>H-H</sub> = 6.8 Hz, 3H, CH<sub>3</sub>, <sup>*i*</sup>Pr), 1.62 (m, 1H, CH<sub>2</sub>, cod), 1.78 (m, 1H, CH<sub>2</sub>, cod), 2.17 (m, 2H, CH<sub>2</sub>, cod), 2.41 (m, 1H, CH<sub>2</sub>, cod), 2.51 (m, 2H, CH<sub>2</sub>, cod), 2.57 (m, 1H, CH<sub>2</sub>, cod), 2.84 (d, 3H, <sup>2</sup>*J*<sub>H-H</sub> = 11.6 Hz, CH<sub>2</sub>-S), 3.24 (q, 1H, <sup>2</sup>*J*<sub>H-H</sub> = 6.8 Hz, CH, <sup>*i*</sup>Pr), 3.55 (m, 1H, CH=, cod), 3.59 (m, 1H, CH=, Cp), 4.05 (d, 1H, *J*<sub>H-H</sub> = 11.6 Hz, CH<sub>2</sub>-S), 4.08 (s, 1H, CH=, Cp), 4.47 (s, 1H, CH=, Cp), 4.54 (s, 5H, CH=, Cp), 4.57 (s, 1H, CH=, Cp), 4.81 (m, 1H, CH=, cod), 5.04 (m, 1H, CH=, cod), 7.4-7.8 (m, 22H, CH=); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : 21.7 (CH<sub>3</sub>, <sup>*i*</sup>Pr), 23.1 (CH<sub>3</sub>, <sup>*i*</sup>Pr), 24.8 (b, CH<sub>2</sub>S), 27.3 (CH<sub>2</sub>, cod), 29.0 (CH<sub>2</sub>, cod), 31.5 (CH<sub>2</sub>, cod), 35.2 (b, CH<sub>2</sub>, cod), 43.3 (CH, <sup>*i*</sup>Pr), 63.7 (d, <sup>1</sup>J<sub>C-P</sub> = 63.9 Hz, C, Cp), 68.7 (d, J<sub>C-P</sub> = 6.2 Hz, CH=, Cp), 69.9 (CH=, cod), 71.0 (CH=, Cp), 71.5 (CH=, cod), 73.4 (d, <sup>3</sup>J<sub>C-P</sub> = 2.1 Hz, CH=, Cp), 76.2 (d, J<sub>C-P</sub> = 6.1 Hz, CH=, Cp), 84.0 (d, <sup>2</sup>J<sub>C-P</sub> = 16.0 Hz, C, Cp), 90.3 (d, J<sub>C-P</sub> = 11.4 Hz, CH=, cod), 90.8 (d, J<sub>C-P</sub> = 11.4 Hz, CH=, cod), 117.4 (b, CH=, BAr<sub>F</sub>), 120.4-134.2 (aromatic carbons), 134.7 (b, CH=, BAr<sub>F</sub>), 161.7 (q, <sup>1</sup>J<sub>C-B</sub> = 50.1 Hz, C-B, BAr<sub>F</sub>). TOF-MS (ESI+): m/z = 759.1485, calcd. for C<sub>66</sub>H<sub>51</sub>BF<sub>24</sub>FeIrPS [M-BAr<sub>F</sub>]<sup>+</sup>: 759.1489. Anal. calcd (%) for C<sub>66</sub>H<sub>51</sub>BF<sub>24</sub>FeIrPS: C, 48.87; H, 3.17; S, 1.98; found: C, 48.69; H, 3.15; S, 1.95.

[Ir(cod)(3)]BAr<sub>F</sub>: Yield 111.9 mg (91%). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>),  $\delta$ : 9.1 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ: 1.14 (m, 2H, CH<sub>2</sub>), 1.51 (m, 4H, CH<sub>2</sub>), 1.76 (m, 1H, CH<sub>2</sub>), 1.91 (m, 2H, CH<sub>2</sub>), 2.09 (m, 1H, CH<sub>2</sub>), 2.17 (m, 2H, CH<sub>2</sub>), 2.43 (m, 1H, CH<sub>2</sub>), 2.51 (m, 2H, CH<sub>2</sub>), 2.57 (m, 1H, CH<sub>2</sub>), 2.85 (m, 1H, CH-S), 2.90 (d, 1H,  ${}^{2}J_{H-H} = 10.8$ Hz, CH<sub>2</sub>-S), 3.51 (m, 1H, CH=, cod), 3.54 (m, 1H, CH=, cod), 4.06 (d, 1H,  ${}^{2}J_{H-H} = 10.8$ Hz, CH<sub>2</sub>-S), 4.08 (s, 1H, CH=, Cp), 4.46 (b, 1H, CH=, Cp), 4.53 (s, 6H, CH=, Cp), 4.76 (m, 1H, CH=, cod), 5.04 (m, 1H, CH=, cod), 7.4-7.8 (m, 22H, CH=); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : 24.4 (CH<sub>2</sub>), 26.0 (d,  ${}^{3}J_{C-P} = 3.8$  Hz, CH<sub>2</sub>-S), 27.1 (CH<sub>2</sub>), 27.3 (CH<sub>2</sub>), 28.7 (CH<sub>2</sub>), 29.7 (CH<sub>2</sub>), 31.5 (CH<sub>2</sub>), 32.3 (CH<sub>2</sub>), 34.1 (CH<sub>2</sub>), 35.2 (d,  ${}^{3}J_{C-P} = 3.8$  Hz, CH<sub>2</sub>-S), 51.9 (CH-S), 64.2 (d,  ${}^{1}J_{C-P} = 63.8$  Hz, C, Cp), 68.6 (d,  $J_{C-P} = 6.1$  Hz, CH=, Cp), 69.6 (CH=, cod), 71.0 (CH=, Cp), 71.3 (CH=, cod), 73.3 (d,  $J_{C-P} = 3.1$  Hz, CH=, Cp), 76.1 (d,  $J_{C-P} = 6.9$  Hz, CH=, Cp), 84.4 (d,  ${}^{2}J_{C-P} = 16.7$  Hz, C, Cp), 90.2 (d,  $J_{C-P} = 11.4$ Hz, CH=, cod), 90.7 (d, *J*<sub>C-P</sub> = 11.4 Hz, CH=, cod), 117.4 (b, CH=, BAr<sub>F</sub>), 120.4-134.3 (aromatic carbons), 134.7 (b, CH=, BAr<sub>F</sub>), 161.7 (q,  ${}^{1}J_{C-B} = 50.1$  Hz, C-B, BAr<sub>F</sub>). TOF-MS (ESI+): m/z = 799.1779, calcd. for  $C_{69}H_{55}BF_{24}FeIrPS [M-BAr_F]^+$ : 799.1802. Anal. calcd (%) for C<sub>69</sub>H<sub>55</sub>BF<sub>24</sub>FeIrPS: C, 49.86; H, 3.34; S, 1.93; found: C, 49.76; H, 3.31; S, 1.90.

 $[Ir(cod)(4)]BAr_F$ : Yield 108.9 mg (90%). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>),  $\delta$ : 10.3 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$ : 1.35 (s, 9H, CH<sub>3</sub>, <sup>*t*</sup>Bu), 1.52 (m, 1H, CH<sub>2</sub>, cod), 1.69 (m, 1H, CH<sub>2</sub>, cod), 2.18 (m, 2H, CH<sub>2</sub>, cod), 2.37 (m, 1H, CH<sub>2</sub>, cod), 2.53 (m, 3H, CH<sub>2</sub>, cod), 2.80 (d, 1H,  ${}^{2}J_{H-H} = 12.0$  Hz, CH<sub>2</sub>-S), 3.51 (m, 2H, CH=, cod), 4.15 (d, 1H,  ${}^{2}J_{H-H} = 12.0$  Hz, CH<sub>2</sub>-S), 4.17 (s, 1H, CH=, Cp), 4.48 (s, 1H, CH=, Cp), 4.56 (m, 6H, CH=, Cp), 5.35 (m, 1H, CH=, cod), 5.45 (m, 1H, CH=, cod), 7.4-7.8 (m, 22H, CH=);  ${}^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : 27.4 (CH<sub>2</sub>, cod), 28.4 (d,  $J_{C-P} = 2.4$  Hz, CH<sub>2</sub>, cod), 30.3 (d,  ${}^{3}J_{C-P} = 4.6$  Hz, CH<sub>2</sub>-S), 31.8 (CH<sub>3</sub>,  ${}^{7}$ Bu), 32.1 (d,  $J_{C-P} = 2.3$  Hz, CH<sub>2</sub>, cod), 35.7 (d,  $J_{C-P} = 4.7$  Hz, CH<sub>2</sub>, cod), 59.1 (C,  ${}^{7}$ Bu), 62.6 (d,  ${}^{1}J_{C-P} = 60.4$  Hz, C, Cp), 68.2 (CH=, cod), 69.0 (d,  $J_{C-P} = 6.2$  Hz, CH=, Cp), 69.1 (CH=, cod), 71.1 (CH=, Cp), 73.9 (d,  $J_{C-P} = 3.1$  Hz, CH=, Cp), 76.5 (d,  $J_{C-P} = 7.0$  Hz, CH=, Cp), 84.8 (d,  ${}^{2}J_{C-P} = 16.3$  Hz, C, Cp), 89.8 (d,  $J_{C-P} = 10.9$  Hz, CH=, cod), 90.5 (d,  $J_{C-P} = 11.6$  Hz, CH=, cod), 117.6 (b, CH=, BAr<sub>F</sub>), 120.6-134.3 (aromatic carbons), 134.9 (b, CH=, BAr<sub>F</sub>), 161.8 (q,  ${}^{1}J_{C-B} = 50.4$  Hz, C-B, BAr<sub>F</sub>). TOF-MS (ESI+): m/z = 773.1644, calcd. for C<sub>67</sub>H<sub>53</sub>BF<sub>24</sub>FeIrPS [M-BAr<sub>F</sub>]<sup>+</sup>: 773.1645. Anal. calcd (%) for C<sub>67</sub>H<sub>53</sub>BF<sub>24</sub>FeIrPS: C, 49.19; H, 3.27; S, 1.96; found: C, 49.11; H, 3.25; S, 1.95. Suitable crystals for X-ray diffraction were achieved by slow diffusion of petroleum ether to an isopropanol solution.

**[Ir(cod)(5)]BAr**<sub>F</sub>: Yield 114.2 mg (90%). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>), δ: 10.3 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ: 1.28 (m, 1H, CH), 1.48 (m, 1H, CH<sub>2</sub>, cod), 1.59-1.72 (m, 6H, CH<sub>2</sub>), 1.84 (m, 4H, CH<sub>2</sub>), 2.05-2.17 (m, 6H, CH<sub>2</sub>), 2.19 (m, 3H, CH<sub>2</sub>, cod), 2.33 (m, 1H, CH<sub>2</sub>, cod), 2.53 (m, 2H, CH<sub>2</sub>, cod), 2.58 (m, 1H, CH<sub>2</sub>, cod), 2.82 (d, 1H, <sup>2</sup> $J_{H-H}$  = 12.4 Hz, CH<sub>2</sub>-S), 4.17 (s, 1H, CH=, Cp), 3.48 (m, 2H, CH=, cod), 4.13 (d, 1H, <sup>2</sup> $J_{H-H}$  = 12.4 Hz, CH<sub>2</sub>-S), 4.18 (b, 1H, CH=, Cp), 4.46 (b, 1H, CH=, Cp), 4.51 (b, 1H, CH=, Cp), 4.55 (s, 5H, CH=, Cp), 5.49 (m, 2H, CH=, cod), 7.4-7.8 (m, 22H, CH=); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ: 22.6 (CH<sub>2</sub>, Ad), 27.2 (CH<sub>2</sub>, cod), 27.8 (d,  $J_{C-P}$  = 4.6 Hz, CH<sub>2</sub>, cod), 27.9 (CH<sub>2</sub>-S), 30.5 (CH<sub>2</sub>, Ad), 32.0 (CH<sub>2</sub>, cod), 35.3 (CH<sub>2</sub>, Ad), 35.6 (d,  $J_{C-P}$  = 4.5 Hz, CH<sub>2</sub>, cod), 43.9 (CH<sub>2</sub>, Ad), 62.7 (d, <sup>1</sup> $J_{C-P}$  = 63.8 Hz, C, Cp), 67.4 (CH=, cod), 68.6 (CH=,cod), 68.7 (d,  $J_{C-P}$  = 6.0 Hz, CH=, Cp), 70.9 (CH=, Cp), 73.6 (d,  $J_{C-P}$  = 3.8 Hz, CH=, Cp), 76.2 (d,  $J_{C-P}$  = 7.6 Hz, CH=, Cp), 84.7 (d, <sup>2</sup> $J_{C-P}$  = 16.7 Hz, C, Cp), 89.7 (d,  $J_{C-P}$  = 10.6 Hz, CH=, cod), 90.5 (d,  $J_{C-P}$  = 12.2 Hz, CH=, cod), 117.4 (b, CH=, BAr<sub>F</sub>), 120.4-134.4 (aromatic carbons), 134.7 (b, CH=, BAr<sub>F</sub>), 161.7 (q, <sup>1</sup> $J_{C-B}$  = 50.2 Hz, C-B, BAr<sub>F</sub>). TOF-MS (ESI+): m/z = 851.2112, calcd. for C<sub>73</sub>H<sub>59</sub>BF<sub>24</sub>FeIrPS [M-BAr<sub>F</sub>]<sup>+</sup>: 851.2115. Anal. calcd (%) for C<sub>73</sub>H<sub>59</sub>BF<sub>24</sub>FeIrPS: C, 51.15; H, 3.47; S, 1.87; found: C, 51.11; H, 3.44; S, 1.85.

 $[Ir(cod)(6)]BAr_{F}$ : Yield 109.1 mg (89%). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.8 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ: 1.72 (m, 2H, CH<sub>2</sub>, cod), 1.96 (m, 1H, CH<sub>2</sub>-S, cod), 2.24 (m, 1H, CH<sub>2</sub>, cod), 2.46 (m, 2H, CH<sub>2</sub>, cod), 2.57 (m, 2H, CH<sub>2</sub>, cod), 3.31 (d, 1H,  ${}^{2}J_{H-H} =$ 12.8 Hz, CH<sub>2</sub>), 3.70 (m, 1H, CH=, cod), 3.72 (m, 1H, CH=, cod), 3.94 (m, 1H, CH=, cod), 4.17 (s, 1H, CH=, Cp), 4.43 (d, 1H,  ${}^{2}J_{H-H} = 12.8$  Hz, CH<sub>2</sub>), 4.51 (s, 1H, CH=, Cp), 4.59 (s, 1H, CH=, Cp), 4.65 (s, 5H, CH=, Cp), 4.88 (m, 1H, CH=, cod), 7.3-7.8 (b, 27H, CH=); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : 27.1 (CH<sub>2</sub>, cod), 29.8 (d,  $J_{C-P}$  = 2.4 Hz, CH<sub>2</sub>, cod), 30.9 (d,  $J_{C-P} = 2.4$  Hz, CH<sub>2</sub>, cod), 34.8 (d,  $J_{C-P} = 4.6$  Hz, CH<sub>2</sub>, cod), 38.7 (d,  ${}^{3}J_{C-P} =$ 3.5 Hz, CH<sub>2</sub>-S), 64.2 (d,  ${}^{1}J_{C-P} = 63.6$  Hz, C, Cp), 68.6 (d,  $J_{C-P} = 7.0$  Hz, CH=, Cp), 70.9 (CH=, cod), 71.1 (CH=, Cp), 72.9 (CH=, cod), 73.5 (d, J<sub>C-P</sub> = 3.2 Hz, CH=, Cp), 76.2 (d,  $J_{C-P} = 6.2$  Hz, CH=, Cp), 84.0 (d,  ${}^{2}J_{C-P} = 16.3$  Hz, C, Cp), 90.8 (d,  $J_{C-P} = 11.7$  Hz, CH=, cod), 94.4 (d,  $J_{C-P} = 10.8$  Hz, CH=, cod), 117.4 (b, CH=, BAr<sub>F</sub>), 120.4-134.2 (aromatic carbons), 134.7 (b, CH=, BAr<sub>F</sub>), 161.6 (q,  ${}^{1}J_{C-B} = 49.6$  Hz, C-B, BAr<sub>F</sub>). TOF-MS (ESI+): m/z = 793.1330, calcd. for  $C_{69}H_{49}BF_{24}FeIrPS [M-BAr_F]^+$ : 793.1332. Anal. calcd (%) for C<sub>69</sub>H<sub>49</sub>BF<sub>24</sub>FeIrPS: C, 50.04; H, 2.98; S, 1.94; found: C, 49.98; H, 2.96; S, 1.92.

**[Ir(cod)(7)]BAr<sub>F</sub>**: Yield 112.5 mg (91%). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>), δ: 8.9 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ: 1.71 (m, 2H, CH<sub>2</sub>, cod), 1.85 (m, 1H, CH<sub>2</sub>, cod), 2.21 (m, 2H, CH<sub>2</sub>, cod), 2.41 (m, 1H, CH<sub>2</sub>, cod), 2.54 (m, 3H, CH<sub>2</sub>, cod), 2.67 (d, 1H,  ${}^{2}J_{H-H} =$ 12.4 Hz, CH<sub>2</sub>), 3.64 (m, 1H, CH=, cod), 3.72 (m, 1H, CH=, cod), 3.76 (d, 1H,  ${}^{2}J_{H-H} =$ 12.4 Hz, CH<sub>2</sub>), 3.83 (d, 1H,  ${}^{2}J_{H-H} =$  13.2 Hz, CH<sub>2</sub>-Ph), 4.11 (s, 1H, CH=, Cp), 4.22 (d, 1H,  ${}^{2}J_{H-H} =$  13.2 Hz, CH<sub>2</sub>-Ph), 4.41 (s, 1H, CH=, Cp), 4.42 (s, 1H, CH=, Cp), 4.47 (s, 5H, CH=, Cp), 4.90 (m, 1H, CH=, cod), 5.13 (m, 1H, CH=, cod), 7.1-7.8 (b, 27H, CH=); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ: 27.9 (d,  $J_{C-P} =$  1.6 Hz, CH<sub>2</sub>, cod), 29.6 (d,  $J_{C-P} =$ 2.4 Hz, CH<sub>2</sub>, cod), 31.8 (d,  $J_{C-P} =$  2.3 Hz, CH<sub>2</sub>, cod), 32.8 (d,  $J_{C-P} =$  4.7 Hz, CH<sub>2</sub>-S), 35.1 (d,  $J_{C-P} =$  4.7 Hz, CH<sub>2</sub>, cod), 44.5 (CH<sub>2</sub>-Ph), 64.5 (d, <sup>1</sup> $J_{C-P} =$  63.6 Hz, C, Cp), 69.1 (d,  $J_{C-P} =$  7.0 Hz, CH=, Cp), 71.2 (CH=, Cp), 72.1 (CH=, cod), 73.4 (CH=, cod), 73.5 (d,  $J_{C-P} = 3.9$  Hz, CH=, Cp), 76.2 (d,  $J_{C-P} = 7.0$  Hz, CH=, Cp), 84.3 (d,  ${}^{2}J_{C-P} = 16.3$  Hz, C, Cp), 90.7 (d,  $J_{C-P} = 11.6$  Hz, CH=, cod), 91.2 (d,  $J_{C-P} = 11.6$  Hz, CH=, cod), 117.6 (b, CH=, BAr<sub>F</sub>), 120.6-134.2 (aromatic carbons), 135.0 (b, CH=, BAr<sub>F</sub>), 161.8 (q,  ${}^{1}J_{C-B} = 49.7$  Hz, C-B, BAr<sub>F</sub>). TOF-MS (ESI+): m/z = 807.1488, calcd. for C<sub>70</sub>H<sub>51</sub>BF<sub>24</sub>FeIrPS [M-BAr<sub>F</sub>]<sup>+</sup>: 807.1489. Anal. calcd (%) for C<sub>70</sub>H<sub>51</sub>BF<sub>24</sub>FeIrPS: C, 50.34; H, 3.08; S, 1.92; found: C, 50.27; H, 3.06; S, 1.89.

 $[Ir(cod)(8)]BAr_F$ : Yield 114.9 mg (91%). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>),  $\delta$ : 6.6 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ: 1.62 (m, 3H, CH<sub>2</sub>, cod), 1.78 (m, 2H, CH<sub>2</sub>, cod), 2.28 (m, 3H, CH<sub>2</sub>, cod and CH<sub>2</sub>-S), 2.46 (m, 1H, CH<sub>2</sub>, cod, and CH<sub>2</sub>-S), 3.71 (m, 1H, CH=, Cp), 3.86 (m, 1H, CH=, cod), 4.04 (m, 1H, CH=, cod), 4.26 (m, 1H, CH=, cod), 4.51 (m, 1H, CH=, Cp), 4.59 (s, 1H, CH=, Cp), 4.69 (s, 5H, CH=, Cp), 4.70 (m, 1H, CH=, cod), 7.4-7.9 (b, 29H, CH=); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ: 27.8 (b, CH<sub>2</sub>, cod), 29.7 (b, CH<sub>2</sub>, cod), 30.2 (b, CH<sub>2</sub>, cod), 31.4 (CH<sub>2</sub>-S), 33.4 (CH<sub>2</sub>-S), 64.3 (d,  ${}^{1}J_{C-P} = 64.2$  Hz, C, Cp), 68.7 (d, J<sub>C-P</sub> = 6.4 Hz, CH=, Cp), 71.3 (CH=, Cp and CH=, cod), 73.8 (CH=, cod), 76.3 (d,  $J_{C-P} = 5.9$  Hz, CH=, Cp), 84.9 (d,  ${}^{2}J_{C-P} = 20.4$  Hz, C, Cp), 90.9 (d,  $J_{C-P} =$ 10.8 Hz, CH=, cod), 95.0 (d,  $J_{C-P} = 12.2$  Hz, CH=, cod), 117.4 (b, CH=, BAr<sub>F</sub>), 120.4-134.2 (aromatic carbons), 134.8 (b, CH=, BAr<sub>F</sub>), 161.7 (q,  ${}^{1}J_{C-B} = 49.4$  Hz, C-B, BAr<sub>F</sub>). TOF-MS (ESI+): m/z = 843.1487, calcd. for  $C_{73}H_{51}BF_{24}FeIrPS$  [M-BAr<sub>F</sub>]<sup>+</sup>: 843.1489. Anal. calcd (%) for C<sub>73</sub>H<sub>51</sub>BF<sub>24</sub>FeIrPS: C, 51.39; H, 3.01; S, 1.88; found: C, 51.33; H, 2.99; S, 1.85. Major isomer (66%): <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>, 228 K), δ: 6.7 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 228 K), δ: 1.5 - 2.5 (b, 8H, CH<sub>2</sub>, cod), 3.64 (m, 2H, CH=, cod), 3.70 (d, 1H,  ${}^{2}J_{H-H}$ = 12.0 Hz, CH<sub>2</sub>), 3.88 (m, 1H, CH=, cod), 3.99 (b, 1H, CH=, Cp), 4.17 (d, 1H,  ${}^{2}J_{H-H}$ = 12.0 Hz, CH<sub>2</sub>), 4.50 (b, 1H, CH=, Cp), 4.60 (m, 1H, CH=, Cp), 4.63 (b, 1H, CH=, cod), 4.67 (s, 5H, CH=, Cp), 6.6-8.5 (m, 29H, CH=). Minor isomer (33%): <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>, 228 K), δ: 8.8 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 228 K),  $\delta$ : 1.5 - 2.7 (b, 8H, CH<sub>2</sub>, cod), 3.28 (d, 1H,  ${}^{2}J_{H-H}$ = 12.0 Hz, CH<sub>2</sub>), 3.64 (m, 2H, CH=, cod), 3.94 (m, 1H, CH=, cod), 4.20 (b, 1H, CH=, Cp), 4.45 (b, 1H, CH=, Cp), 4.60 (b, 1H, CH=, Cp), 4.73 (s, 5H, CH=, Cp), 4.88 (m, 1H, CH=, cod), 6.6-8.5 (m, 29H, CH=).

 $[Ir(cod)(9)]BAr_{F}$ : Yield 113.4 mg (91%). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>),  $\delta$ : 5.9 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ: 1.76 (m, 2H, CH<sub>2</sub>, cod), 2.06 (m, 1H, CH<sub>2</sub>, cod), 2.20 (s, 3H, CH<sub>3</sub>), 2.29 (m, 3H, CH<sub>2</sub>, cod), 2.41 (m, 1H, CH<sub>2</sub>, cod), 2.56 (m, 1H, CH<sub>2</sub>, cod), 2.78 (s, 3H, CH<sub>3</sub>), 3.42 (d, 1H,  ${}^{2}J_{H-H} = 13.2$  Hz, CH<sub>2</sub>), 3.70 (m, 1H, CH=, cod), 3.83 (m, 1H, CH=, cod), 3.92 (m, 2H, CH=, cod and Cp), 3.99 (d, 1H,  ${}^{2}J_{H-H} = 13.2$  Hz, CH<sub>2</sub>), 4.51 (m, 2H, CH=, cod and Cp), 4.65 (s, 6H, CH=, Cp), 7.1-7.8 (b, 25H, CH=); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ: 22.9 (CH<sub>3</sub>), 23.1 (CH<sub>3</sub>), 27.9 (b, CH<sub>2</sub>, cod), 30.6 (b, CH<sub>2</sub>, cod), 30.8 (d,  $J_{C-P} = 2.3$  Hz, CH<sub>2</sub>, cod), 33.9 (d,  $J_{C-P} = 4.6$  Hz, CH<sub>2</sub>, cod), 35.2 (b, CH<sub>2</sub>-S), 64.1 (d,  ${}^{1}J_{C-P} = 63.9$  Hz, C, Cp), 68.5 (CH=, cod), 68.7 (d,  $J_{C-P} = 6.1$  Hz, CH=, Cp), 71.2 (CH=, Cp), 73.0 (CH=, cod), 73.9 (d,  $J_{C-P} = 2.1$  Hz, CH=, Cp), 76.3 (d,  $J_{C-P} = 7.8$ Hz, CH=, Cp), 85.3 (d,  ${}^{2}J_{C-P}$  = 16.0 Hz, C, Cp), 89.9 (d,  $J_{C-P}$  = 12.2 Hz, CH=, cod), 94.2 (d,  $J_{C-P} = 11.4$  Hz, CH=, cod), 117.4 (b, CH=, BAr<sub>F</sub>), 120.4-134.0 (aromatic carbons), 134.7 (b, CH=, BAr<sub>F</sub>), 140.3 (C), 142.0 (C), 161.6 (q,  ${}^{1}J_{C-B} = 49.6$  Hz, C-B, BAr<sub>F</sub>). TOF-MS (ESI+): m/z = 821.1642, calcd. for  $C_{71}H_{53}BF_{24}FeIrPS$  [M-BAr<sub>F</sub>]<sup>+</sup>: 821.1645. Anal. calcd (%) for C<sub>71</sub>H<sub>53</sub>BF<sub>24</sub>FeIrPS: C, 50.64; H, 3.17; S, 1.90; found: C, 50.61; H, 3.16; S, 1.88.

**[Ir(cod)(10)]BAr**<sub>F</sub>: Yield 108.0 mg (90%). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>), δ: 25.0 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ: 1.09 (s, 9H, CH<sub>3</sub>, 'Bu), 1.68 (m, 1H, CH<sub>2</sub>, cod), 1.84 (m, 1H, CH<sub>2</sub>, cod), 2.16 (m, 2H, CH<sub>2</sub>, cod), 2.32 (m, 1H, CH<sub>2</sub>, cod), 2.42 (m, 1H, CH<sub>2</sub>, cod), 2.52 (m, 2H, CH<sub>2</sub>, cod), 3.79 (m, 1H, CH=, cod), 4.32 (s, 5H, CH=, Cp), 4.49 (b, 1H, CH=, Cp), 4.60 (m, 1H, CH=, cod), 4.79 (m, 1H, CH=, cod), 4.95 (b, 1H, CH=, Cp), 5.21 (s, 1H, CH=, Cp), 5.54 (s, 1H, CH=, cod), 7.3-7.8 (m, 22H, CH=); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ: 27.4 (d,  $J_{C-P} = 2.3$  Hz, CH<sub>2</sub>, cod), 29.1 (d,  $J_{C-P} = 2.2$  Hz, CH<sub>2</sub>, cod), 31.0 (CH<sub>3</sub>, <sup>*i*</sup>Bu), 33.2 (b, CH<sub>2</sub>, cod), 35.5 (d,  $J_{C-P} = 4.5$  Hz, CH<sub>2</sub>, cod), 61.8 (C, <sup>*i*</sup>Bu), 70.8 (CH=, Cp), 71.7 (CH=, cod), 72.7 (CH=, Cp), 73.2 (CH=, cod), 73.6 (d,  $J_{C-P}$ = 9.1 Hz, CH=, Cp), 79.2 (d, <sup>1</sup> $J_{C-P} = 62.1$  Hz, C, Cp), 80.2 (d,  $J_{C-P} = 14.5$  Hz, CH=, Cp), 85.2 (d, <sup>2</sup> $J_{C-P} = 26.4$  Hz, C, Cp), 86.4 (d,  $J_{C-P} = 14.5$  Hz, CH=, cod), 94.3 (d,  $J_{C-P} = 9.9$ Hz, CH=, cod), 117.4 (b, CH=, BAr<sub>F</sub>), 120.4-133.1 (aromatic carbons), 134.7 (b, CH=, BAr<sub>F</sub>), 161.7 (q,  $J_{C-B} = 49.4$  Hz, C-B, BAr<sub>F</sub>). TOF-MS (ESI+): m/z = 759.1484, calcd. for C<sub>66</sub>H<sub>51</sub>BF<sub>24</sub>FeIrPS [M-BAr<sub>F</sub>]<sup>+</sup>: 759.1489. Anal. calcd (%) for C<sub>66</sub>H<sub>51</sub>BF<sub>24</sub>FeIrPS: C, 48.87; H, 3.17; S, 1.98; found: C, 48.81; H, 3.15; S, 1.94.

**[Ir(cod)(11)]BAr**<sub>F</sub>: Yield 111.2 mg (90%). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>), δ: 3.9 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ: 0.71 (d, 3H, <sup>3</sup>*J*<sub>H-H</sub> = 6.8 Hz, CH<sub>3</sub>), 1.69 (m, 2H, CH<sub>2</sub>, cod), 2.01 (m, 1H, CH<sub>2</sub>, cod), 2.17 (m, 1H, CH<sub>2</sub>, cod), 2.42 (m, 2H, CH<sub>2</sub>, cod), 2.46 (m, 1H, CH<sub>2</sub>, cod), 2.56 (m, 1H, CH<sub>2</sub>, cod), 3.48 (m, 1H, CH=, cod), 3.54 (m, 1H, CH=, cod), 4.11 (s, 1H, CH=, Cp), 4.32 (m, 1H, CH=, cod), 4.50 (s, 7H, CH=, Cp), 4.61 (q, 1H, <sup>3</sup>*J*<sub>H-H</sub> = 6.8 Hz, CH), 4.72 (m, 2H, CH=, cod), 7.5-7.8 (b, 22H, CH=); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ: 22.9 (CH<sub>2</sub>, cod), 29.7 (CH<sub>2</sub>, cod), 31.0 (CH<sub>2</sub>, cod), 34.9 (CH<sub>2</sub>, cod), 47.7 (CH), 63.5 (d, <sup>1</sup>*J*<sub>C-P</sub> = 61.5 Hz, C, Cp), 69.1 (d, *J*<sub>C-P</sub> =6.9 Hz, CH=, Cp), 70.9 (CH=, cod), 71.5 (CH=, Cp), 72.1 (CH=,cod), 74.1 (CH=, cod), 74.5 (d, *J*<sub>C-P</sub> = 6.1 Hz, CH=, Cp), 90.8 (d, <sup>2</sup>*J*<sub>C-P</sub> = 16.7 Hz, C, Cp), 93.4 (d, *J*<sub>C-P</sub> = 10.6 Hz, CH=, cod), 93.8 (d, *J*<sub>C-P</sub> = 10.6 Hz, CH=, cod), 117.4 (b, CH=, BAr<sub>F</sub>), 120.4-134.2 (aromatic carbons), 134.7 (b, CH=, BAr<sub>F</sub>), 135.0 (CH=, Cp), 161.7 (q, <sup>1</sup>*J*<sub>C-B</sub> = 49.8 Hz, C-B, BAr<sub>F</sub>). TOF-MS (ESI+): m/z = 807.1488, calcd. for C<sub>70</sub>H<sub>51</sub>BF<sub>24</sub>FeIrPS [M-BAr<sub>F</sub>]<sup>+</sup>: 807.1489. Anal. calcd (%) for C<sub>70</sub>H<sub>51</sub>BF<sub>24</sub>FeIrPS: C, 50.34; H, 3.08; S, 1.92; found: C, 50.31; H, 3.06; S, 1.90.

**[Ir(cod)(12)]BAr**<sub>F</sub>: Yield 111.9 mg (89%). TOF-MS (ESI+): m/z = 835.1801, calcd. for C<sub>72</sub>H<sub>55</sub>BF<sub>24</sub>FeIrPS [M-BAr<sub>F</sub>]<sup>+</sup>: 835.1802. Anal. calcd (%) for C<sub>72</sub>H<sub>55</sub>BF<sub>24</sub>FeIrPS: C, 50.93; H, 3.26; S, 1.89; found: C, 50.88; H, 3.24; S, 1.84. Major isomer (85%): <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>), δ: 3.0 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ: 0.71 (d, 3H, <sup>3</sup>*J*<sub>H-H</sub> = 6.8 Hz, CH<sub>3</sub>), 1.83 (m, 2H, CH<sub>2</sub>, cod), 2.10 (m, 1H, CH<sub>2</sub>, cod), 2.30 (m, 1H, CH<sub>2</sub>, cod), 2.39 (m, 2H, CH<sub>2</sub>, cod), 2.46 (m, 1H, CH<sub>2</sub>, cod), 2.57 (m, 1H, CH<sub>2</sub>, cod), 2.62 (s, 3H, CH<sub>3</sub>-Ar), 2.79 (s, 3H, CH<sub>3</sub>-Ar), 3.36 (m, 1H, CH=, cod), 3.58 (m, 1H, CH=, cod), 4.00 (m, 1H, CH=, cod), 4.11 (b, 1H, CH=, Cp), 4.52 (s, 6H, CH=, Cp), 4.62 (m, 2H, CH and CH=, Cp), 4.64 (m, 1H, CH=, cod), 7.2-7.7 (m, 25H, CH=); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ: 21.2 (CH<sub>3</sub>), 23.1 (CH<sub>3</sub>-Ar), 24.8 (CH<sub>3</sub>-Ar), 26.8 (CH<sub>2</sub>, cod), 29.8 (CH<sub>2</sub>, cod), 31.2 (CH<sub>2</sub>, cod), 34.8 (d, *J*<sub>C-P</sub>= 3.2 Hz, CH<sub>2</sub>, cod), 47.0 (CH), 63.8 (d, <sup>1</sup>*J*<sub>C-P</sub> = 61.5 Hz, C, Cp), 69.0 (d, *J*<sub>C-P</sub>=6.9 Hz, CH=, Cp), 69.7 (CH=, cod), 70.3 (CH=,cod), 71.4 (CH=, Cp), 74.3 (d,  $J_{C-P} = 6.9$  Hz, CH=, Cp), 74.8 (d,  $J_{C-P} = 3.8$  Hz, CH=, Cp), 90.8 (d,  ${}^{2}J_{C-P} = 16.8$  Hz, C, Cp), 92.6 (d,  $J_{C-P} = 11.4$  Hz, CH=, cod), 94.2 (d,  $J_{C-P} = 10.6$ Hz, CH=, cod), 117.4 (b, CH=, BAr<sub>F</sub>), 120.4-134.7 (aromatic carbons), 134.7 (b, CH=, BAr<sub>F</sub>), 140.4-143.9 (aromatic carbons), 161.9 (q,  ${}^{1}J_{C-B} = 49.4$  Hz, C-B, BAr<sub>F</sub>). Minor isomer (15%): <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>), δ: 5.7 ppm (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$ : 1.35 (d, 3H,  ${}^{3}J_{H-H} = 6.8$  Hz, CH<sub>3</sub>), 1.92 (m, 1H, CH<sub>2</sub>, cod), 2.11 (m, 1H, CH<sub>2</sub>, cod), 2.23 (s, 3H, CH<sub>3</sub>-Ar), 2.2 - 2.6 (m, 6H, CH<sub>2</sub>, cod), 2.74 (s, 3H, CH<sub>3</sub>-Ar), 3.63 (m, 2H, CH and CH=, cod), 3.75 (m, 2H, CH=, cod), 3.93 (m, 1H, CH=, Cp), 4.52 (b, 1H, CH=, cod), 4.56 (m, 1H, CH=, Cp), 4.66 (s, 5H, CH=, Cp), 4.73 (m, 1H, CH=, Cp), 7.2-7.7 (m, 25H, CH=); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ: 17.1 (CH<sub>3</sub>), 22.8 (CH<sub>3</sub>-Ar), 23.7 (CH<sub>3</sub>-Ar), 27.6 (CH<sub>2</sub>, cod), 29.6 (CH<sub>2</sub>, cod), 34.3 (d, J<sub>C-P</sub>= 3.3 Hz, CH<sub>2</sub>, cod), 42.8 (CH), 64.8 (d,  ${}^{1}J_{C-P} = 60.8$  Hz, C, Cp), 69.3 (b, CH=, Cp), 71.1 (CH=, Cp), 72.3 (CH=,cod), 74.4 (d,  $J_{C-P}$  = 5.8 Hz, CH=, Cp), 75.2 (d,  $J_{C-P}$  = 3.2 Hz, CH=, Cp), 89.3 (d,  ${}^{2}J_{C-P} = 19.1$  Hz, C, Cp), 90.1 (d,  $J_{C-P} = 10.4$  Hz, CH=, cod), 95.7 (d,  $J_{C-P} = 14.3$  Hz, CH=, cod), 134.7 (b, CH=, BAr<sub>F</sub>), 140.4-143.9 (aromatic carbons), 161.7 (q,  ${}^{1}J_{C-B} =$ 49.4 Hz, C-B, BAr<sub>F</sub>).

#### General procedure for the hydrogenation of olefins

The alkene (0.5 mmol) and Ir complex (1 mol %) were dissolved in  $CH_2Cl_2$  (2 mL) in a high-pressure autoclave, which was purged four times with hydrogen. Then, it was pressurized to the desired pressure. After the desired reaction time, the autoclave was depressurized and the solvent evaporated off. The residue was dissolved in  $Et_2O$  (1.5 ml) and filtered through a short Celite plug. The enantiomeric excess was determined by chiral GC or chiral HPLC and conversions were determined by <sup>1</sup>H NMR. The enantiomeric excesses of hydrogenated products from **S1-S5**,<sup>10a</sup> **S6**,<sup>37</sup> **S7**,<sup>10a</sup> **S8-S9**,5° **S10**,<sup>38</sup> **S11**,5° **S12**,<sup>39</sup> **S13**,<sup>40</sup> **S14**,5<sup>i</sup> **S15-S16**,5<sup>v</sup> **S17**,<sup>26a</sup> **S18**,<sup>27b</sup> **S19-S23**,<sup>28a</sup> **S24**,<sup>41</sup> **S25**,<sup>10a</sup> **S26-S32**,<sup>42</sup> **S33**,<sup>29a</sup> **S34**,<sup>28a</sup> were determined using the conditions described previously.

#### Acknowledgements

We thank the Spanish Government for providing grant CTQ2013-40568, the Catalan Government for grant 2014SGR670, and the ICREA Foundation for providing M. Diéguez and O. Pàmies with financial support through the ICREA Academia awards. We also thank the Centre National de la Recherche Scientifique, the Institut Universitaire de France, and the Laboratoire Européen Associé "Laboratoire Trans-Pyrénéen: de la Molécule aux Matériaux" for additional support.

#### References

<sup>1</sup> a) *Comprehensive Asymmetric Catalysis*; Eds.: Jacobsen, E. N.; Pfaltz, A.; Yamamoto; H.; Springer-Verlag: Berlin, **1999**; b) *Catalytic Asymmetric Synthesis*; 3rd Edition; Ed.: Ojima, I.; John Wiley & Sons, Inc.: Hoboken, **2010**; c) *Asymmetric Catalysis in Industrial Scale: Challenges, Approaches and Solutions*; 2nd Ed; Eds.: Blaser, H. U.; Federsel, H.-J.; Wiley: Weinheim, Germany, **2010**; d) *Asymmetric Catalysis in Organic Synthesis*; Ed.: Noyori; R.: Wiley: New York, **1994**; e) Busacca, C. A.; Fandrick, D. R.; Song, J. J.; Senanayakl, C. H. *Adv. Synth. Catal.* **2011**, *353*, 1825.

<sup>2</sup> a) Brown, J. M. in *Comprehensive Asymmetric Catalysis*; Eds.: Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H.; Springer-Verlag: Berlin, **1999**; Vol. I, pp 121-182. b) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. *Chem. Rev.* **2012**, *112*, 2557. d) Knowles, W. S.; Noyori, R. *Acc. Chem. Res.* **2007**, *40*, 1238.

<sup>3</sup> For reviews, see: a) Cui, X.; Burgess, K. *Chem. Rev.* 2005, *105*, 3272. b) Källström,
K.; Munslow, I.; Andersson, P. G. *Chem. Eur. J.* 2006, *12*, 3194. c) Roseblade, S. J.;
Pfaltz, A. *Acc. Chem. Res.* 2007, *40*, 1402. d) Church, T. L.; Andersson, P. G. *Coord. Chem. Rev.* 2008, *252*, 513. e) Pàmies, O.; Andersson, P. G.; Diéguez, M. *Chem. Eur. J.*2010, *16*, 14232. f) Woodmansee, D. H.; Pfaltz, A. *Chem. Commun.* 2011, *47*, 7912. g)
Zhu, Y.; Burgess, K. *Acc. Chem. Res.* 2012, *45*, 1623. h) Verendel, J. J.; Pàmies, O.;
Diéguez, M.; Andersson, P. G. *Chem. Rev.* 2014, *114*, 2130.

<sup>4</sup> Lightfoot, A.; Schnider, P.; Pfaltz, A. Angew. Chem. Int. Ed. 1998, 37, 2897.

<sup>5</sup> See, for instance: a) Blankenstein, J.; Pfaltz, A. Angew. Chem. Int. Ed. **2001**, 40, 4445. b) Hou, D.-R.; Reibenspies, J.; Colacot, T. J.; Burgess, K. Chem. Eur. J. 2001, 7, 5391. c) Menges, F.; Pfaltz, A. Adv. Synth. Catal. 2002, 344, 40. d) Perry, M. C.; Cui, X.; Powell, M. T.; Hou, D.-R.; Reibenspies, J. H.; Burgess, K. J. Am. Chem. Soc. 2003, 125, 113. e) Tang, W.; Wang, W.; Zhang, X. Angew. Chem. Int. Ed. 2003, 42, 943. f) Liu, D.; Tang, W.; Zhang, X. Org. Lett. 2004, 6, 513. g) McIntyre, S.; Hörmann, E.; Menges, F.; Smidt, S. P.; Pfaltz, A. Adv. Synth. Catal. 2005, 347, 282. h) Trifonova, A.; Diesen, J. S.; Andersson, P. G. Chem. Eur. J. 2006, 12, 2318. i) Lu, S.-M.; Bolm, C. Angew. Chem. Int. Ed. 2008, 47, 8920. j) Diéguez, M.; Mazuela, J.; Pàmies, O.; Verendel, J. J.; Andersson, P. G. J. Am. Chem. Soc. 2008, 130, 7208. k) Diéguez, M.; Pàmies, O.; Verendel, J. J.; Andersson, P. G. Chem. Commun. 2008, 3888. 1) Engman, M.; Cheruku, P.; Tolstoy, P.; Bergquist, J.; Völker, S. F.; Andersson, P. G. Adv. Synth. Catal. 2009, 351, 375. m) Zhao, J.; Burgess, K. J. Am. Chem. Soc. 2009, 131, 13236. n) Mazuela, J.; Verendel, J. J.; Coll, M.; Schäffner, B.; Börner, A.; Andersson, P. G.; Pàmies, O.; Diéguez, M. J. Am. Chem. Soc. 2009, 131, 12344. o) Lu, W.-J.; Chen, Y.-W.; Hou, X.-L. Adv. Synth. Catal. 2010, 352, 103. p) Zhang, Y.; Han, Z.; Li, F.; Ding, K.; Zhang, A. Chem. Commun. 2010, 46, 156. q) Verendel, J. J.; Zhou, T.; Li, J.-Q.; Paptchikhine, A.; Lebedev, O.; Andersson, P. G. J. Am. Chem. Soc. 2010, 132, 8880. r) Mazuela, J.; Norrby, P.-O.; Andersson, P. G.; Pàmies, O.; Diéguez, M. J. Am. Chem. Soc. 2011, 133, 13634. s) Franzke, A.; Pfaltz, A. Chem. Eur. J. 2011, 17, 4131. t) Shang, J.; Han, Z.; Li, Y.; Wang, X.; Ding, K. Chem. Commun. 2012, 48, 5172. u) Wang, X.; Han, Z.; Wang, Z.; Ding, K. Angew. Chem. Int. Ed. 2012, 51, 936. v) Verendel, J. J.; Li, J.-Q.; Quan, X.; Peters, B.; Zhou, T.; Gautun, O. R.; Govender, T.; Andersson, P. G. Chem. Eur. J. 2012, 18, 6507. w) Mazuela, J.; Pàmies, O.; Diéguez, M. Eur. J. Inorg. Chem. 2013, 2139. x) Khumsubdee, S.; Fan, Y.; Burgess, K. J. Org. Chem. 2013, 78, 9969. y) Zhu, Y.; Burgess, K. RSC Advances 2012, 2, 4728. z) Müller, M.-A.; Pfaltz, A. Angew. Chem Int. Ed. 2014, 53, 8668.

<sup>6</sup> a) Bunlaksananusorn, T.; Polborn, K.; Knochel, P. Angew. Chem. Int. Ed. 2003, 42, 3941. b) Drury III, W. J.; Zimmermann, N.; Keenan, M.; Hayashi, M.; Kaiser, S.; Goddard, R.; Pfaltz, A. Angew. Chem. Int. Ed. 2004, 43, 70. c) Bell, S.; Wüstenberg, B.; Kaiser, S.; Menges, F.; Netscher, T.; Pfaltz, A. Science 2006, 311, 642-. d) Kaiser, S.; Smidt, S. P.; Pfaltz, A. Angew. Chem. Int. Ed. 2006, 45, 5194. e) Margalef, J.; Lega, M.; Ruffo, F.; Pàmies, O.; Diéguez, M. Tetrahedron: Asymmetry 2012, 23, 945. f) Woodmansee, D. H.; Müller, M.-A.; Tröndlin, L.; Hörmann, E.; Pfaltz, A. Chem. Eur. J. 2012, 18, 13780. g) Mazuela, J.; Pàmies, O.; Diéguez, M. Adv. Synth. Catal. 2013, 355, 2569. h) Schumacher, A.; Bernasconi, M.; Pfaltz, A. Angew. Chem. Int. Ed. 2013, 52, 7422.

<sup>7</sup> Rageot, D.; Woodmansee, D. H.; Pugin, B.; Pfaltz, A. Angew. Chem. Int. Ed. **2011**, 50, 9598.

<sup>8</sup> a) Hedberg, C.; Källström, K.; Brandt, P.; Hansen, L. K.; Andersson, P. G. J. Am. Chem. Soc. 2006, 128, 2995. b) Cheruku, P.; Paptchikhine, A.; Church, T. L.; Andersson, P. G. J. Am. Chem. Soc. 2009, 131, 8285. c) Tolstoy, P.; Engman, M.; Paptchikhine, A.; Bergquist, J.; Church, T. L.; Leung, A. W.-M.; Andersson, P. G. J. Am. Chem. Soc. 2009, 131, 8855. d) Verendel, J. J.; Li, J.-Q.; Quan, X.; Peters, B.; Zhou, T.; Gautun, O. R.; Govender, T.; Andersson, P. G. Chem. Eur. J. 2012, 18, 6507.
<sup>9</sup> Mazuela, J.; Pàmies, O.; Diéguez, M. ChemCatChem 2013, 5, 2410.

<sup>10</sup> a) Källström, K.; Hedberg, C.; Brandt, P.; Bayer, A.; Andersson, P. G. J. Am. Chem.
Soc. 2004, 126, 14308. b) Mazuela, J.; Paptchikhine, A.; Pàmies, O.; Andersson, P. G.;
Diéguez, M. Chem. Eur. J. 2010, 16, 4567.

<sup>11</sup> a) Coll, M.; Pàmies, O.; Diéguez, M. *Chem. Commun.* 2011, 47, 9215. b) Coll, M.;
Pàmies, O.; Diéguez, M. *Adv. Synth. Catal.* 2013, 355, 143. c) Margalef, J.; Caldentey,
X.; Karlsson, E. A.; Coll, M.; Mazuela, J.; Pàmies, O.; Diéguez, M.; Pericàs, M. A. *Chem. Eur. J.* 2014, 20, 12201.

<sup>12</sup> a) Manoury, E.; Fossey, J. S.; Aït-Haddou, H.; Daran, J.-C.; Balavoine, G. G. A. *Organometallics* **2000**, *19*, 3736. b) Lopez Cortes, J. G.; Ramon, O.. Vincendeau, S.;

Serra, D.; Lamy, F.; Daran, J.-C.; Manoury, E.; Gouygou, M. Eur. J. Inorg. Chem.,
2006, 5148. c) Debono, N.; Labande, A.; Manoury, E.; Daran, J.-C.; Poli, R. Organometallics 2010, 29, 1879. d) Wei, M.-M.; García-Melchor, M.; Lledós, A.; Audin, C.; Daran, J.-C.; Poli, R.; Deydier, E.; Manoury, E. Organometallics 2012, 31, 6669. e) Malacea, R.; Daran, J.-C.; Poli, R.; Manoury, E. Tetrahedron: Asymmetry, 2013, 24, 612.

<sup>13</sup> For recent reviews about chiral ferrocenyl ligands in asymmetric catalysis: a) Colacot,
T. J. Chem. Rev. 2003, 103, 3101. b) Atkinson, R. C. J.; Gibson, V. C.; Long, N. J.
Chem. Soc. Rev. 2004, 33, 313. c) Gomez Arrayas, R.; Adrio, J.; Carretero, J. C. Angew.
Chem. Int. Ed. 2006, 45, 7674. d) Drusan, M.; Sebesta, R. Tetrahedron 2014, 70, 759.

<sup>14</sup> a) Li, X.; Li, Q.; Wu, X.; Gao, Y.; Xu, D.; Kong, L. *Tetrahedron:Asymmetry* 2007, *18*, 629. b) Metallinos, C.; Van Belle, L. *J. Organomet. Chem.* 2011, 696, 141. c) Gschwend, B.; Pugin, B.; Bertogg, A.; Pfaltz, A. *Chem. Eur. J.* 2009, *15*, 12993. d) Co, T. T.; Kim, T.-J. *Chem. Commun.* 2006, 3537. e) Gazić Smilović, I.; Casas-Arcé, E.; Roseblade, S. J.; Nettekoven, U.; Zanotti-Gerosa, A.; Kovačevič, M.; Časar, Z. *Angew. Chem. Int. Ed.* 2012, *51*, 1014.

15 been applied These ligands have in allylic substitution reactions, methoxycarbonylation and hydrogenation of alkynes, imines and ketones. See for instance: a) Routaboul, L.; Vincendeau, S.; Daran, J.-C.; Manoury, E. Tetrahedron: Asymmetry 2005, 16, 2685. b) Diab, L.; Gouygou, M.; Manoury, E.; Kalck, P.; Urrutigoity, M. Tetrahedron Lett. 2008, 49, 5186. c) Le Roux, E.; Malacea, R.; Manoury, E.; Poli, R.; Gonsalvi, L.; Peruzzini, M. Adv. Synth. Catal. 2007, 349, 309. d) Kozinets, E. M.; Silantyev, G. A.; Belkova, N. V.; Shubina, E. S.; Poli, R.; Manoury, E. Russ. Chem. Bull. 2013, 62, 751.

<sup>16</sup> Fesulphos ligand **10** has been successfully used in several asymmetric metalcatalyzed reactions (i.e. 1,3-dipolar cycloadditions, aza-Diels Alder and Mannich reactions, allylic substitution, ...). See for instance: a) Hernando, E.; Arrayas, R. G.; Carretero, J. C. *Chem. Commun.* **2012**, *48*, 9622. b) Filippone, S.; Maroto, E. E.; Martin-Domenech, A.; Suarez, M.; Martin, N. *Nature Chem.* 2009, *1*, 578. c)
Hernandez-Toribio, J.; Arrayas, R. G.; Carretero, J. C. *J. Am. Chem. Soc.* 2008, *130*, 16150. d)
Cabrera, S.; Arrayas, R. G.; Carretero, J. C. *J. Am. Chem. Soc.* 2005, *127*, 16394. e)
Cabrera, S.; Arrayas, R. G.; Carretero, J. C. *Angew. Chem. Int. Ed.* 2004, *43*, 3944. f)
Mancheno, O. G.; Arrayas, R. G.; Carretero, J. C. *J. Am. Chem. Soc.* 2004, *126*, 456. g)
Priego, J.; Mancheno, O. G.; Cabrera, S.; Arrayas, R. G.; Llamas, T.; Carretero, J. C. *Chem. Commun.* 2002, 2512.

<sup>17</sup> These ligands have been applied in hydrosilylation, [3+2] cycloaddition and allylic substitution reactions. See: a) Zeng, W.; Zhou, Y.-G. *Tetrahedron Lett.* 2007, 48, 4619.
b) Tu, T.; Zhou, Y.-G.; Hou, X.-L.; Dai, L.-X.; Dong, X.-C.; Yu, Y.-H.; Sun, J. *Organometallics* 2003, 22, 1255. c) Nishibayashi, Y.; Segawa, K.; Singh, J. D.; Fukuzawa, S.; Ohe, K.; Uemura, S. *Organometallics* 1996, 15, 370.

<sup>18</sup> Malacea, R., Manoury, E., Routaboul, L., Daran, J.-C., Poli, R., Dunne, J. P., Withwood, A. C., Godard, C., Duckett, S. B. *Eur. J. Inorg. Chem.*, **2006**, 1803.

<sup>19</sup> a) Malacea, R.; Daran, J.-C.; Duckett, S. B.; Dunne, J. P.; Manoury, E.; Poli, R.; Withwood, A. C. *Dalton Trans.* 2006, 3350. c) Malacea, R.; Daran, J.-C.; Duckett, S. B.; Dunne, J. P.; Manoury, E.; Poli, R.; Withwood, A. C. *Dalton Trans.* 2006, 3350. d) Diab, L.; Daran, J.-C.; Gouygou, M.; Manoury, E.; Urrutigoïty, M. *Acta Cryst. Sect. C* 2007, C63, m586. e) Malacea, R.; Routaboul, L.; Manoury, E.; Daran, J.-C.; Poli, R. *J. Organomet. Chem.* 2008, 693,1469. f) Malacea, R.; Manoury, E.; Daran, J.-C.; Poli, R. *J. Mol. Struct.* 2008, 890, 249. g) Kozinets, E. M.; Koniev, O.; Fillipov, O. A.; Daran, J.-C.; Poli, R.; Shubina, E. S.; Belkova, N. V.; Manoury, E. *Dalton Trans.* 2012, 41, 11849.

<sup>20</sup> Schrems, M. G.; Neumann, E.; Pfaltz, A. Angew. Chem. Int. Ed. 2007, 46, 8274.

<sup>21</sup> For recent successful applications, see: a) Li, J.-Q.; Quan, X.; Andersson, P. G. *Chem Eur. J.* 2012, *18*, 10609. b) Woodmansee, D. H.; Müller, M.-A.; Tröndlin, L.; Hörmann, E.; Pfaltz, A. *Chem. Eur. J.* 2012, *18*, 13780.

<sup>22</sup> See for example: a) Judge, T. M.; Phillips, G.; Morris, J. K.; Lovasz, K. D.; Romines, K. R.; Luke, G. P.; Tulinsky, J.; Tustin, J. M.; Chrusciel, R. A.; Dolak, L. A.; Mizsak, S. A.; Watt, W.; Morris, J.; Velde, S. L. V.; Strohbach, J. W.; Gammill, R. B. *J. Am. Chem. Soc.* **1997**, *119*, 3627. b) Kraft, P.; Bajgrowicz, J. A.; Denis, C.; Frater, G. Angew. Chem. Int. Ed. **2000**, *39*, 2980. c) Sturm, T.; Weissensteiner, W.; Spindler, F. Adv. Synth. Catal. **2003**, *345*, 160. d) Henke, B. R. *J. Med. Chem.* **2004**, *47*, 4118. e) Saudan, L. A. Acc. Chem. Res. **2007**, *40*, 1309. f) Zanotti-Gerosa, A.; Kinney, W. A.; Grasa, G. A.; Medlock, J., Seger, A.; Ghosh, S.; Teleha, C. A.; Maryanoff, B. E. Tetrahedron: Asymmetry **2008**, *19*, 938.

<sup>23</sup> a) Leutenegger, U.; Madin, A.; Pfaltz, A. Angew. Chem. Int. Ed. Engl. 1989, 28, 60.
b) Yamada, T. M; Ohtsuka, Y.; Ikeno, T. Chem. Lett. 1998, 1129.

<sup>24</sup> a) Appella, D. H.; Moritani, Y.; Shintani, R.; Ferreira, E. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9473. b) Hughes, G.; Kimura, M.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11253. c) Tsuchiya, Y.; Kanazwa, Y.; Shiomo, T.; Kobayashi, K.; Nishiyama, H. Synlett 2004, 2493.

<sup>25</sup> a) Lu, W.-J.; Chen, Y.-W.; Hou, X.-L. *Angew. Chem., Int. Ed.* **2008**, *47*, 10133. b) Maurer, F.; Huch, V.; Ullrich, A.; Kazmaier, U. J. Org. Chem. **2012**, *77*, 5139.

<sup>26</sup> For successful application, see: a) Lu, W.-J.; Hou, X.-L. *Adv. Synth. Catal.* 2009, *351*, 1224. b) Shang, J.; Han, Z.; Li, Y.; Wang, Z.; Ding, K. *Chem. Commun.* 2012, *48*, 5172.
<sup>27</sup> For successful applications, see: a) Tian, F.; Yao, D.; Liu, Y.; Xie, F.; Zhang W. *Adv. Synth. Catal.* 2010, *352*, 1841. b) Liu, X.; Han, Z.; Wang, Z.; Ding K. *Angew. Chem. Int. Ed.* 2014, *53*, 1978. c) ref. 21a. d) ref. 21b.

<sup>28</sup> For successful applications, see: a) Cheruku, P.; Diesen, J.; Andersson, P. G. J. Am. Chem. Soc. 2008, 130, 5595. b) ref. 10b.

<sup>29</sup> Only two catalytic systems have provided high enantioselectivities, see: a) Cheruku,
P.; Gohil, S.; Andersson, P. G. *Org. Lett.* 2007, *9*, 1659 (ee's up to 95%). b) ref. 10b (ee's up to 82%).

<sup>30</sup> Whittall, J.; Mbafor, W. F.; McCormack, P. J. *Brit. UK Pat. Appl.* **2005**, GB 2410026 A 20050720.

<sup>31</sup> Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G. ; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E. ; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Revision A.02 ed., Gaussian, Inc., Wallingford CT, **2009**.

<sup>32</sup> a) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* **1988**, *37*, 785. b) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648.

<sup>33</sup> Hay, P. J.; Wadt, W. R. J. Chem. Phys. **1985**, 82, 299.

<sup>34</sup> a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. **1972**, *56*, 2257. b)
Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta **1973**, *28*, 213. c) Francl, M. M.; Pietro,
W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; Defrees, D. J.; Pople, J. A. J. Chem. *Phys.* **1982**, *77*, 3654.

<sup>35</sup> a) Miertus, S.; Tomasi, J. *Chem. Phys.* **1982**, *65*, 239. b) Mennucci, B.; Tomasi, J. J. *Chem. Phys.* **1997**, *106*, 5151. c) Cossi, M.; Barone, V.; Menucci, B.; Tomasi, J. *Chem. Phys. Lett.* **1998**, *286*, 253.

- <sup>36</sup> a) Grimme, S.; Antony, J; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 15410. b)
  Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456.
- <sup>37</sup> Woodmansee, D. H.; Müller, M.-A.; Neuburger, M. A. Pfaltz, Chem. Sci. 2010, 1, 72.

<sup>38</sup> Deasy, R. E.; Brossat, M.; Moody, T. S.; Maguire, A. R. *Tetrahedron: Asymmetry* **2011**, *22*, 47.

<sup>39</sup> Paptchikhine, A.; Cheruku, P.; Engman, M.; Andersson, P. G. *Chem. Commun.* **2009**, 5996.

<sup>40</sup> Ganić, A.; Pfaltz, A. Chem. Eur. J. 2012, 18, 6724.

<sup>41</sup> Ohta, T.; Ikegami, H.; Miyake, T.; Takaya, H. J. Organomet. Chem. **1995**, 502, 169.

<sup>42</sup> See Supporting Information for details.

31

**Graphical Abstract** 



### **Supporting Information**

# Chiral ferrocene-based P-S ligands for Ir-catalyzed hydrogenation of minimally functionalized olefins. Scope and limitations

| <b>SI.1.</b> Full set of results for the asymmetric hydrogenation of trisubstituted olefins <b>S4-S19</b>                              | SI-2  |
|----------------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>SI.2.</b> Full set of results for the asymmetric hydrogenation of 1,1-disubstituted olefins <b>S24-S34</b>                          | SI-4  |
| <b>SI.3.</b> Characterization and ee determination details of hydrogenated compounds                                                   | SI-5  |
| <b>SI.4</b> . ${}^{31}P{}^{1}H$ , ${}^{1}H$ and ${}^{13}C{}^{1}H$ NMR spectra of new ligands <b>5</b> , <b>8</b> and <b>9</b>          | SI-12 |
| <b>SI.5.</b> ${}^{31}P{}^{1}H$ , ${}^{1}H$ and ${}^{13}C{}^{1}H$ NMR spectra of Ir-catalyst precursors [Ir(cod)(1-12)]BAr <sub>F</sub> | SI-15 |
| <b>SI.6.</b> Structures of the calculated isomers of $[Ir(cod)(12)]BAr_F$                                                              | SI-31 |
| <b>SI.7.</b> Crystal data and structure refinement for $[Ir(cod)(4)]BAr_F$ .                                                           | SI-37 |

## SI.1. Full set of results for the asymmetric hydrogenation of trisubstituted

#### olefins S4-S19

| Entry | Substrate  | L  | % Conv | % ee            | Entry           | Substrate  | L  | % Conv | % ee            |
|-------|------------|----|--------|-----------------|-----------------|------------|----|--------|-----------------|
| 1     | <b>S4</b>  | 1  | 100    | 36 (S)          | 37              | <b>S7</b>  | 1  | 100    | 50 (S)          |
| 2     | <b>S4</b>  | 2  | 100    | 20 (S)          | 38              | <b>S7</b>  | 2  | 100    | 4 ( <i>R</i> )  |
| 3     | <b>S4</b>  | 3  | 100    | 17 (S)          | 39              | <b>S7</b>  | 3  | 100    | 3 ( <i>R</i> )  |
| 4     | <b>S4</b>  | 4  | 100    | 5 ( <i>S</i> )  | 40              | <b>S7</b>  | 4  | 100    | 96 (R)          |
| 5     | <b>S4</b>  | 5  | 100    | 9 ( <i>R</i> )  | 41              | <b>S7</b>  | 5  | 100    | 58 (S)          |
| 6     | <b>S4</b>  | 6  | 100    | 26 (S)          | 42              | <b>S7</b>  | 6  | 100    | 40 ( <i>S</i> ) |
| 7     | <b>S4</b>  | 7  | 100    | 46 ( <i>S</i> ) | 43              | <b>S7</b>  | 7  | 100    | 21 (S)          |
| 8     | <b>S4</b>  | 8  | 100    | 20 (S)          | 44              | <b>S7</b>  | 8  | 100    | 33 ( <i>S</i> ) |
| 9     | <b>S4</b>  | 9  | 100    | 0               | 45              | <b>S7</b>  | 9) | 100    | 34 ( <i>R</i> ) |
| 10    | <b>S4</b>  | 10 | 100    | 40 ( <i>S</i> ) | 46              | <b>S7</b>  | 10 | 100    | 92 ( <i>S</i> ) |
| 11    | <b>S4</b>  | 11 | 100    | 20 (S)          | 47              | <b>S7</b>  | 11 | 100    | 92 ( <i>S</i> ) |
| 12    | <b>S</b> 5 | 12 | 100    | 35 (R)          | 48              | <b>S7</b>  | 12 | 100    | 92 (R)          |
| 13    | <b>S</b> 5 | 1  | 100    | 28 (S)          | 49              | <b>S12</b> | 1  | 100    | 43 ( <i>R</i> ) |
| 14    | <b>S</b> 5 | 2  | 100    | 15 (S)          | 50              | <b>S12</b> | 2  | 100    | 57 (R)          |
| 15    | <b>S</b> 5 | 3  | 100    | 11 (S)          | 51              | <b>S12</b> | 3  | 100    | 62 (R)          |
| 16    | <b>S</b> 5 | 4  | 100    | 20 (R)          | 52              | S12        | 4  | 100    | 44 ( <i>R</i> ) |
| 17    | <b>S</b> 5 | 5  | 100    | 16 ( <i>S</i> ) | 53              | <b>S12</b> | 5  | 100    | 57 (S)          |
| 18    | <b>S</b> 5 | 6  | 100    | 19 ( <i>S</i> ) | 54              | <b>S12</b> | 6  | 100    | 70 (R)          |
| 19    | <b>S</b> 5 | 7  | 100    | 27 (R)          | 55              | <b>S12</b> | 7  | 100    | 45 ( <i>R</i> ) |
| 20    | <b>S</b> 5 | 8  | 100    | 20 ( <i>S</i> ) | 56              | <b>S12</b> | 8  | 100    | 80 ( <i>R</i> ) |
| 21    | <b>S</b> 5 | 9  | 100    | 19 (S)          | 57              | <b>S12</b> | 9  | 100    | 70 ( <i>S</i> ) |
| 22    | <b>S</b> 5 | 10 | 100    | 32 ( <i>S</i> ) | 58              | <b>S12</b> | 10 | 100    | 76 ( <i>S</i> ) |
| 23    | <b>S</b> 5 | 11 | 100    | 15 (R)          | 59              | <b>S12</b> | 11 | 100    | 28 (R)          |
| 24    | <b>S</b> 5 | 12 | 100    | 28 (R)          | 60              | <b>S12</b> | 12 | 100    | 21 ( <i>S</i> ) |
| 25    | <b>S6</b>  | 1  | 100    | 22 (S)          | 61 <sup>b</sup> | <b>S13</b> | 1  | 100    | 50 (+)          |
| 26    | <b>S6</b>  | 2  | 100    | 12 ( <i>S</i> ) | 62 <sup>b</sup> | <b>S13</b> | 2  | 100    | 48 (+)          |
| 27    | <b>S6</b>  | 3  | 100    | 15 ( <i>S</i> ) | 63 <sup>b</sup> | <b>S13</b> | 3  | 100    | 43 (+)          |
| 28    | <b>S6</b>  | 4  | 100    | 14 ( <i>R</i> ) | 64 <sup>b</sup> | <b>S13</b> | 4  | 100    | 62 (+)          |
| 29    | <b>S6</b>  | 5  | 100    | 14 ( <i>S</i> ) | 65 <sup>b</sup> | <b>S13</b> | 5  | 69     | 55 (+)          |
| 30    | <b>S6</b>  | 6  | 100    | 8 ( <i>S</i> )  | 66 <sup>b</sup> | <b>S13</b> | 6  | 100    | 61 (+)          |
| 31    | <b>S6</b>  | 7  | 100    | 12 ( <i>R</i> ) | 67 <sup>b</sup> | <b>S13</b> | 7  | 100    | 50 (+)          |
| 32    | <b>S6</b>  | 8  | 100    | 11 ( <i>S</i> ) | 68 <sup>b</sup> | <b>S13</b> | 8  | 100    | 48 (+)          |
| 33    | <b>S6</b>  | 9  | 100    | 12 (S)          | 69 <sup>b</sup> | <b>S13</b> | 9  | 100    | 64 (+)          |
| 34    | <b>S6</b>  | 10 | 100    | 17 ( <i>S</i> ) | 70 <sup>b</sup> | <b>S13</b> | 10 | 100    | 50 (+)          |
| 35    | <b>S6</b>  | 11 | 100    | 2 ( <i>R</i> )  | 71 <sup>b</sup> | <b>S13</b> | 11 | 100    | 32 (+)          |
| 36    | <b>S6</b>  | 12 | 100    | 14(R)           | 72 <sup>b</sup> | <b>S13</b> | 12 | 50     | 8 (-)           |

<sup>a</sup> Reactions carried out at room temperature using 0.5 mmol of substrate and 1 mol% of Ir-catalyst precursor at 100 bar of  $H_2$  with dichloromethane (2 mL) as solvent. Conversion measured by <sup>1</sup>H-NMR after 4 h. Enantiomeric excess determined by GC or HPLC. <sup>b</sup> Reaction carried out for 18 h.

# SI.1. Full set of results for the asymmetric hydrogenation of trisubstituted olefins S4-S19 (continuation)

| Entry            | Substrate  | L  | % Conv | % ee            | Entry            | Substrate  | L  | % Conv | % ee            |
|------------------|------------|----|--------|-----------------|------------------|------------|----|--------|-----------------|
| 73 <sup>b</sup>  | <b>S14</b> | 1  | 100    | 21 (S)          | 103 <sup>b</sup> | <b>S17</b> | 7  | 100    | 14 (S)          |
| 74 <sup>b</sup>  | <b>S14</b> | 2  | 100    | 5 (S)           | 104 <sup>b</sup> | <b>S17</b> | 8  | 100    | 44 (R)          |
| 75 <sup>b</sup>  | <b>S14</b> | 3  | 100    | 7 (S)           | 105 <sup>b</sup> | <b>S17</b> | 9  | 100    | 20 (R)          |
| 76 <sup>b</sup>  | <b>S14</b> | 4  | 100    | 18 (S)          | 106 <sup>b</sup> | <b>S17</b> | 10 | 100    | 85 (R)          |
| 77 <sup>b</sup>  | <b>S14</b> | 5  | 100    | 11 (S)          | 107 <sup>b</sup> | <b>S17</b> | 11 | 100    | 90 ( <i>S</i> ) |
| 78 <sup>b</sup>  | <b>S14</b> | 6  | 100    | 14 ( <i>S</i> ) | 108 <sup>b</sup> | <b>S17</b> | 12 | 100    | 50 (R)          |
| 79 <sup>b</sup>  | <b>S14</b> | 7  | 100    | 21 ( <i>S</i> ) | 109 <sup>b</sup> | <b>S18</b> | 1  | 100    | 20 (S)          |
| $80^{b}$         | <b>S14</b> | 8  | 100    | 20 ( <i>S</i> ) | 110 <sup>b</sup> | S18        | 2  | 100    | 28 (S)          |
| 81 <sup>b</sup>  | <b>S14</b> | 9  | 100    | 11 ( <i>S</i> ) | 111 <sup>b</sup> | S18        | 3) | 100    | 23 ( <i>S</i> ) |
| 82 <sup>b</sup>  | <b>S14</b> | 10 | 100    | 6 ( <i>R</i> )  | 112 <sup>b</sup> | S18        | 4  | 100    | 66 ( <i>S</i> ) |
| 83 <sup>b</sup>  | <b>S14</b> | 11 | 100    | 33 ( <i>S</i> ) | 113 <sup>b</sup> | S18        | 5  | 100    | 70 (R)          |
| 84 <sup>b</sup>  | <b>S14</b> | 12 | 100    | 47 ( <i>S</i> ) | 114 <sup>b</sup> | S18        | 6  | 100    | 5 ( <i>S</i> )  |
| 85 <sup>b</sup>  | <b>S16</b> | 1  | 100    | 14 ( <i>R</i> ) | 115 <sup>b</sup> | <b>S18</b> | 7  | 100    | 16 ( <i>S</i> ) |
| 86 <sup>b</sup>  | <b>S16</b> | 2  | 100    | 9 ( <i>R</i> )  | 116 <sup>b</sup> | <b>S18</b> | 8  | 100    | 24 (S)          |
| 87 <sup>b</sup>  | <b>S16</b> | 3  | 100    | 4 ( <i>R</i> )  | 117 <sup>b</sup> | <b>S18</b> | 9  | 100    | 30 ( <i>R</i> ) |
| 88 <sup>b</sup>  | <b>S16</b> | 4  | 100    | 56 (R)          | 118 <sup>b</sup> | <b>S18</b> | 10 | 100    | 84 ( <i>S</i> ) |
| 89 <sup>b</sup>  | <b>S16</b> | 5  | 100    | 21 (S)          | 119 <sup>b</sup> | <b>S18</b> | 11 | 100    | 50 (S)          |
| 90 <sup>b</sup>  | <b>S16</b> | 6  | 100    | 19 ( <i>R</i> ) | 120 <sup>b</sup> | <b>S18</b> | 12 | 100    | 64 ( <i>R</i> ) |
| 91 <sup>b</sup>  | <b>S16</b> | 7  | 100    | 11 ( <i>R</i> ) | 121 <sup>°</sup> | S19        | 1  | 100    | 18 ( <i>R</i> ) |
| 92 <sup>b</sup>  | <b>S16</b> | 8  | 100    | 13 ( <i>R</i> ) | 122 <sup>b</sup> | S19        | 2  | 100    | 5 (R)           |
| 93 <sup>b</sup>  | <b>S16</b> | 9  | 100    | 9 (R)           | 123 <sup>b</sup> | S19        | 3  | 100    | 4(R)            |
| 94 <sup>b</sup>  | <b>S16</b> | 10 | 100    | 70 ( <i>S</i> ) | 124 <sup>b</sup> | S19        | 4  | 100    | 3 ( <i>R</i> )  |
| 95 <sup>0</sup>  | <b>S16</b> | 11 | 100    | 12(R)           | 125 <sup>°</sup> | <b>S19</b> | 5  | 100    | 21 ( <i>R</i> ) |
| 96 <sup>°</sup>  | <b>S16</b> | 12 | 100    | 81 ( <i>S</i> ) | 126 <sup>b</sup> | S19        | 6  | 100    | 5 (R)           |
| 97 <sup>b</sup>  | <b>S17</b> | 1  | 100    | 10 ( <i>R</i> ) | 127 <sup>b</sup> | S19        | 7  | 100    | 14 ( <i>R</i> ) |
| 98 <sup>0</sup>  | <b>S17</b> | 2  | 100    | 38 (R)          | 128 <sup>b</sup> | S19        | 8  | 100    | 51 ( <i>R</i> ) |
| 99 <sup>0</sup>  | <b>S17</b> | 3  | 100    | 38 (R)          | 129°             | S19        | 9  | 100    | 76 ( <i>R</i> ) |
| 100 <sup>°</sup> | <b>S17</b> | 4  | 100    | 50 (S)          | 130 <sup>°</sup> | S19        | 10 | 100    | 92 ( <i>R</i> ) |
| 101 <sup>°</sup> | <b>S17</b> | 5  | 100    | 66 ( <i>R</i> ) | 131 <sup>°</sup> | S19        | 11 | 100    | 68 (S)          |
| 102 <sup>°</sup> | <b>S17</b> | 6  | 100    | 2(S)            | 132 <sup>°</sup> | <b>S19</b> | 12 | 100    | 30 (R)          |

<sup>a</sup> Reactions carried out at room temperature using 0.5 mmol of substrate and 1 mol% of Ir-catalyst precursor at 100 bar of  $H_2$  with dichloromethane (2 mL) as solvent. Conversion measured by <sup>1</sup>H-NMR after 4 h. Enantiomeric excess determined by GC or HPLC. <sup>b</sup> Reaction carried out for 18 h.
# SI.2. Full set of results for the asymmetric hydrogenation of 1,1-disubstituted olefins S24-S34

| Entry | Substrate  | L  | % Conv | % ee            | Entry           | Substrate  | L  | % Conv | % ee            |
|-------|------------|----|--------|-----------------|-----------------|------------|----|--------|-----------------|
| 1     | <b>S24</b> | 1  | 100    | 7 ( <i>S</i> )  | 31              | S28        | 4  | 100    | 75 (S)          |
| 2     | <b>S24</b> | 2  | 100    | 5 (S)           | 32              | <b>S28</b> | 10 | 100    | 78 (R)          |
| 3     | <b>S24</b> | 3  | 100    | 2(R)            | 33              | <b>S28</b> | 12 | 100    | 39 (R)          |
| 4     | <b>S24</b> | 4  | 100    | 8 (S)           | 34              | S29        | 4  | 100    | 77 (S)          |
| 5     | <b>S24</b> | 5  | 100    | 3 ( <i>S</i> )  | 35              | S29        | 10 | 100    | 79 (R)          |
| 6     | <b>S24</b> | 6  | 100    | 8 (S)           | 36              | S29        | 12 | 100    | 39 (R)          |
| 7     | <b>S24</b> | 7  | 100    | 4 ( <i>R</i> )  | 37              | <b>S30</b> | 4  | 100    | 74 (S)          |
| 8     | <b>S24</b> | 8  | 100    | 11 (S)          | 38              | <b>S30</b> | 10 | 100    | 75 (R)          |
| 9     | <b>S24</b> | 9  | 100    | 4 (S)           | 39              | <b>S30</b> | 12 | 100    | 33 (R)          |
| 10    | <b>S24</b> | 10 | 100    | 2 ( <i>S</i> )  | 40              | <b>S31</b> | 4  | 100    | 72 ( <i>S</i> ) |
| 11    | <b>S24</b> | 11 | 100    | 14 ( <i>R</i> ) | 41              | <b>S31</b> | 10 | 100    | 75 (R)          |
| 12    | <b>S24</b> | 12 | 100    | 6 ( <i>R</i> )  | 42              | <b>S31</b> | 12 | 100    | 29 (R)          |
| 13    | S25        | 1  | 100    | 8 ( <i>S</i> )  | 43              | <b>S32</b> | 4  | 100    | 69 ( <i>S</i> ) |
| 14    | S25        | 2  | 100    | 5 ( <i>S</i> )  | 44              | <b>S32</b> | 10 | 100    | 72 (R)          |
| 15    | S25        | 3  | 100    | 2 ( <i>S</i> )  | 45              | <b>S32</b> | 12 | 100    | 29 (R)          |
| 16    | S25        | 4  | 100    | 13 ( <i>S</i> ) | 46 <sup>b</sup> | <b>S33</b> | 1  | 100    | 16 ( <i>S</i> ) |
| 17    | S25        | 5  | 100    | 1(S)            | 47 <sup>b</sup> | <b>S33</b> | 2  | 100    | 8 ( <i>S</i> )  |
| 18    | <b>S25</b> | 6  | 100    | 8 ( <i>S</i> )  | 48 <sup>b</sup> | <b>S33</b> | 3  | 100    | 2(S)            |
| 19    | <b>S25</b> | 7  | 100    | 9 ( <i>R</i> )  | 49 <sup>b</sup> | <b>S33</b> | 4  | 100    | 30 ( <i>S</i> ) |
| 20    | <b>S25</b> | 8  | 100    | 10 (S)          | 50 <sup>b</sup> | <b>S33</b> | 5  | 100    | 12 ( <i>S</i> ) |
| 21    | S25        | 9  | 100    | 7 (S)           | 51 <sup>b</sup> | <b>S33</b> | 6  | 100    | 5 ( <i>S</i> )  |
| 22    | S25        | 10 | 100    | 0 ( <i>S</i> )  | 52 <sup>b</sup> | <b>S33</b> | 7  | 100    | 8 (S)           |
| 23    | <b>S25</b> | 11 | 100    | 16 ( <i>R</i> ) | 53 <sup>b</sup> | <b>S33</b> | 8  | 100    | 16 ( <i>S</i> ) |
| 24    | <b>S25</b> | 12 | 100    | 10 ( <i>R</i> ) | 54 <sup>b</sup> | <b>S33</b> | 9  | 100    | 12 ( <i>S</i> ) |
| 25    | <b>S26</b> | 4  | 100    | 86 (S)          | 55 <sup>b</sup> | <b>S33</b> | 10 | 100    | 94 ( <i>R</i> ) |
| 26    | <b>S26</b> | 10 | 100    | 87 ( <i>R</i> ) | 56 <sup>b</sup> | <b>S33</b> | 11 | 100    | 92 ( <i>S</i> ) |
| 27    | <b>S26</b> | 12 | 100    | 43 ( <i>R</i> ) | 57 <sup>b</sup> | <b>S33</b> | 12 | 100    | 49 ( <i>R</i> ) |
| 28    | <b>S27</b> | 4  | 100    | 88 (S)          | 58 <sup>b</sup> | <b>S34</b> | 4  | 100    | 34 ( <i>S</i> ) |
| 29    | <b>S27</b> | 10 | 100    | 90 ( <i>R</i> ) | 59 <sup>b</sup> | <b>S34</b> | 10 | 100    | 93 (R)          |
| 30    | <b>S27</b> | 12 | 100    | 51 ( <i>R</i> ) | 60 <sup>b</sup> | <b>S34</b> | 12 | 100    | 39 ( <i>R</i> ) |

<sup>a</sup> Reactions carried out at room temperature using 0.5 mmol of substrate and 1 mol% of Ir-catalyst precursor at 1 bar of  $H_2$  with dichloromethane (2 mL) as solvent. Conversion measured by <sup>1</sup>H-NMR after 4 h. Enantiomeric excess determined by GC or HPLC. <sup>b</sup> Reaction carried out at 50 bar of  $H_2$ .

## SI.3. Characterization and ee determination details of hydrogenated compounds

1-(sec-Butyl)-4-methoxybenzene.<sup>1</sup> Enantiomeric excess determined by GC using



Chiradex B-DM column (100 kPa H<sub>2</sub>, 60 °C for 30 min, 3 °C/min until 175 °C). t<sub>R</sub> 46.3 min (*S*); t<sub>R</sub> 47.0 min (*R*). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 0.81 (t, 3H, *J*= 7.5 Hz), 1.21 (d, 3H, *J*= 6.6 Hz), 1.55 (m, 2H), 2.53

(m, 1H), 3.79 (s, 3H), 6.84 (m, 2H), 7.10 (m, 2H).

(3,3-Dimethylbutan-2-yl)benzene.<sup>1</sup> Enantiomeric excess determined by GC using Chiradex B-DM column (100 kPa H<sub>2</sub>, 60 °C for 30 min, 3 °C/min until 175 °C). t<sub>R</sub> 47.2 min (S); t<sub>R</sub> 47.8 min (R). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 0.83 (s, 9H), 1.24 (d, 3H, J= 6.8 Hz), 2.54 (q, 1H, J= 6.8 Hz), 7.1-7.3 (m, 5H).

(3-Methylbutan-2-yl)benzene.<sup>1</sup> Enantiomeric excess determined by GC using Chiradex



B-DM column (100 kPa H<sub>2</sub>, 60 °C for 30 min, 3 °C/min until 175 °C).  $t_R$  20.9 min (*S*);  $t_R$  22.4 min (*R*). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 0.76 (d, 3H, *J*= 7.6 Hz), 0.92 (d, 3H, *J*= 7.6 Hz), 1.23 (d, 3H, *J*= 6.8 Hz), 1.79 (m, 1H), 2.42

(m, 1H), 7.1-7.3 (m, 5H).

6-Methoxy-1-naphthyl-1,2,3,4-tetrahydronaphthalene.<sup>1</sup> Enantiomeric excess determined by GC using Chiradex B-DM column (100 kPa H<sub>2</sub>, 60 °C for 30 min, 3 °C/min until 175 °C). t<sub>R</sub> 58.7 min (*R*); t<sub>R</sub> 58.9 min (*S*). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 1.38 (d, 3H, *J*= 6.8 Hz), 1.59 (m, 1H), 1.78 (m, 1H), 1.94 (m, 2H), 2.81 (m, 2H), 2.97 (m, 1H), 3.87 (s, 3H), 6.77 (dd, 1H, *J*= 2.8 Hz, *J*= 8.4 Hz), 6.85 (d, 1H, *J*= 2.8 Hz), 7.06 (d, 1H, *J*= 8.4 Hz).

**1-Isopropyl-6-methoxy-1,2,3,4-tetrahydronaphthalene.**<sup>2</sup> Enantiomeric excess determined by GC using Chiradex B-DM column (100 kPa H<sub>2</sub>, 60 °C for 30 min, 3 °C/min until 175 °C). t<sub>R</sub> 63.6 min (*R*); t<sub>R</sub> 63.8 min (*S*). <sup>1</sup>H MeO NMR (CDCl<sub>3</sub>),  $\delta$ : 0.76 (d, 3H, *J*= 7.2 Hz), 0.99 (d, 3H, *J*= 7.2 Hz), 1.62 (m, 2H), 1.78 (m, 1H), 1.91 (m, 1H), 2.21 (m, 1H), 2.70 (m, 3H), 3.77 (s, 3H), 6.67 (s, 1H), 6.67 (d, 1H, *J*= 8.0 Hz), 7.11 (d, 1H, *J*= 8.4 Hz).

<sup>&</sup>lt;sup>1</sup> K. Källström, C. Hedberg, P. Brandt, A. Bayer, P. G. Andersson, J. Am. Chem. Soc. 2004, 126, 14308.

<sup>&</sup>lt;sup>2</sup> D. H. Woodmansee, M.-A. Müller, M. Neuburger, A. Pfaltz, *Chem. Sci.* **2010**, *1*, 72.

Ethyl 3-phenylbutanoate.<sup>1</sup> Enantiomeric excess determined by HPLC using Chiracel

IB column (hexane/2-propanol=99.5/0.5, 1 mL/min, 254 nm). t<sub>R</sub> COOEt 9.5 min (*R*);  $t_R$  18.2 min (*S*). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 1.16 (t, 3H, *J*=7.2 Hz), 1.30 (d, 3H, J= 6.8 Hz), 2.54 (m, 2H), 3.28 (m, 1H), 4.08 (q, 2H,

J= 7.2 Hz), 7.2-7.4 (m, 5H).

Ethvl 3-(p-tolvl)butanoate.<sup>3</sup> Enantiomeric excess determined by HPLC using Chiracel



IB column (hexane/2-propanol=99.5/0.5, 0.5 mL/min, 254 nm). t<sub>R</sub> 12.3 min (R); t<sub>R</sub> 13.0 min (S). <sup>1</sup>H NMR (CDCl<sub>3</sub>), δ: 1.18 (t, 3H, J=7.2 Hz), 1.28 (d, 3H, J=6.0 Hz), 2.31 (s, 3H), 2.56 (m, 2H), 3.25

(m, 1H), 4.08 (q, 2H, J=7.2 Hz), 7.12 (m, 4H).

Ethyl 3-(4-methoxyphenyl)butanoate.<sup>3</sup> Enantiomeric excess determined by HPLC using Chiracel IB column (hexane/2-propanol=99.5/0.5, 0.5 COOEt mL/min, 254 nm). t<sub>R</sub> 18.5 min (*R*); t<sub>R</sub> 19.5 min (*S*). <sup>1</sup>H NMR MeC  $(CDCl_3)$ ,  $\delta$ : 1.19 (t, 3H, J= 7.2 Hz), 1.26 (d, 3H, J= 6.4 Hz),

2.54 (m, 2H), 3.24 (m, 1H), 3.29 (s, 3H), 4.07 (q, 2H, J= 7.2 Hz), 6.83 (m, 2H), 7.15 (m, 2H).

*Ethyl 3-(4-fluorophenyl)butanoate.*<sup>4</sup> Enantiomeric excess determined by HPLC using

Chiracel AS-H column (hexane/2-propanol=99.5/0.5, 1 )Et mL/min, 254 nm).  $t_R$  25.8 min (R);  $t_R$  26.2 min (S). <sup>1</sup>H NMR (CDCl<sub>3</sub>), δ: 1.15 (t, 3H, J= 7.2 Hz), 1.28 (d, 3H, J= 6.8 Hz), 2.54 (m, 2H), 3.25 (m, 1H), 4.07 (m, 2H), 6.9-7.2 (m, 4H).

Ethyl 3-phenylpentanoate.<sup>3</sup> Enantiomeric excess determined by HPLC using Chiracel IC column (hexane/2-propanol=99.5/0.5, 0.5 mL/min, 254 nm).  $t_R$ 11.6 min (R); t<sub>R</sub> 12.1 min (S). <sup>1</sup>H NMR (CDCl<sub>3</sub>), δ: 0.79 (t, 3H, J= 7.2 Hz), 1.13 (t, 3H, J=7.2 Hz), 1.53 (d, 3H, J=6.0 Hz), 1.62 (m,

2H), 2.60 (m, 2H), 2.99 (m, 1H), 4.03 (q, 2H, J= 7.2 Hz), 7.21 (m, 2H), 7.34 (m, 3H).

<sup>&</sup>lt;sup>3</sup> W.-J. Lu, Y.-W. Chen, X.-L. Hou, Adv. Synth. Catal. 2010, 352, 103-107.

<sup>&</sup>lt;sup>4</sup> R. E. Deasy, M. Brossat, T. S. Moody, A. R. Maguire, *Tetrahedron: Asymmetry* **2011**, 22, 47.

### 2,2'-(1-Phenylethane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane).<sup>5</sup>

Enantiomeric excess were determined after oxidation of the pinacolborane derivative to the corresponding diol using NaOH (3N, 2.0 mL) and H<sub>2</sub>O<sub>2</sub> (30%, 1.5 mL). Enantiomeric excess determined by HPLC using Chiracel OD-H column (hexane/2-propanol=95/5, 0.5 mL/min, 254 nm). t<sub>R</sub> 18.3 min (*R*); t<sub>R</sub> 19.6 min (*S*). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 1.10 (dd, 1H, *J*= 5.4 Hz, *J*= 16.0 Hz), 1.17 (s, 6H), 1.20 (s, 6H), 1.21 (s, 12H), 1.38 (dd, 1H, *J*= 11.2 Hz, *J*= 16.0 Hz), 2.53 (dd, 1H, *J*= 5.4 Hz, *J*= 11.2 Hz), 7.1-7.3 (m, 5H).

2-(1,2-Diphenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.<sup>6</sup> Enantiomeric excess determined by HPLC using Chiracel OJ-H column (hexane/2propanol=99/1, 0.5 mL/min, 254 nm). t<sub>R</sub> 9.5 min (-); t<sub>R</sub> 12.9 min (+). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 1.12 (s, 6H), 1.13 (s, 6H), 2.71 (dd, 1H, J=

6.8 Hz, *J*= 10.0 Hz), 2.98 (dd, 1H, *J*= 7.0 Hz, *J*= 13.6 Hz), 3.17 (dd, 1H, *J*= 9.6 Hz, *J*= 13.6 Hz), 7.1-7.4 (m, 10H).

3-Methyl-4-phenylbutan-2-one.<sup>7</sup> Enantiomeric excess determined by HPLC using Chiracel OJ-H column (hexane/2-propanol=97/3, 1 mL/min, 220 nm).  $t_R$  10.2 min (S);  $t_R$  10.4 min (R). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 1.09 (d, 3H, J= 6.8 Hz), 2.09 (s, 3H), 2.56 (m, 1H), 2.83 (m, 1H), 3.01 (m, 1H),

7.1-7.3 (m, 5H).

- 3-Phenylcyclohexanone.<sup>8</sup> Enantiomeric excess determined by GC using Chiradex B-DM column (82.5 kPa H<sub>2</sub>, 50 °C for 2 min, 1 °C/min until 175 °C). t<sub>R</sub> 87.8 min (*R*); t<sub>R</sub> 88.5 min (*S*). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 1.82 (m, 2H), 2.12 (m, 2H), 2.3-2.7 (m, 4H), 3.02 (m, 1H), 7.0-7.5 (m, 5H)
- **3-Methylcyclohexanone.**<sup>8</sup> Enantiomeric excess determined by GC using Chiradex B-DM column (82.5 kPa H<sub>2</sub>, 60 °C for 30 min, 3 °C/min until 175 °C). t<sub>R</sub> 14.4 min (*R*); t<sub>R</sub> 14.6 min (*S*). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 0.97 (d, 3H, *J*= 6.4 Hz), 1.28 (m, 1H), 1.61 (m, 1H), 1.89 (m, 4H), 2.24 (m, 3H).

<sup>&</sup>lt;sup>5</sup> A. Paptchikhine, P. Cheruku, M. Engman, P. G. Andersson, *Chem. Commun.* 2009, 5996.

<sup>&</sup>lt;sup>6</sup> A. Ganić, A. Pfaltz, Chem. Eur. J. 2012, 18, 6724.

<sup>&</sup>lt;sup>7</sup> S. M. Lu, C. Bolm, Angew. Chem. Int. Ed. 2008, 47, 8920.

<sup>&</sup>lt;sup>8</sup> J. J. Verendel, J.-Q. Li, X. Quan, B. Peters, T. Zhou, O. R. Gautun, T. Govender, P. G. Andersson, *Chem. Eur. J.* **2012**, *18*, 6507.

N-Benzyl-2-methyl-3-phenylpropanamide.9 Enantiomeric excess determined by HPLC

using Chiracel OD-H column (hexane/2-propanol=95/5, 1 mL/min, 210 nm).  $t_R$  26.5 min (S);  $t_R$  29.9 min (R). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 1.23 (d, 3H, J= 6.8 Hz), 2.47 (m, 1H), 2.70 (dd, 1H, J=

6.4 Hz, *J*= 13.4 Hz), 2.98 (dd, 1H, *J*= 8.8 Hz, *J*= 13.4 Hz), 4.32 (m, 2H), 5.66 (b, 1H), 7.0-7.3 (m, 10H).

3-Benzyltetrahydro-2H-pyran-2-one.<sup>10</sup> Enantiomeric excess determined by HPLC



using Chiracel OJ-H column (hexane/2-propanol=90/10, 1 mL/min, 210 nm). t<sub>R</sub> 39.4 min (*R*); t<sub>R</sub> 43.9 min (*S*). <sup>1</sup>H NMR (CDCl<sub>3</sub>), δ: 1.51 (m, 1H), 1.83 (m, 3H), 2.71 (m, 2H), 3.35 (m, 1H), 4.26 (m, 2H), 7.1-

7.3 (m, 5H).

*I-Phenylpropyl diphenylphosphinate.*<sup>11</sup> Enantiomeric excess determined by HPLC using Chiralcel AD (hexane/2-propanol=90/10, 0.5 mL/min, 220  $\star$  OP(O)Ph<sub>2</sub> nm). t<sub>R</sub> = 28.9 min (*R*); t<sub>R</sub> 41.7 min (*S*). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 0.87(dt, 3H, J = 7.2, 2.4 Hz), 1.98 (m, 1H), 2.12 (m, 1H), 5.30 (m,

1H), 7.2-7.3 (m, 7H), 7.4-7.7 (m, 6H), 7.8-7.9 (m, 2H).

*Ethyl* 3-((*diphenylphosphoryl*)*oxy*)-3-*phenylpropanoate*.<sup>11</sup> Enantiomeric excess COOEt determined by HPLC using Chiralcel OD-H (hexane/2- Propanol=90/10, 0.5 mL/min, 220 nm). t<sub>R</sub> = 29.1 min (*R*); t<sub>R</sub> 32.9 min (*S*). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 1.14 (t, 3H, *J* = 7.2 Hz), 2.92 (dd, 1H, *J* = 7.1 Hz, *J* = 15.2 Hz), 3.24 (dd, 1H, *J* = 7.1 Hz, *J* = 15.2 Hz), 4.01 (m, 2H), 5.82 (m, 1H), 7.32 (m, 7H), 7.48 (m, 4H), 7.61 (m, 2H), 7.82 (m, 2H).

<sup>11</sup> P. Cheruku, J. Diesen, P. G. Andersson, J. Am. Chem. Soc. 2008, 130, 5595.

<sup>&</sup>lt;sup>9</sup> a) W.-J. Lu, X.-L. Hou, Adv. Synth. Catal. 2009, 351, 1224-1228. b) C. Metallinos, L. V. Belle, J. Organomet. Chem. 2011, 696, 141-149.

<sup>&</sup>lt;sup>10</sup> X. Liu, Z. Han, Z. Wang, K. Ding Angew. Chem. Int. Ed. **2014**, 53, 1978.

Ethyl

F<sub>3</sub>C

3-((diphenylphosphoryl)oxy)-3-(4-(trifluoromethyl)phenyl)propanoate.<sup>11</sup> Enantiomeric excess determined by HPLC using Chiralcel OD-H (hexane/2-propanol=90/10, 0.5 mL/min, 220 nm).  $t_R = 17.5$ min (R);  $t_R$  26.0 min (S). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 1.13 (t, 3H, J = 7.2 Hz), 2.89 (dd, 1H, J = 6.4 Hz, J = 15.6 Hz), 3.20 (dd, 1H, J = 7.2 Hz), 2.89 (dd, 1H, J = 6.4 Hz, J = 15.6 Hz), 3.20 (dd, 1H, J = 7.2 Hz), 2.89 (dd, 1H, J = 6.4 Hz, J = 15.6 Hz), 3.20 (dd, 1H, J = 7.2 Hz), 2.89 (dd, 1H, J = 6.4 Hz, J = 15.6 Hz), 3.20 (dd, 1H, J = 7.2 Hz), 2.89 (dd, 1H, J = 7.2 Hz), 2.89 (dd, 1H, J = 7.2 Hz), 2.89 (dd, 1H, J = 7.2 Hz), 3.20 (dd, 1H, J = 7.2 Hz)

6.4 Hz, J= 15.6 Hz), 4.00 (m, 2H), 5.82 (br, 1H), 7.3-7.8 (m, 14H)

2,2-Dimethylpentan-3-yl diphenylphosphinate.<sup>11</sup> Enantiomeric excess determined by HPLC using Chiralcel IA (hexane/2-propanol=95/5, 0.5 mL/min, 220 nm).  $t_R = 26.5 min (R)$ ;  $t_R 28.8 min (S)$ . <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 0.70 (t, 3H, J= 7.2 Hz), 0.90 (s, 3H), 1.14 (m, 2H), 1.01 (s, 9H), 1.55 (m, 2H),

4.26 (m, 1H), 7.3-7.8 (m, 10H)

*Ethyl* 3-((*diphenylphosphoryl*)*oxy*)-4-methylpentanoate.<sup>11</sup> Enantiomeric excess COOEt determined by HPLC using Chiralcel AS-H (hexane/2-propanol=95/5, 0.5 mL/min, 220 nm).  $t_R = 17.0 \text{ min}$  (*S*);  $t_R 25.2 \text{ min}$  (*R*). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 0.92 (dd, 3H, J= 8.0 Hz, J= 6.8 Hz), 1.14 (t, 3H, J= 7.2)

Hz), 2.07 (m, 1H), 2.56 (dd, 1H, *J*= 15.4 Hz, J= 5.2 Hz), 2.75 (dd, 1H, *J*= 15.2 Hz, *J*= 7.2 Hz), 3.93 (m, 2H), 4.73 (m, 1H), 7.4 - 7.7 (m, 10H).

(4-Methylpentan-2-yl)benzene.<sup>12</sup> Enantiomeric excess determined by GC using Chiradex B-DM column (100 kPa H<sub>2</sub>, 60 °C for 30 min, 3 °C/min until 175 °C). t<sub>R</sub> 27.9 min (S); t<sub>R</sub> 29.5 min (R). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 0.84 (d, 3H, J = 6.8 Hz), 0.87 (d, 3H, J = 6.8 Hz), 1.21 (d, 3H, J = 7.2 Hz), 1.36 (m, 2H), 1.45 (m, 1H), 2.79 (m, 1H), 7.19 (m, 2H), 7.29 (m, 3H).

1-(3,3-Dimethylbutan-2-yl)-4-methylbenzene. Enantiomeric excess determined by GC using Chiradex B-DM column (100 kPa H<sub>2</sub>, 60 °C for 30 min, 3 °C/min until 175 °C). t<sub>R</sub> 39.3 min (*S*); t<sub>R</sub> 39.7 min (*R*). <sup>1</sup>H NMR (CDCl<sub>3</sub>), δ: 0.82 (s, 9H), 1.23 (d, 3H, J= 6.8 Hz), 2.33 (s, 3H), 2.43 (q, 1H, J= 6.8 Hz), 7.06 (m, 5H).

<sup>&</sup>lt;sup>12</sup> T. Ohta, H. Ikegami, T. Miyake, H. Takaya, J. Organomet. Chem. 1995, 502, 169.

1-(3,3-Dimethylbutan-2-yl)-4-methoxybenzene. Enantiomeric excess determined by

MeO

GC using Chiradex B-DM column (100 kPa H<sub>2</sub>, 60 °C for 30 min, 3 °C/min until 175 °C).  $t_R$  53.4 min (S);  $t_R$  53.8 min (R). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 0.78 (s, 9H), 1.16 (d, 3H, J= 6.8 Hz), 2.42 (q, 1H, J= 6.8 Hz), 3.71 (s, 3H), 6.72 (d, 2H, J= 7.2 Hz), 6.94 (d, 2H, J= 7.2 Hz).

1-(3,3-Dimethylbutan-2-yl)-4-(trifluoromethyl)benzene. Enantiomeric excess determined by GC using Chiradex B-DM column (100 kPa H<sub>2</sub>, 60 °C for 30 min, 3 °C/min until 175 °C). t<sub>R</sub> 41.1 min (S); t<sub>R</sub> 42.0 min (R). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 0.83 (s, 9H), 1.14 (d, 3H, J= 6.8 Hz), 2.44 (q,

1H, J= 6.8 Hz), 7.27 (d, 2H, J= 7.2 Hz), 7.53 (d, 2H, J= 7.2 Hz).

1-(3,3-Dimethylbutan-2-yl)-3-methylbenzene. Enantiomeric excess determined by GC using Chiradex B-DM column (100 kPa H<sub>2</sub>, 60 °C for 30 min, 3 °C/min until 175 °C). t<sub>R</sub> 41.7 min (S); t<sub>R</sub> 42.5 min (R). <sup>1</sup>H NMR (CDCl<sub>3</sub>), δ: 0.79 (s, 9H), 1.18 (d, 3H, J= 6.8 Hz), 2.26 (s, 3H), 2.44 (q, 1H, J= 6.8

Hz), 6.92 (m, 3H), 7.06 (m, 1H).

2-(3,3-Dimethylbutan-2-yl)naphthalene. Enantiomeric excess determined by GC using Chiradex B-DM column (100 kPa H<sub>2</sub>, 60 °C for 30 min, 3 °C/min until 175 °C).  $t_R$  63.5 min (S);  $t_R$  63.7 min (R). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 0.93 (s, 9H), 1.36 (d, 3H, J= 6.8 Hz), 2.41 (q, 1H, J= 6.8 Hz), 6.8-7.0

(m, 2H), 7.2-7.8 (m, 5H).

1-(3,3-Dimethylbutan-2-yl)-2-methylbenzene. Enantiomeric excess determined by GC using Chiradex B-DM column (100 kPa H<sub>2</sub>, 60 °C for 30 min, 3 °C/min until 175 °C). t<sub>R</sub> 39.8 min (S); t<sub>R</sub> 40.5 min (R). <sup>1</sup>H NMR (CDCl<sub>3</sub>), δ: 0.83 (s, 9H), 1.23 (d, 3H, J= 6.8 Hz), 2.37 (s, 3H), 2.93 (q, 1H, J= 6.8 Hz), 6.9-7.2 (m, 5H).

1-(3,3-Dimethylbutan-2-yl)naphthalene. Enantiomeric excess determined by GC using Chiradex B-DM column (100 kPa H<sub>2</sub>, 60 °C for 30 min, 3 °C/min until 175 °C). t<sub>R</sub> 60.7 min (S); t<sub>R</sub> 61.0 min (R). <sup>1</sup>H NMR (CDCl<sub>3</sub>), δ: 0.91 (s, 9H), 1.25 (d, 3H, J= 6.8 Hz), 2.81 (q, 1H, J= 6.8 Hz), 6.8-7.0 (m, 2H),

7.3-8.2 (m, 5H).

# 1-Phenylethyl diphenylphosphinate. 13 Enantiomeric excess determined by HPLC using<br/>Chiralcel AD (hexane/2-propanol=90/10, 0.5 mL/min, 220 nm). $t_R =$ $\star$ OP(O)Ph228.9 min (R); $t_R$ 41.7 min (S). <sup>1</sup>H NMR (CDCl<sub>3</sub>), $\delta$ : 1.81 (dd, 3H, J =<br/>7.2 Hz, J = 2.4 Hz). 5.60 (m, 1H), 7.18 (m, 3H), 7.31 (m, 2H), 7.42

(m, 4H), 7.52 (m, 2H), 7.82 (m, 4H).

3-Methylbutan-2-yl diphenylphosphinate.<sup>11</sup> Enantiomeric excess determined by HPLC using Chiralcel S,S Whelk-01 (hexane/2-propanol=98/2, 0.5 mL/min,  $\stackrel{*}{\longrightarrow} OP(O)Ph_2$  220 nm). t<sub>R</sub> = 93.7 min (*R*); t<sub>R</sub> 102.0 min (*S*). <sup>1</sup>H NMR (CDCl<sub>3</sub>),  $\delta$ : 0.92 (dd, 3H, *J*= 0.8 Hz, *J*= 6.8 Hz), 0.94 (dd, 3H, *J*= 0.8 Hz, *J*= 6.8 Hz), 1.22 (dd, 3H, *J*= 0.8 Hz, *J*= 6.4 Hz), 1.90 (m, 1H), 4.40 (m, 1H), 7.4 - 7.8 (m, 10H).

<sup>13</sup> P. Cheruku, S. Gohil, P. G. Andersson, Org. Lett. 2007, 9, 1659.





## Ligand 8



## Ligand 9











## [lr(cod)(2)]BAr<sub>F</sub>



## [lr(cod)(3)]BAr<sub>F</sub>



## [Ir(cod)(4)]BAr<sub>F</sub>







## [lr(cod)(6)]BAr<sub>F</sub>



## [lr(cod)(7)]BAr<sub>F</sub>





## [lr(cod)(8)]BAr<sub>F</sub>



## [lr(cod)(8)]BAr<sub>F</sub> (at 228 K)



[lr(cod)(9)]BAr<sub>F</sub>







## [lr(cod)(11)]BAr<sub>F</sub>







## SI.6. Structures of the calculated isomers of [Ir(cod)(12)]BAr<sub>F</sub>

## Major isomer [Ir(cod)(12)]BAr<sub>F</sub>

| С  | 0.64601400  | -1.91094100 | -2.39577700 |        |
|----|-------------|-------------|-------------|--------|
| Η  | 1.67003700  | -1.55608000 | -2.32558100 |        |
| С  | 0.25027900  | -2.86332800 | -1.41957100 |        |
| Н  | 1.02320900  | -3.18939200 | -0.72303600 |        |
| С  | -2.35653900 | -1.78569600 | -1.82081300 |        |
| Н  | -3.17000500 | -1.58704600 | -1.12796200 |        |
| С  | -1.91127100 | -0.69665600 | -2.57907000 |        |
| Н  | -2.43517400 | 0.24688000  | -2.43327100 |        |
| С  | -2.15724200 | -3.24984600 | -2.19081100 |        |
| Н  | -3.02838100 | -3.81618000 | -1.84588000 | $\sim$ |
| Н  | -2.13934400 | -3.35344300 | -3.27987900 |        |
| С  | -0.88186200 | -3.85989900 | -1.56786400 |        |
| Н  | -0.54498700 | -4.72516100 | -2.15852800 |        |
| Н  | -1.11877800 | -4.24744600 | -0.57011400 |        |
| С  | 0.04055600  | -1.79633600 | -3.79308300 |        |
| Н  | 0.82796500  | -1.49985200 | -4.49387200 |        |
| Н  | -0.30790800 | -2.77788600 | -4.12882500 |        |
| С  | -1.10047100 | -0.76180300 | -3.85426100 |        |
| Н  | -1.76454800 | -0.96875200 | -4.70699400 |        |
| Н  | -0.67834700 | 0.23405500  | -4.03004700 |        |
| Ir | -0.50662200 | -0.91984200 | -0.82857300 |        |
| Р  | 1.35660300  | -0.57798900 | 0.60443900  |        |
| С  | 1.55184400  | 1.15175300  | 1.13489500  |        |
| С  | 3.01112500  | -1.04986700 | -0.06271200 |        |
| С  | 1.24566700  | -1.51100400 | 2.19208700  |        |
| С  | 2.79123300  | 1.85280200  | 1.33565500  |        |
| С  | 0.48471300  | 2.03028300  | 1.56747700  |        |
| С  | 3.72355100  | -2.14410900 | 0.45221500  |        |
| С  | 3.55335900  | -0.33610100 | -1.14641900 |        |

| С  | 0.43060500  | -2.64931500 | 2.28368500  |
|----|-------------|-------------|-------------|
| С  | 1.99197300  | -1.11065900 | 3.31367700  |
| Fe | 1.56895300  | 2.94781000  | 0.04567600  |
| С  | 2.50395600  | 3.12621700  | 1.89865600  |
| Н  | 3.77146500  | 1.47681300  | 1.07888500  |
| С  | 1.09201200  | 3.23787900  | 2.04101100  |
| С  | -0.98724900 | 1.76066400  | 1.73506900  |
| С  | 4.95529500  | -2.50830800 | -0.09916900 |
| Н  | 3.32951400  | -2.71230500 | 1.28749600  |
| С  | 4.78678100  | -0.69736400 | -1.68822900 |
| Н  | 3.01348700  | 0.50730700  | -1.56089200 |
| С  | 0.36509500  | -3.37749800 | 3.47421900  |
| Н  | -0.15818400 | -2.95942900 | 1.42664500  |
| С  | 1.92136500  | -1.83788300 | 4.50195500  |
| Н  | 2.62593000  | -0.23080900 | 3.26260400  |
| Н  | 3.22923700  | 3.89563800  | 2.12777700  |
| Н  | 0.55284100  | 4.09938300  | 2.41372100  |
| S  | -1.68609800 | 0.93611100  | 0.19630700  |
| Н  | -1.50259100 | 2.72611500  | 1.72918700  |
| С  | -1.31135500 | 1.04369000  | 3.04918800  |
| С  | 5.49100200  | -1.78603800 | -1.16575100 |
| Н  | 5.49469500  | -3.35656200 | 0.31220000  |
| Н  | 5.19473400  | -0.13092700 | -2.52054400 |
| С  | 1.10879600  | -2.97244900 | 4.58409500  |
| Н  | -0.26969700 | -4.25695700 | 3.53301400  |
| Н  | 2.50017000  | -1.51733600 | 5.36336800  |
| С  | 0.29219300  | 3.55334300  | -1.48868000 |
| С  | -3.45054000 | 0.73026700  | 0.56618000  |
| Н  | -0.93224900 | 1.65512000  | 3.87598700  |
| Н  | -2.39114600 | 0.93572500  | 3.17958200  |
| Н  | -0.83844700 | 0.06148100  | 3.10739100  |
| Н  | 6.44985200  | -2.06908200 | -1.59027900 |
| Н  | 1.05476200  | -3.53630300 | 5.51092700  |

S

| С | 0.95577700  | 4.68374900  | -0.92377000 |               |
|---|-------------|-------------|-------------|---------------|
| С | 1.28756900  | 2.67154600  | -2.00731700 |               |
| Н | -0.77409200 | 3.37868500  | -1.49399700 |               |
| С | -4.28995100 | 1.78942800  | 0.13666400  |               |
| С | -3.97548400 | -0.41224200 | 1.21717700  |               |
| С | 2.36145700  | 4.49964600  | -1.09178500 |               |
| Н | 0.47998100  | 5.51513700  | -0.42032700 |               |
| С | 2.56762700  | 3.25727800  | -1.76347900 |               |
| Н | 1.09781400  | 1.71478300  | -2.47610500 |               |
| С | -5.66347200 | 1.68832500  | 0.38637200  |               |
| С | -5.36185200 | -0.46175300 | 1.43013300  |               |
| Н | 3.13698600  | 5.16502500  | -0.73566000 |               |
| Н | 3.52853100  | 2.82824800  | -2.01431000 | $\mathcal{A}$ |
| С | -6.19835700 | 0.57377400  | 1.02755000  |               |
| Н | -6.31718800 | 2.49440500  | 0.06601400  |               |
| Н | -5.78107000 | -1.33309600 | 1.92561800  |               |
| Н | -7.26767500 | 0.51041900  | 1.20779500  |               |
| С | -3.77496800 | 3.01744000  | -0.58239500 |               |
| Н | -3.03417900 | 3.56689000  | 0.00934300  |               |
| Н | -3.29941900 | 2.76030400  | -1.53550700 |               |
| Н | -4.60061900 | 3.70187900  | -0.79531100 |               |
| С | -3.14968200 | -1.57625100 | 1.71311000  |               |
| Н | -2.74270100 | -1.38053000 | 2.71131800  |               |
| Н | -3.77248300 | -2.47290800 | 1.78570600  |               |
| Н | -2.30368500 | -1.79638400 | 1.05673000  |               |
|   |             |             |             |               |

## Minor isomer [lr(cod)(12)]BAr<sub>F</sub>

| С  | 1.80449300 -0.45455700 -0.96242000  |  |
|----|-------------------------------------|--|
| С  | 2.91265300 -0.37346500 -1.87548000  |  |
| С  | 3.00906200 -1.60295500 -2.58243000  |  |
| С  | 1.98436500 -2.46909800 -2.10820400  |  |
| С  | 1.24640200 -1.78713000 -1.08809300  |  |
| Н  | 3.55688600 0.48400000 -2.00518400   |  |
| Н  | 3.76336200 -1.85424300 -3.31616300  |  |
| Η  | 1.83367500 -3.49277900 -2.42062300  |  |
| Fe | 3.24219800 -1.93425800 -0.53990700  |  |
| С  | 3.46256700 -3.29455800 1.03219700   |  |
| С  | 4.31162600 -3.65246000 -0.05900400  |  |
| С  | 3.83066100 -1.98845200 1.46839400   |  |
| Н  | 2.66274600 -3.89802200 1.44025900   |  |
| С  | 5.20855300 -2.56639500 -0.29317800  |  |
| Н  | 4.25993200 -4.56923100 -0.63163400  |  |
| С  | 4.90953600 -1.53625300 0.64848900   |  |
| Η  | 3.35797500 -1.42627600 2.26076600   |  |
| Η  | 5.95210100 -2.51508400 -1.07772900  |  |
| Н  | 5.39833600 -0.57371800 0.71325300   |  |
| С  | 0.10376500 -2.35607700 -0.29772000  |  |
| Н  | 0.24860500 -2,16412800 0.76537900   |  |
| S  | -1.43511100 -1.35729300 -0.79296700 |  |
| С  | -0.13372300 -3.84470600 -0.54105100 |  |
| Н  | 0.77463600 -4.39570400 -0.27677500  |  |
| Н  | -0.95190600 -4.22304800 0.07438900  |  |
| Н  | -0.36998800 -4.04956100 -1.58944600 |  |
| С  | -2.85563200 -2.32302800 -0.22118600 |  |
| С  | -3.03835700 -2.67573200 1.13630200  |  |
| С  | -3.79157700 -2.69180500 -1.21758800 |  |
| С  | -4.18516400 -3.40756000 1.47509700  |  |
| С  | -4.92226300 -3.41671700 -0.82046500 |  |
|    |                                     |  |

| С  | -5.11962800 | -3.77468900 | 0.51100400  |
|----|-------------|-------------|-------------|
| Н  | -4.33993700 | -3.68642700 | 2.51379900  |
| Н  | -5.65123300 | -3.70568500 | -1.57217900 |
| Н  | -6.00247200 | -4.33898800 | 0.79729700  |
| Р  | 1.04388400  | 0.95615500  | -0.07371000 |
| Ir | -1.36862700 | 0.93855300  | -0.01402400 |
| С  | -1.40924000 | 2.91734700  | 0.93220500  |
| С  | -3.35093100 | 0.85556200  | 0.99002300  |
| С  | -3.60312000 | 1.17871700  | -0.35028900 |
| С  | -1.48510300 | 3.05533000  | -0.47816800 |
| С  | -2.58936600 | 3.12604700  | 1.87872300  |
| Н  | -0.43747400 | 3.11217800  | 1.38235900  |
| С  | -3.35922400 | 1.81937600  | 2.15823000  |
| Η  | -3.49197300 | -0.18509900 | 1.26997100  |
| С  | -3.96774000 | 2.56910900  | -0.84751500 |
| Н  | -3.89337600 | 0.35804700  | -1.00228800 |
| С  | -2.72671900 | 3.37140100  | -1.28605000 |
| Η  | -0.57036000 | 3.34491300  | -0.98645900 |
| Η  | -2.21772200 | 3.53038900  | 2.82581000  |
| Η  | -3.25876300 | 3.88839700  | 1.46680200  |
| Η  | -2.90211300 | 1.30668900  | 3.01153600  |
| Η  | -4.39753300 | 2.03699400  | 2.45070400  |
| Η  | -4.51805700 | 3.10535800  | -0.06789100 |
| Η  | -4.65368500 | 2.47373400  | -1.69541800 |
| Η  | -2.93079800 | 4.45229900  | -1.24475200 |
| Н  | -2.50149000 | 3.14257000  | -2.33410400 |
| С  | 1.69664500  | 2.41918000  | -0.99113400 |
| С  | 1.59502200  | 2.44037700  | -2.39505400 |
| С  | 2.15426000  | 3.56969100  | -0.33026800 |
| С  | 1.97593400  | 3.57058700  | -3.11687100 |
| Η  | 1.21898700  | 1.57356700  | -2.92980100 |
| С  | 2.53260900  | 4.70208800  | -1.05820100 |
| Н  | 2.22343500  | 3.59334700  | 0.75155100  |

59

| С | 2.45007700  | 4.70467900  | -2.45035800 |  |
|---|-------------|-------------|-------------|--|
| Н | 1.89943000  | 3.56509800  | -4.20031900 |  |
| Н | 2.89218800  | 5.58020200  | -0.52969200 |  |
| Н | 2.74668100  | 5.58445600  | -3.01394200 |  |
| С | 1.78911000  | 1.04732300  | 1.60703600  |  |
| С | 3.14424400  | 1.37066000  | 1.79471600  |  |
| С | 0.99592300  | 0.75502000  | 2.72645400  |  |
| С | 3.68660400  | 1.41307100  | 3.07891200  |  |
| Н | 3.77786500  | 1.59483900  | 0.94264900  |  |
| С | 1.54557700  | 0.78357500  | 4.01120200  |  |
| Н | -0.05337800 | 0.51004300  | 2.58815500  |  |
| С | 2.88914800  | 1.11743500  | 4.18936300  |  |
| Н | 4.73234300  | 1.67447900  | 3.21245400  |  |
| Н | 0.92086500  | 0.55327500  | 4.86939300  |  |
| Н | 3.31511500  | 1.14929600  | 5.18801000  |  |
| С | -3.62032700 | -2.34764500 | -2.68169600 |  |
| Н | -3.57451200 | -1.26610000 | -2.85244000 |  |
| Н | -2.69736900 | -2.77256400 | -3.09144200 |  |
| Н | -4.46027900 | -2.74090500 | -3.26062300 |  |
| С | -2.05793800 | -2.32752800 | 2.23215900  |  |
| Н | -1.25335300 | -3.07095400 | 2.29912100  |  |
| Н | -1.59200200 | -1.34977500 | 2.07429200  |  |
| Н | -2.56142700 | -2.31397700 | 3.20300600  |  |
|   |             |             |             |  |
|   | ₽.          |             |             |  |

#### SI.7. Crystal data and structure refinement for [Ir(cod)(4)]BAr<sub>F</sub>.

Identification code [Ir(cod)(4)]BArF Empirical formula C67 H53.50 B F24 Fe Ir P S Formula weight 1636.48 100(2) K Temperature Wavelength 0.71073 Å Crystal system Monoclinic P2(1) Space group Unit cell dimensions  $\alpha = 90^{\circ}$ . a = 18.0636(18)Å b = 13.3388(13)Å  $\beta = 93.962(4)^{\circ}$ . c = 26.661(3)Å  $\gamma = 90^{\circ}$ . Volume 6408.5(11) Å<sup>3</sup> Ζ 4 1.696 Mg/m<sup>3</sup> Density (calculated) Absorption coefficient 2.470 mm<sup>-1</sup> 3242 F(000) Crystal size 0.08 x 0.02 x 0.005 mm<sup>3</sup> 0.766 to 23.390°. Theta range for data collection Index ranges -20<=h<=20,-14<=k<=14,-29<=l<=29 Reflections collected 100649 18392[R(int) = 0.1312]Independent reflections Completeness to theta =23.390° 99.2% Absorption correction Empirical Max. and min. transmission 0.988 and 0.854 Refinement method Full-matrix least-squares on F<sup>2</sup> 18392/1215/1781 Data / restraints / parameters Goodness-of-fit on F<sup>2</sup> 1.027 Final R indices [I>2sigma(I)] R1 = 0.0598, wR2 = 0.1255 R indices (all data) R1 = 0.1133, wR2 = 0.1485Flack parameter x = 0.003(4)2.518 and -2.127 e.Å-3 Largest diff. peak and hole

| Bond lengths |           |  |
|--------------|-----------|--|
| Ir1A-C2A     | 2.13(2)   |  |
| Ir1A-C1A     | 2.19(2)   |  |
| Ir1A-C5A     | 2.24(2)   |  |
| Ir1A-C6A     | 2.25(2)   |  |
| Ir1A-P1A     | 2.297(5)  |  |
| Ir1A-S1A     | 2.383(6)  |  |
| P1A-C15A     | 1.776(19) |  |
| P1A-C21A     | 1.787(19) |  |
| P1A-C9A      | 1.85(2)   |  |
| S1A-C26A     | 1.81(2)   |  |
| S1A-C32A     | 1.87(2)   |  |
| Fe1A-C28A    | 2.01(3)   |  |
| Fe1A-C21A    | 2.007(18) |  |
| Fe1A-C30A    | 2.01(3)   |  |
| Fe1A-C27A    | 2.01(2)   |  |
| Fe1A-C25A    | 2.03(2)   |  |
| Fe1A-C31A    | 2.04(2)   |  |
| Fe1A-C29A    | 2.05(3)   |  |
| Fe1A-C22A    | 2.06(2)   |  |
| Fe1A-C23A    | 2.06(3)   |  |
| Fe1A-C24A    | 2.08(2)   |  |
| C1A-C2A      | 1.41(3)   |  |
| C1A-C8A      | 1.48(3)   |  |
| C2A-C3A      | 1.53(3)   |  |
| C3A-C4A      | 1.50(3)   |  |
| C4A-C5A      | 1.51(3)   |  |
| C5A-C6A      | 1.40(3)   |  |
| C6A-C7A      | 1.50(3)   |  |
| C7A-C8A      | 1.56(3)   |  |
| C9A-C10A     | 1.35(3)   |  |
| C9A-C14A     | 1.37(3)   |  |
| C10A-C11A    | 1.38(3)   |  |
| C11A-C12A    | 1.42(4)   |  |
| C12A-C13A    | 1.33(3)   |  |
| C13A-C14A    | 1.43(3)   |  |

Table 2. Bond lengths [Å] and angles [°] for  $mo_R$ \_FeStBu\_0m.

| C15A-C16A | 1.38(3)  |
|-----------|----------|
| C15A-C20A | 1.41(3)  |
| C16A-C17A | 1.39(3)  |
| C17A-C18A | 1.39(3)  |
| C18A-C19A | 1.36(3)  |
| C19A-C20A | 1.33(3)  |
| C21A-C25A | 1.41(3)  |
| C21A-C22A | 1.45(3)  |
| C22A-C23A | 1.42(3)  |
| C23A-C24A | 1.44(3)  |
| C24A-C25A | 1.46(3)  |
| C25A-C26A | 1.50(3)  |
| C27A-C31A | 1.43(3)  |
| C27A-C28A | 1.46(3)  |
| C28A-C29A | 1.38(3)  |
| C29A-C30A | 1.43(3)  |
| C30A-C31A | 1.40(3)  |
| C32A-C35A | 1.50(3)  |
| C32A-C33A | 1.54(3)  |
| C32A-C34A | 1.57(3)  |
| Ir1B-C6B  | 2.12(2)  |
| Ir1B-C5B  | 2.17(3)  |
| Ir1B-C1B  | 2.20(2)  |
| Ir1B-C2B  | 2.21(3)  |
| Ir1B-P1B  | 2.292(5) |
| Ir1B-S1B  | 2.380(5) |
| P1B-C21B  | 1.80(2)  |
| P1B-C9B   | 1.83(2)  |
| P1B-C15B  | 1.86(2)  |
| S1B-C26B  | 1.81(2)  |
| S1B-C32B  | 1.87(2)  |
| Fe1B-C29" | 1.94(7)  |
| Fe1B-C30" | 1.97(8)  |
| Fe1B-C28B | 1.98(5)  |
| Fe1B-C25B | 2.00(2)  |
| Fe1B-C31B | 2.00(6)  |
| Fe1B-C21B | 2.02(3)  |
| Fe1B-C24B | 2.04(3)  |
|           | . /      |
| Fe1B-C27B | 2.04(5) |  |
|-----------|---------|--|
| Fe1B-C22B | 2.05(2) |  |
| Fe1B-C30B | 2.08(6) |  |
| Fe1B-C28" | 2.08(7) |  |
| Fe1B-C29B | 2.09(5) |  |
| C1B-C2B   | 1.42(4) |  |
| C1B-C8B   | 1.51(4) |  |
| C2B-C3B   | 1.57(3) |  |
| C3B-C4B   | 1.53(3) |  |
| C4B-C5B   | 1.49(4) |  |
| C5B-C6B   | 1.37(4) |  |
| C6B-C7B   | 1.54(3) |  |
| C7B-C8B   | 1.61(4) |  |
| C9B-C10B  | 1.35(3) |  |
| C9B-C14B  | 1.36(3) |  |
| C10B-C11B | 1.37(3) |  |
| C11B-C12B | 1.35(3) |  |
| C12B-C13B | 1.31(4) |  |
| C13B-C14B | 1.47(3) |  |
| C15B-C16B | 1.37(3) |  |
| C15B-C20B | 1.38(3) |  |
| C16B-C17B | 1.35(3) |  |
| C17B-C18B | 1.34(3) |  |
| C18B-C19B | 1.40(4) |  |
| C19B-C20B | 1.37(3) |  |
| C21B-C25B | 1.38(3) |  |
| C21B-C22B | 1.42(3) |  |
| C22B-C23B | 1.39(4) |  |
| C23B-C24B | 1.45(4) |  |
| C24B-C25B | 1.48(3) |  |
| C25B-C26B | 1.49(3) |  |
| C27B-C31B | 1.43(3) |  |
| C27B-C28B | 1.46(3) |  |
| C28B-C29B | 1.38(3) |  |
| C29B-C30B | 1.43(3) |  |
| C30B-C31B | 1.41(3) |  |
| C27"-C31" | 1.43(3) |  |
| C27"-C28" | 1.46(3) |  |

| C28"-C29" | 1.38(3) |  |
|-----------|---------|--|
| C29"-C30" | 1.43(3) |  |
| C30"-C31" | 1.40(3) |  |
| C32B-C34B | 1.50(3) |  |
| C32B-C35B | 1.56(3) |  |
| C32B-C33B | 1.56(3) |  |
| B1C-C17C  | 1.63(3) |  |
| B1C-C25C  | 1.63(3) |  |
| B1C-C1C   | 1.64(3) |  |
| B1C-C9C   | 1.64(3) |  |
| C1C-C6C   | 1.39(2) |  |
| C1C-C2C   | 1.40(2) |  |
| C2C-C3C   | 1.40(2) |  |
| C3C-C4C   | 1.36(3) |  |
| C3C-C7C   | 1.48(3) |  |
| C4C-C5C   | 1.39(3) |  |
| C5C-C6C   | 1.41(3) |  |
| C5C-C8C   | 1.46(3) |  |
| C7C-F6C   | 1.33(2) |  |
| C7C-F5C   | 1.34(3) |  |
| C7C-F4C   | 1.36(3) |  |
| C8C-F2C   | 1.29(3) |  |
| C8C-F1C   | 1.34(3) |  |
| C8C-F3C   | 1.35(3) |  |
| C9C-C14C  | 1.38(2) |  |
| C9C-C10C  | 1.42(3) |  |
| C10C-C11C | 1.41(3) |  |
| C11C-C12C | 1.38(3) |  |
| C11C-C15C | 1.49(3) |  |
| C12C-C13C | 1.37(3) |  |
| C13C-C14C | 1.45(3) |  |
| C13C-C16C | 1.46(3) |  |
| C15C-F7C  | 1.30(2) |  |
| C15C-F9C  | 1.33(3) |  |
| C15C-F8C  | 1.35(3) |  |
| C16C-F12C | 1.30(2) |  |
| C16C-F10C | 1.32(2) |  |
| C16C-F11C | 1.39(3) |  |

| C17C-C18C | 1.39(3) |        |
|-----------|---------|--------|
| C17C-C22C | 1.45(3) |        |
| C18C-C19C | 1.39(3) |        |
| C19C-C23C | 1.46(3) |        |
| C19C-C20C | 1.46(3) |        |
| C20C-C21C | 1.33(3) | 6      |
| C21C-C22C | 1.39(3) |        |
| C21C-C24C | 1.56(3) |        |
| C23C-F13C | 1.30(3) |        |
| C23C-F14C | 1.33(3) |        |
| C23C-F15C | 1.36(3) |        |
| C24C-F16C | 1.30(3) |        |
| C24C-F17C | 1.33(3) |        |
| C24C-F18C | 1.33(3) |        |
| C25C-C30C | 1.39(3) | $\sim$ |
| C25C-C26C | 1.41(3) |        |
| C26C-C27C | 1.38(3) |        |
| C27C-C28C | 1.42(3) |        |
| C27C-C31C | 1.50(3) |        |
| C28C-C29C | 1.38(3) |        |
| C29C-C30C | 1.43(3) |        |
| C29C-C32C | 1.49(3) |        |
| C31C-F21C | 1.29(3) |        |
| C31C-F19C | 1.32(3) |        |
| C31C-F20C | 1.33(3) |        |
| C32C-F22C | 1.31(2) |        |
| C32C-F24C | 1.31(2) |        |
| C32C-F23C | 1.34(2) |        |
| B1D-C9D   | 1.63(3) |        |
| B1D-C25D  | 1.64(4) |        |
| B1D-C17D  | 1.64(3) |        |
| B1D-C1D   | 1.66(3) |        |
| C1D-C6D   | 1.47(3) |        |
| C1D-C2D   | 1.47(3) |        |
| C2D-C3D   | 1.46(4) |        |
| C3D-C4D   | 1.41(4) |        |
| C3D-C7D   | 1.50(4) |        |
| C4D-C5D   | 1.42(4) |        |

| C5D-C8D   | 1.46(4) |  |
|-----------|---------|--|
| C5D-C6D   | 1.48(4) |  |
| C7D-F2D   | 1.26(4) |  |
| C7D-F1D   | 1.33(3) |  |
| C7D-F3D   | 1.38(3) |  |
| C8D-F6D   | 1.25(3) |  |
| C8D-F4D   | 1.35(3) |  |
| C8D-F5D   | 1.37(4) |  |
| C9D-C10D  | 1.42(3) |  |
| C9D-C14D  | 1.45(3) |  |
| C10D-C11D | 1.42(3) |  |
| C11D-C12D | 1.38(3) |  |
| C11D-C15D | 1.47(4) |  |
| C12D-C13D | 1.39(4) |  |
| C13D-C14D | 1.40(3) |  |
| C13D-C16D | 1.41(4) |  |
| C15D-F7D  | 1.29(3) |  |
| C15D-F8D  | 1.35(3) |  |
| C15D-F9D  | 1.40(3) |  |
| C16D-F12D | 1.25(4) |  |
| C16D-F10D | 1.32(4) |  |
| C16D-F11D | 1.41(3) |  |
| C17D-C18D | 1.39(3) |  |
| C17D-C22D | 1.39(3) |  |
| C18D-C19D | 1.39(3) |  |
| C19D-C20D | 1.40(3) |  |
| C19D-C23D | 1.51(3) |  |
| C20D-C21D | 1.41(3) |  |
| C21D-C22D | 1.39(3) |  |
| C21D-C24D | 1.49(3) |  |
| C23D-F15D | 1.31(2) |  |
| C23D-F13D | 1.32(2) |  |
| C23D-F14D | 1.35(2) |  |
| C24D-F17D | 1.33(2) |  |
| C24D-F18D | 1.34(2) |  |
| C24D-F16D | 1.36(2) |  |
| C25D-C30D | 1.38(3) |  |
| C25D-C26D | 1.45(3) |  |

| 1.40(3) |
|---------|
| 1.44(3) |
| 1.47(4) |
| 1.39(4) |
| 1.39(4) |
| 1.42(3) |
| 1.24(3) |
| 1.30(3) |
| 1.35(4) |
| 1.26(3) |
| 1.33(3) |
| 1.45(4) |
|         |

#### Angles-----

| C29D-C30D     | 1.42(3)   |  |
|---------------|-----------|--|
| C31D-F20D     | 1.24(3)   |  |
| C31D-F21D     | 1.30(3)   |  |
| C31D-F19D     | 1.35(4)   |  |
| C32D-F22D     | 1.26(3)   |  |
| C32D-F24D     | 1.33(3)   |  |
| C32D-F23D     | 1.45(4)   |  |
|               |           |  |
| Angles        |           |  |
| C2A-Ir1A-C1A  | 38.1(9)   |  |
| C2A-Ir1A-C5A  | 79.6(8)   |  |
| C1A-Ir1A-C5A  | 95.5(9)   |  |
| C2A-Ir1A-C6A  | 86.2(8)   |  |
| C1A-Ir1A-C6A  | 79.0(8)   |  |
| C5A-Ir1A-C6A  | 36.4(9)   |  |
| C2A-Ir1A-P1A  | 93.7(6)   |  |
| C1A-Ir1A-P1A  | 87.7(6)   |  |
| C5A-Ir1A-P1A  | 164.1(7)  |  |
| C6A-Ir1A-P1A  | 158.4(6)  |  |
| C2A-Ir1A-S1A  | 152.8(7)  |  |
| C1A-Ir1A-S1A  | 169.0(6)  |  |
| C5A-Ir1A-S1A  | 88.1(7)   |  |
| C6A-Ir1A-S1A  | 98.2(6)   |  |
| P1A-Ir1A-S1A  | 91.7(2)   |  |
| C15A-P1A-C21A | 103.9(9)  |  |
| C15A-P1A-C9A  | 105.5(10) |  |
| C21A-P1A-C9A  | 104.6(9)  |  |
| C15A-P1A-Ir1A | 119.0(7)  |  |
| C21A-P1A-Ir1A | 112.0(7)  |  |
| C9A-P1A-Ir1A  | 110.6(7)  |  |
| C26A-S1A-C32A | 100.2(10) |  |
| C26A-S1A-Ir1A | 114.2(8)  |  |
| C32A-S1A-Ir1A | 114.6(7)  |  |
|               |           |  |

| C28A-Fe1A-C21A | 123.6(8)  |   |
|----------------|-----------|---|
| C28A-Fe1A-C30A | 68.8(9)   |   |
| C21A-Fe1A-C30A | 161.0(8)  |   |
| C28A-Fe1A-C27A | 42.7(9)   |   |
| C21A-Fe1A-C27A | 109.1(9)  |   |
| C30A-Fe1A-C27A | 69.1(9)   |   |
| C28A-Fe1A-C25A | 161.9(9)  |   |
| C21A-Fe1A-C25A | 40.8(8)   |   |
| C30A-Fe1A-C25A | 123.6(9)  |   |
| C27A-Fe1A-C25A | 125.3(9)  |   |
| C28A-Fe1A-C31A | 70.2(10)  |   |
| C21A-Fe1A-C31A | 125.6(9)  |   |
| C30A-Fe1A-C31A | 40.6(8)   |   |
| C27A-Fe1A-C31A | 41.4(8)   |   |
| C25A-Fe1A-C31A | 109.8(9)  |   |
| C28A-Fe1A-C29A | 39.6(8)   |   |
| C21A-Fe1A-C29A | 157.3(8)  |   |
| C30A-Fe1A-C29A | 41.2(8)   |   |
| C27A-Fe1A-C29A | 69.0(9)   |   |
| C25A-Fe1A-C29A | 158.3(9)  |   |
| C31A-Fe1A-C29A | 69.0(10)  |   |
| C28A-Fe1A-C22A | 105.9(9)  |   |
| C21A-Fe1A-C22A | 41.9(8)   | ) |
| C30A-Fe1A-C22A | 154.9(9)  |   |
| C27A-Fe1A-C22A | 124.6(9)  |   |
| C25A-Fe1A-C22A | 68.5(9)   |   |
| C31A-Fe1A-C22A | 162.9(9)  |   |
| C29A-Fe1A-C22A | 119.3(9)  |   |
| C28A-Fe1A-C23A | 119.0(10) |   |
| C21A-Fe1A-C23A | 69.8(9)   |   |
| C30A-Fe1A-C23A | 119.1(10) |   |
| C27A-Fe1A-C23A | 158.6(11) |   |
| C25A-Fe1A-C23A | 68.7(10)  |   |
| C31A-Fe1A-C23A | 156.3(10) |   |
| C29A-Fe1A-C23A | 103.4(11) |   |
| C22A-Fe1A-C23A | 40.4(9)   |   |
| C28A-Fe1A-C24A | 154.1(9)  |   |
| C21A-Fe1A-C24A | 70.3(9)   |   |
|                |           |   |

| C30A-Fe1A-C24A  | 104.7(10) |  |
|-----------------|-----------|--|
| C27A-Fe1A-C24A  | 160.4(9)  |  |
| C25A-Fe1A-C24A  | 41.7(8)   |  |
| C31A-Fe1A-C24A  | 122.1(10) |  |
| C29A-Fe1A-C24A  | 119.3(10) |  |
| C22A-Fe1A-C24A  | 68.8(9)   |  |
| C23A-Fe1A-C24A  | 40.7(9)   |  |
| C2A-C1A-C8A     | 126(2)    |  |
| C2A-C1A-Ir1A    | 68.8(13)  |  |
| C8A-C1A-Ir1A    | 110.0(16) |  |
| C1A-C2A-C3A     | 123(2)    |  |
| C1A-C2A-Ir1A    | 73.1(13)  |  |
| C3A-C2A-Ir1A    | 115.3(14) |  |
| C4A-C3A-C2A     | 111.3(17) |  |
| C3A-C4A-C5A     | 114(2)    |  |
| C6A-C5A-C4A     | 125(2)    |  |
| C6A-C5A-Ir1A    | 72.2(14)  |  |
| C4A-C5A-Ir1A    | 107.1(15) |  |
| C5A-C6A-C7A     | 124(2)    |  |
| C5A-C6A-Ir1A    | 71.4(13)  |  |
| C7A-C6A-Ir1A    | 113.1(15) |  |
| C6A-C7A-C8A     | 111(2)    |  |
| C1A-C8A-C7A     | 114(2)    |  |
| C10A-C9A-C14A   | 122(2)    |  |
| C10A-C9A-P1A    | 120.5(17) |  |
| C14A-C9A-P1A    | 117.5(16) |  |
| C9A-C10A-C11A   | 120(2)    |  |
| C10A-C11A-C12A  | 120(2)    |  |
| C13A-C12A-C11A  | 120(2)    |  |
| C12A-C13A-C14A  | 120(2)    |  |
| C9A-C14A-C13A   | 119(2)    |  |
| C16A-C15A-C20A  | 114.8(18) |  |
| C16A-C15A-P1A   | 121.9(16) |  |
| C20A-C15A-P1A   | 122.5(15) |  |
| C15A-C16A-C17A  | 123(2)    |  |
| C16A-C17A-C18A  | 118(2)    |  |
| C19A-C18A-C17A  | 120(2)    |  |
| C20A-C19A-C18A  | 120(2)    |  |
| C2011 C17A-C10A | 120(3)    |  |

| C19A-C20A-C15A | 124(2)    |  |
|----------------|-----------|--|
| C25A-C21A-C22A | 106.9(16) |  |
| C25A-C21A-P1A  | 122.8(14) |  |
| C22A-C21A-P1A  | 129.6(14) |  |
| C25A-C21A-Fe1A | 70.3(11)  |  |
| C22A-C21A-Fe1A | 70.9(11)  |  |
| P1A-C21A-Fe1A  | 130.5(11) |  |
| C23A-C22A-C21A | 108.2(19) |  |
| C23A-C22A-Fe1A | 70.1(14)  |  |
| C21A-C22A-Fe1A | 67.2(11)  |  |
| C22A-C23A-C24A | 109(2)    |  |
| C22A-C23A-Fe1A | 69.6(13)  |  |
| C24A-C23A-Fe1A | 70.3(14)  |  |
| C23A-C24A-C25A | 105(2)    |  |
| C23A-C24A-Fe1A | 69.0(14)  |  |
| C25A-C24A-Fe1A | 67.0(12)  |  |
| C21A-C25A-C24A | 110.3(17) |  |
| C21A-C25A-C26A | 125.3(19) |  |
| C24A-C25A-C26A | 124(2)    |  |
| C21A-C25A-Fe1A | 68.9(11)  |  |
| C24A-C25A-Fe1A | 71.2(12)  |  |
| C26A-C25A-Fe1A | 134.5(16) |  |
| C25A-C26A-S1A  | 113.7(17) |  |
| C31A-C27A-C28A | 106.9(19) |  |
| C31A-C27A-Fe1A | 70.2(14)  |  |
| C28A-C27A-Fe1A | 68.4(14)  |  |
| C29A-C28A-C27A | 108(2)    |  |
| C29A-C28A-Fe1A | 72.1(15)  |  |
| C27A-C28A-Fe1A | 68.9(14)  |  |
| C28A-C29A-C30A | 107.9(19) |  |
| C28A-C29A-Fe1A | 68.3(15)  |  |
| C30A-C29A-Fe1A | 67.7(14)  |  |
| C31A-C30A-C29A | 109.6(19) |  |
| C31A-C30A-Fe1A | 70.8(14)  |  |
| C29A-C30A-Fe1A | 71.1(15)  |  |
| C30A-C31A-C27A | 107(2)    |  |
| C30A-C31A-Fe1A | 68.6(15)  |  |
| C27A-C31A-Fe1A | 68.4(13)  |  |

| C35A-C32A-C33A | 111.1(18) |   |
|----------------|-----------|---|
| C35A-C32A-C34A | 112.6(19) |   |
| C33A-C32A-C34A | 107.1(18) |   |
| C35A-C32A-S1A  | 110.8(14) |   |
| C33A-C32A-S1A  | 109.4(15) |   |
| C34A-C32A-S1A  | 105.6(13) |   |
| C6B-Ir1B-C5B   | 37.2(10)  |   |
| C6B-Ir1B-C1B   | 81.4(10)  |   |
| C5B-Ir1B-C1B   | 94.4(11)  |   |
| C6B-Ir1B-C2B   | 89.8(10)  |   |
| C5B-Ir1B-C2B   | 79.3(9)   |   |
| C1B-Ir1B-C2B   | 37.6(10)  |   |
| C6B-Ir1B-P1B   | 93.9(7)   |   |
| C5B-Ir1B-P1B   | 89.3(7)   |   |
| C1B-Ir1B-P1B   | 166.5(10) |   |
| C2B-Ir1B-P1B   | 155.7(8)  |   |
| C6B-Ir1B-S1B   | 152.7(9)  |   |
| C5B-Ir1B-S1B   | 169.8(9)  |   |
| C1B-Ir1B-S1B   | 87.4(8)   |   |
| C2B-Ir1B-S1B   | 96.4(6)   |   |
| P1B-Ir1B-S1B   | 91.26(19) |   |
| C21B-P1B-C9B   | 103.1(10) |   |
| C21B-P1B-C15B  | 105.8(10) | ) |
| C9B-P1B-C15B   | 103.9(9)  |   |
| C21B-P1B-Ir1B  | 112.7(8)  |   |
| C9B-P1B-Ir1B   | 109.5(7)  |   |
| C15B-P1B-Ir1B  | 120.2(7)  |   |
| C26B-S1B-C32B  | 99.7(10)  |   |
| C26B-S1B-Ir1B  | 114.1(7)  |   |
| C32B-S1B-Ir1B  | 114.6(7)  |   |
| C29"-Fe1B-C30" | 43.0(15)  |   |
| C29"-Fe1B-C25B | 128.8(19) |   |
| C30"-Fe1B-C25B | 110(2)    |   |
| C28B-Fe1B-C25B | 147.6(19) |   |
| C28B-Fe1B-C31B | 71.2(15)  |   |
| C25B-Fe1B-C31B | 129.6(15) |   |
| C29"-Fe1B-C21B | 168(2)    |   |
| C30"-Fe1B-C21B | 129(2)    |   |
|                |           |   |

| C28B-Fe1B-C21B | 167.2(16) |   |        |
|----------------|-----------|---|--------|
| C25B-Fe1B-C21B | 40.0(8)   |   |        |
| C31B-Fe1B-C21B | 111.6(14) |   |        |
| C29"-Fe1B-C24B | 105.6(18) |   |        |
| C30"-Fe1B-C24B | 121.2(19) |   |        |
| C28B-Fe1B-C24B | 111.0(17) |   |        |
| C25B-Fe1B-C24B | 42.9(8)   |   |        |
| C31B-Fe1B-C24B | 167.5(16) |   |        |
| C21B-Fe1B-C24B | 69.1(10)  |   |        |
| C28B-Fe1B-C27B | 42.6(11)  |   |        |
| C25B-Fe1B-C27B | 169.0(17) |   |        |
| C31B-Fe1B-C27B | 41.5(12)  |   |        |
| C21B-Fe1B-C27B | 131.4(16) |   |        |
| C24B-Fe1B-C27B | 147.3(17) |   | /      |
| C29"-Fe1B-C22B | 149(2)    |   |        |
| C30"-Fe1B-C22B | 166(2)    |   | $\geq$ |
| C28B-Fe1B-C22B | 126.5(15) |   |        |
| C25B-Fe1B-C22B | 68.8(9)   |   |        |
| C31B-Fe1B-C22B | 120.7(15) |   |        |
| C21B-Fe1B-C22B | 40.9(8)   |   |        |
| C24B-Fe1B-C22B | 68.6(11)  |   |        |
| C27B-Fe1B-C22B | 108.8(14) |   |        |
| C28B-Fe1B-C30B | 67.8(16)  | ) |        |
| C25B-Fe1B-C30B | 110.3(16) |   |        |
| C31B-Fe1B-C30B | 40.2(11)  |   |        |
| C21B-Fe1B-C30B | 122.9(15) |   |        |
| C24B-Fe1B-C30B | 128.2(16) |   |        |
| C27B-Fe1B-C30B | 67.1(16)  |   |        |
| C22B-Fe1B-C30B | 155.9(16) |   |        |
| C29"-Fe1B-C28" | 39.9(13)  |   |        |
| C30"-Fe1B-C28" | 68(2)     |   |        |
| C25B-Fe1B-C28" | 165.3(19) |   |        |
| C21B-Fe1B-C28" | 152(2)    |   |        |
| C24B-Fe1B-C28" | 124.4(18) |   |        |
| C22B-Fe1B-C28" | 116.6(19) |   |        |
| C28B-Fe1B-C29B | 39.4(11)  |   |        |
| C25B-Fe1B-C29B | 117.7(15) |   |        |
| C31B-Fe1B-C29B | 69.0(15)  |   |        |

| C21B-Fe1B-C29B | 153.3(16) |
|----------------|-----------|
| C24B-Fe1B-C29B | 104.4(15) |
| C27B-Fe1B-C29B | 67.9(14)  |
| C22B-Fe1B-C29B | 162.6(16) |
| C30B-Fe1B-C29B | 40.2(12)  |
| C2B-C1B-C8B    | 130(3)    |
| C2B-C1B-Ir1B   | 71.7(15)  |
| C8B-C1B-Ir1B   | 109.4(17) |
| C1B-C2B-C3B    | 118(3)    |
| C1B-C2B-Ir1B   | 70.7(15)  |
| C3B-C2B-Ir1B   | 114.1(16) |
| C4B-C3B-C2B    | 109(2)    |
| C5B-C4B-C3B    | 115(2)    |
| C6B-C5B-C4B    | 127(3)    |
| C6B-C5B-Ir1B   | 69.5(15)  |
| C4B-C5B-Ir1B   | 112.2(18) |
| C5B-C6B-C7B    | 120(3)    |
| C5B-C6B-Ir1B   | 73.3(16)  |
| C7B-C6B-Ir1B   | 114.2(17) |
| C6B-C7B-C8B    | 111(2)    |
| C1B-C8B-C7B    | 110(2)    |
| C10B-C9B-C14B  | 120(2)    |
| C10B-C9B-P1B   | 121.5(17) |
| C14B-C9B-P1B   | 118.3(19) |
| C9B-C10B-C11B  | 121(2)    |
| C12B-C11B-C10B | 121(2)    |
| C13B-C12B-C11B | 119(3)    |
| C12B-C13B-C14B | 122(2)    |
| C9B-C14B-C13B  | 116(3)    |
| C16B-C15B-C20B | 121(2)    |
| C16B-C15B-P1B  | 120.9(16) |
| C20B-C15B-P1B  | 117.8(17) |
| C17B-C16B-C15B | 117(2)    |
| C18B-C17B-C16B | 124(3)    |
| C17B-C18B-C19B | 119(2)    |
| C20B-C19B-C18B | 118(3)    |
| C19B-C20B-C15B | 120(3)    |
| C25B-C21B-C22B | 110(2)    |

| C25B-C21B-P1B  | 120.9(15) |
|----------------|-----------|
| C22B-C21B-P1B  | 129.2(19) |
| C25B-C21B-Fe1B | 69.2(15)  |
| C22B-C21B-Fe1B | 70.7(13)  |
| P1B-C21B-Fe1B  | 129.5(12) |
| C23B-C22B-C21B | 108(2)    |
| C23B-C22B-Fe1B | 72.6(15)  |
| C21B-C22B-Fe1B | 68.4(14)  |
| C22B-C23B-C24B | 109(2)    |
| C22B-C23B-Fe1B | 68.4(15)  |
| C24B-C23B-Fe1B | 67.0(15)  |
| C23B-C24B-C25B | 105(2)    |
| C23B-C24B-Fe1B | 72.0(16)  |
| C25B-C24B-Fe1B | 67.3(13)  |
| C21B-C25B-C24B | 108(2)    |
| C21B-C25B-C26B | 127.4(18) |
| C24B-C25B-C26B | 123.5(19) |
| C21B-C25B-Fe1B | 70.8(14)  |
| C24B-C25B-Fe1B | 69.8(14)  |
| C26B-C25B-Fe1B | 135.7(16) |
| C25B-C26B-S1B  | 113.1(15) |
| C31B-C27B-C28B | 107(2)    |
| C31B-C27B-Fe1B | 68(3)     |
| C28B-C27B-Fe1B | 67(2)     |
| C29B-C28B-C27B | 108(2)    |
| C29B-C28B-Fe1B | 74(3)     |
| C27B-C28B-Fe1B | 71(2)     |
| C28B-C29B-C30B | 108(2)    |
| C28B-C29B-Fe1B | 66(2)     |
| C30B-C29B-Fe1B | 70(3)     |
| C31B-C30B-C29B | 110(2)    |
| C31B-C30B-Fe1B | 67(3)     |
| C29B-C30B-Fe1B | 70(3)     |
| C30B-C31B-C27B | 107(2)    |
| C30B-C31B-Fe1B | 73(3)     |
| C27B-C31B-Fe1B | 71(3)     |
| C31"-C27"-C28" | 107(2)    |
| C31"-C27"-Fe1B | 68(3)     |

SI-51

| C28"-C27"-Fe1B | 65(3)     |   |
|----------------|-----------|---|
| C29"-C28"-C27" | 109(2)    |   |
| C29"-C28"-Fe1B | 64(4)     |   |
| C27"-C28"-Fe1B | 76(3)     |   |
| C28"-C29"-C30" | 108(2)    |   |
| C28"-C29"-Fe1B | 76(4)     |   |
| C30"-C29"-Fe1B | 70(4)     |   |
| C31"-C30"-C29" | 110(2)    |   |
| C31"-C30"-Fe1B | 77(4)     |   |
| C29"-C30"-Fe1B | 67(4)     |   |
| C30"-C31"-C27" | 107(2)    |   |
| C30"-C31"-Fe1B | 63(4)     |   |
| C27"-C31"-Fe1B | 74(3)     |   |
| C34B-C32B-C35B | 112(2)    |   |
| C34B-C32B-C33B | 111(2)    |   |
| C35B-C32B-C33B | 106.7(17) |   |
| C34B-C32B-S1B  | 111.2(15) |   |
| C35B-C32B-S1B  | 106.8(15) |   |
| C33B-C32B-S1B  | 108.6(16) |   |
| C17C-B1C-C25C  | 111.0(16) |   |
| C17C-B1C-C1C   | 103.9(15) |   |
| C25C-B1C-C1C   | 115.1(16) |   |
| C17C-B1C-C9C   | 110.1(16) | > |
| C25C-B1C-C9C   | 104.8(14) |   |
| C1C-B1C-C9C    | 112.1(15) |   |
| C6C-C1C-C2C    | 116.3(16) |   |
| C6C-C1C-B1C    | 124.4(15) |   |
| C2C-C1C-B1C    | 119.2(15) |   |
| C3C-C2C-C1C    | 121.8(16) |   |
| C4C-C3C-C2C    | 121.2(17) |   |
| C4C-C3C-C7C    | 120.4(17) |   |
| C2C-C3C-C7C    | 118.4(17) |   |
| C3C-C4C-C5C    | 118.6(18) |   |
| C4C-C5C-C6C    | 120.4(18) |   |
| C4C-C5C-C8C    | 118.8(19) |   |
| C6C-C5C-C8C    | 120.8(19) |   |
| C1C-C6C-C5C    | 121.6(17) |   |
| F6C-C7C-F5C    | 107(2)    |   |

| F6C-C7C-F4C    | 104.2(19) |   |  |
|----------------|-----------|---|--|
| F5C-C7C-F4C    | 103.5(17) |   |  |
| F6C-C7C-C3C    | 114.1(18) |   |  |
| F5C-C7C-C3C    | 113.8(19) |   |  |
| F4C-C7C-C3C    | 113.4(19) |   |  |
| F2C-C8C-F1C    | 106.0(19) |   |  |
| F2C-C8C-F3C    | 106(2)    |   |  |
| F1C-C8C-F3C    | 101.3(18) |   |  |
| F2C-C8C-C5C    | 116(2)    |   |  |
| F1C-C8C-C5C    | 112.8(19) |   |  |
| F3C-C8C-C5C    | 113.0(19) |   |  |
| C14C-C9C-C10C  | 116.1(17) |   |  |
| C14C-C9C-B1C   | 121.7(16) |   |  |
| C10C-C9C-B1C   | 121.5(16) |   |  |
| C11C-C10C-C9C  | 121.3(18) |   |  |
| C12C-C11C-C10C | 121.3(18) |   |  |
| C12C-C11C-C15C | 120.2(18) |   |  |
| C10C-C11C-C15C | 118.1(18) |   |  |
| C13C-C12C-C11C | 118.8(18) |   |  |
| C12C-C13C-C14C | 120.2(18) |   |  |
| C12C-C13C-C16C | 122.1(19) |   |  |
| C14C-C13C-C16C | 117.5(17) |   |  |
| C9C-C14C-C13C  | 122.0(18) | ) |  |
| F7C-C15C-F9C   | 107.7(18) |   |  |
| F7C-C15C-F8C   | 106.8(19) |   |  |
| F9C-C15C-F8C   | 102.4(18) |   |  |
| F7C-C15C-C11C  | 113.5(18) |   |  |
| F9C-C15C-C11C  | 114.7(19) |   |  |
| F8C-C15C-C11C  | 110.9(18) |   |  |
| F12C-C16C-F10C | 107.2(18) |   |  |
| F12C-C16C-F11C | 105(2)    |   |  |
| F10C-C16C-F11C | 104.5(18) |   |  |
| F12C-C16C-C13C | 116.7(18) |   |  |
| F10C-C16C-C13C | 111.6(19) |   |  |
| F11C-C16C-C13C | 111.4(18) |   |  |
| C18C-C17C-C22C | 115.2(18) |   |  |
| C18C-C17C-B1C  | 125.2(18) |   |  |
| C22C-C17C-B1C  | 119.2(18) |   |  |

| C17C-C18C-C19C | 123(2)    |   |
|----------------|-----------|---|
| C18C-C19C-C23C | 119(2)    |   |
| C18C-C19C-C20C | 122.0(19) |   |
| C23C-C19C-C20C | 119.3(19) |   |
| C21C-C20C-C19C | 113.6(19) |   |
| C20C-C21C-C22C | 126(2)    |   |
| C20C-C21C-C24C | 118.5(19) |   |
| C22C-C21C-C24C | 115(2)    |   |
| C21C-C22C-C17C | 120(2)    |   |
| F13C-C23C-F14C | 107(2)    |   |
| F13C-C23C-F15C | 107(2)    |   |
| F14C-C23C-F15C | 102.3(18) |   |
| F13C-C23C-C19C | 113(2)    |   |
| F14C-C23C-C19C | 114(2)    |   |
| F15C-C23C-C19C | 112(2)    |   |
| F16C-C24C-F17C | 107(2)    |   |
| F16C-C24C-F18C | 108(2)    |   |
| F17C-C24C-F18C | 105(2)    |   |
| F16C-C24C-C21C | 113(2)    |   |
| F17C-C24C-C21C | 113(2)    |   |
| F18C-C24C-C21C | 112(2)    |   |
| C30C-C25C-C26C | 114.8(17) |   |
| C30C-C25C-B1C  | 122.4(17) | ) |
| C26C-C25C-B1C  | 122.4(17) |   |
| C27C-C26C-C25C | 123.5(19) |   |
| C26C-C27C-C28C | 121.0(18) |   |
| C26C-C27C-C31C | 120.4(19) |   |
| C28C-C27C-C31C | 118.6(18) |   |
| C29C-C28C-C27C | 117.0(18) |   |
| C28C-C29C-C30C | 120.8(18) |   |
| C28C-C29C-C32C | 120.5(18) |   |
| C30C-C29C-C32C | 118.8(17) |   |
| C25C-C30C-C29C | 122.8(18) |   |
| F21C-C31C-F19C | 110(2)    |   |
| F21C-C31C-F20C | 103(2)    |   |
| F19C-C31C-F20C | 106(2)    |   |
| F21C-C31C-C27C | 113(2)    |   |
| F19C-C31C-C27C | 112(2)    |   |
|                |           |   |

| F20C-C31C-C27C | 112(2)    |  |
|----------------|-----------|--|
| F22C-C32C-F24C | 107.3(17) |  |
| F22C-C32C-F23C | 105.8(18) |  |
| F24C-C32C-F23C | 106.4(17) |  |
| F22C-C32C-C29C | 111.9(17) |  |
| F24C-C32C-C29C | 113.1(18) |  |
| F23C-C32C-C29C | 111.8(17) |  |
| C9D-B1D-C25D   | 102.8(19) |  |
| C9D-B1D-C17D   | 118.1(19) |  |
| C25D-B1D-C17D  | 114.0(18) |  |
| C9D-B1D-C1D    | 109.6(18) |  |
| C25D-B1D-C1D   | 112.5(19) |  |
| C17D-B1D-C1D   | 100.1(17) |  |
| C6D-C1D-C2D    | 126(2)    |  |
| C6D-C1D-B1D    | 115(2)    |  |
| C2D-C1D-B1D    | 119(2)    |  |
| C3D-C2D-C1D    | 112(3)    |  |
| C4D-C3D-C2D    | 129(3)    |  |
| C4D-C3D-C7D    | 120(3)    |  |
| C2D-C3D-C7D    | 111(3)    |  |
| C3D-C4D-C5D    | 115(3)    |  |
| C4D-C5D-C8D    | 120(3)    |  |
| C4D-C5D-C6D    | 125(3)    |  |
| C8D-C5D-C6D    | 115(3)    |  |
| C1D-C6D-C5D    | 114(3)    |  |
| F2D-C7D-F1D    | 101(3)    |  |
| F2D-C7D-F3D    | 103(3)    |  |
| F1D-C7D-F3D    | 107(2)    |  |
| F2D-C7D-C3D    | 117(2)    |  |
| F1D-C7D-C3D    | 116(2)    |  |
| F3D-C7D-C3D    | 111(3)    |  |
| F6D-C8D-F4D    | 110(2)    |  |
| F6D-C8D-F5D    | 103(3)    |  |
| F4D-C8D-F5D    | 99(3)     |  |
| F6D-C8D-C5D    | 119(3)    |  |
| F4D-C8D-C5D    | 112(2)    |  |
| F5D-C8D-C5D    | 113(2)    |  |
| C10D-C9D-C14D  | 119(2)    |  |

| C10D-C9D-B1D   | 121.7(19) |  |
|----------------|-----------|--|
| C14D-C9D-B1D   | 118.1(19) |  |
| C9D-C10D-C11D  | 117(2)    |  |
| C12D-C11D-C10D | 125(2)    |  |
| C12D-C11D-C15D | 118(2)    |  |
| C10D-C11D-C15D | 118(2)    |  |
| C11D-C12D-C13D | 117(2)    |  |
| C12D-C13D-C14D | 123(3)    |  |
| C12D-C13D-C16D | 116(2)    |  |
| C14D-C13D-C16D | 122(3)    |  |
| C13D-C14D-C9D  | 119(2)    |  |
| F7D-C15D-F8D   | 104(2)    |  |
| F7D-C15D-F9D   | 103(2)    |  |
| F8D-C15D-F9D   | 100(3)    |  |
| F7D-C15D-C11D  | 118(3)    |  |
| F8D-C15D-C11D  | 117(2)    |  |
| F9D-C15D-C11D  | 113(3)    |  |
| F12D-C16D-F10D | 105(3)    |  |
| F12D-C16D-F11D | 99(3)     |  |
| F10D-C16D-F11D | 101(3)    |  |
| F12D-C16D-C13D | 118(3)    |  |
| F10D-C16D-C13D | 117(3)    |  |
| F11D-C16D-C13D | 114(2)    |  |
| C18D-C17D-C22D | 117.8(18) |  |
| C18D-C17D-B1D  | 119.0(18) |  |
| C22D-C17D-B1D  | 122.5(18) |  |
| C17D-C18D-C19D | 121.2(19) |  |
| C18D-C19D-C20D | 122.1(18) |  |
| C18D-C19D-C23D | 119.2(18) |  |
| C20D-C19D-C23D | 118.6(18) |  |
| C19D-C20D-C21D | 116.0(19) |  |
| C22D-C21D-C20D | 122.0(18) |  |
| C22D-C21D-C24D | 119.3(17) |  |
| C20D-C21D-C24D | 118.6(19) |  |
| C17D-C22D-C21D | 120.9(17) |  |
| F15D-C23D-F13D | 105.5(18) |  |
| F15D-C23D-F14D | 106.1(16) |  |
| F13D-C23D-F14D | 106.1(17) |  |

| F15D-C23D-C19D | 113.9(18) |  |
|----------------|-----------|--|
| F13D-C23D-C19D | 112.5(17) |  |
| F14D-C23D-C19D | 112.1(17) |  |
| F17D-C24D-F18D | 106.3(18) |  |
| F17D-C24D-F16D | 105.7(15) |  |
| F18D-C24D-F16D | 105.0(16) |  |
| F17D-C24D-C21D | 113.3(17) |  |
| F18D-C24D-C21D | 113.0(16) |  |
| F16D-C24D-C21D | 112.7(18) |  |
| C30D-C25D-C26D | 116(2)    |  |
| C30D-C25D-B1D  | 126(2)    |  |
| C26D-C25D-B1D  | 116.6(19) |  |
| C27D-C26D-C25D | 121(2)    |  |
| C26D-C27D-C28D | 121(2)    |  |
| C26D-C27D-C31D | 121(2)    |  |
| C28D-C27D-C31D | 119(2)    |  |
| C29D-C28D-C27D | 119(2)    |  |
| C28D-C29D-C32D | 118(2)    |  |
| C28D-C29D-C30D | 119(2)    |  |
| C32D-C29D-C30D | 123(3)    |  |
| C25D-C30D-C29D | 125(2)    |  |
| F20D-C31D-F21D | 108(3)    |  |
| F20D-C31D-F19D | 105(3)    |  |
| F21D-C31D-F19D | 102(3)    |  |
| F20D-C31D-C27D | 117(3)    |  |
| F21D-C31D-C27D | 114(3)    |  |
| F19D-C31D-C27D | 110(3)    |  |
| F22D-C32D-F24D | 106(3)    |  |
| F22D-C32D-C29D | 120(3)    |  |
| F24D-C32D-C29D | 119(3)    |  |
| F22D-C32D-F23D | 105(3)    |  |
| F24D-C32D-F23D | 95(3)     |  |
| C29D-C32D-F23D | 108(3)    |  |
|                |           |  |

| C8A-C1A-C2A-C3A     | -10(4)     |
|---------------------|------------|
| Ir1A-C1A-C2A-C3A    | -110(2)    |
| C8A-C1A-C2A-Ir1A    | 100(2)     |
| C1A-C2A-C3A-C4A     | 99(3)      |
| Ir1A-C2A-C3A-C4A    | 13(2)      |
| C2A-C3A-C4A-C5A     | -35(3)     |
| C3A-C4A-C5A-C6A     | -41(3)     |
| C3A-C4A-C5A-Ir1A    | 39(2)      |
| C4A-C5A-C6A-C7A     | -7(4)      |
| Ir1A-C5A-C6A-C7A    | -106(2)    |
| C4A-C5A-C6A-Ir1A    | 99(2)      |
| C5A-C6A-C7A-C8A     | 97(3)      |
| Ir1A-C6A-C7A-C8A    | 15(2)      |
| C2A-C1A-C8A-C7A     | -37(3)     |
| Ir1A-C1A-C8A-C7A    | 40(2)      |
| C6A-C7A-C8A-C1A     | -37(3)     |
| C15A-P1A-C9A-C10A   | 80(2)      |
| C21A-P1A-C9A-C10A   | -29(2)     |
| Ir1A-P1A-C9A-C10A   | -150.2(18) |
| C15A-P1A-C9A-C14A   | -97.1(18)  |
| C21A-P1A-C9A-C14A   | 153.6(16)  |
| Ir1A-P1A-C9A-C14A   | 32.8(19)   |
| C14A-C9A-C10A-C11A  | 3(4)       |
| P1A-C9A-C10A-C11A   | -174(2)    |
| C9A-C10A-C11A-C12A  | -3(5)      |
| C10A-C11A-C12A-C13A | 1(5)       |
| C11A-C12A-C13A-C14A | 1(4)       |
| C10A-C9A-C14A-C13A  | -1(3)      |
| P1A-C9A-C14A-C13A   | 176.1(16)  |
| C12A-C13A-C14A-C9A  | -1(3)      |
| C21A-P1A-C15A-C16A  | 132.8(18)  |
| C9A-P1A-C15A-C16A   | 23(2)      |
| Ir1A-P1A-C15A-C16A  | -101.8(17) |
| C21A-P1A-C15A-C20A  | -58(2)     |
| C9A-P1A-C15A-C20A   | -167.5(17) |
| Ir1A-P1A-C15A-C20A  | 67.7(19)   |

Table 3. Torsion angles [°] for mo\_R\_FeStBu\_0m.

C20A-C15A-C16A-C17A P1A-C15A-C16A-C17A C15A-C16A-C17A-C18A C16A-C17A-C18A-C19A C17A-C18A-C19A-C20A C18A-C19A-C20A-C15A C16A-C15A-C20A-C19A P1A-C15A-C20A-C19A C15A-P1A-C21A-C25A C9A-P1A-C21A-C25A Ir1A-P1A-C21A-C25A C15A-P1A-C21A-C22A C9A-P1A-C21A-C22A Ir1A-P1A-C21A-C22A C15A-P1A-C21A-Fe1A C9A-P1A-C21A-Fe1A Ir1A-P1A-C21A-Fe1A C25A-C21A-C22A-C23A P1A-C21A-C22A-C23A Fe1A-C21A-C22A-C23A C25A-C21A-C22A-Fe1A P1A-C21A-C22A-Fe1A C21A-C22A-C23A-C24A Fe1A-C22A-C23A-C24A C21A-C22A-C23A-Fe1A C22A-C23A-C24A-C25A Fe1A-C23A-C24A-C25A C22A-C23A-C24A-Fe1A C22A-C21A-C25A-C24A P1A-C21A-C25A-C24A Fe1A-C21A-C25A-C24A C22A-C21A-C25A-C26A P1A-C21A-C25A-C26A Fe1A-C21A-C25A-C26A C22A-C21A-C25A-Fe1A P1A-C21A-C25A-Fe1A C23A-C24A-C25A-C21A Fe1A-C24A-C25A-C21A

4(3) 174.5(18) -3(3)1(3) 0(3) 2(4)-4(3)-173.8(18)179.2(17) -70.3(19) 49.5(19) -11(2) 100(2) -140.4(17) 87.9(14) -161.6(12)-41.8(13) -3(2)-174.6(18)58.2(17) -61.4(14)127.3(18) 3(3) 59.2(19) -56.4(15)-1(3)57.5(15) -58.7(18)3(2) 174.6(15) -59.3(16) -168(2)4(3) 130(2) 61.9(13) -126.1(16)-1(3) 57.9(15)

C23A-C24A-C25A-C26A Fe1A-C24A-C25A-C26A C23A-C24A-C25A-Fe1A C21A-C25A-C26A-S1A C24A-C25A-C26A-S1A Fe1A-C25A-C26A-S1A C32A-S1A-C26A-C25A Ir1A-S1A-C26A-C25A C31A-C27A-C28A-C29A Fe1A-C27A-C28A-C29A C31A-C27A-C28A-Fe1A C27A-C28A-C29A-C30A Fe1A-C28A-C29A-C30A C27A-C28A-C29A-Fe1A C28A-C29A-C30A-C31A Fe1A-C29A-C30A-C31A C28A-C29A-C30A-Fe1A C29A-C30A-C31A-C27A Fe1A-C30A-C31A-C27A C29A-C30A-C31A-Fe1A C28A-C27A-C31A-C30A Fe1A-C27A-C31A-C30A C28A-C27A-C31A-Fe1A C26A-S1A-C32A-C35A Ir1A-S1A-C32A-C35A C26A-S1A-C32A-C33A Ir1A-S1A-C32A-C33A C26A-S1A-C32A-C34A Ir1A-S1A-C32A-C34A C8B-C1B-C2B-C3B Ir1B-C1B-C2B-C3B C8B-C1B-C2B-Ir1B C1B-C2B-C3B-C4B Ir1B-C2B-C3B-C4B C2B-C3B-C4B-C5B C3B-C4B-C5B-C6B C3B-C4B-C5B-Ir1B C4B-C5B-C6B-C7B

170(2)-131(2)-58.8(17) -60(3)131(2)35(3) 173.4(17) 50.4(19) -2(3) -62(2) 60.0(17) 3(3) -56(2) 59.5(18) -4(3)-60.6(19) 57(2) 3(3) -57.7(17) 61(2) -1(3)57.9(18) -58.8(17)-83.9(18) 38.8(18) 38.9(17) 161.6(13) 153.9(15) -83.4(14)-7(4)-108(2)100(3)97(3) 17(3) -34(4)-45(4)36(3) -6(4)

Ir1B-C5B-C6B-C7B C4B-C5B-C6B-Ir1B C5B-C6B-C7B-C8B Ir1B-C6B-C7B-C8B C2B-C1B-C8B-C7B Ir1B-C1B-C8B-C7B C6B-C7B-C8B-C1B C21B-P1B-C9B-C10B C15B-P1B-C9B-C10B Ir1B-P1B-C9B-C10B C21B-P1B-C9B-C14B C15B-P1B-C9B-C14B Ir1B-P1B-C9B-C14B C14B-C9B-C10B-C11B P1B-C9B-C10B-C11B C9B-C10B-C11B-C12B C10B-C11B-C12B-C13B C11B-C12B-C13B-C14B C10B-C9B-C14B-C13B P1B-C9B-C14B-C13B C12B-C13B-C14B-C9B C21B-P1B-C15B-C16B C9B-P1B-C15B-C16B Ir1B-P1B-C15B-C16B C21B-P1B-C15B-C20B C9B-P1B-C15B-C20B Ir1B-P1B-C15B-C20B C20B-C15B-C16B-C17B P1B-C15B-C16B-C17B C15B-C16B-C17B-C18B C16B-C17B-C18B-C19B C17B-C18B-C19B-C20B C18B-C19B-C20B-C15B C16B-C15B-C20B-C19B P1B-C15B-C20B-C19B C9B-P1B-C21B-C25B C15B-P1B-C21B-C25B Ir1B-P1B-C21B-C25B

-109(2)103(3) 98(3) 14(4)-42(4)41(3) -36(4)-23(2)87.1(19) -143.3(16) 153.7(17) -96.1(18) 33.5(18) 1(3) 177.5(17) 0(4) 2(4)-3(4)-2(3)-179.0(16) 4(3) 122.9(19) 15(2) -108.0(17)-53(2) -161.6(18) 75.6(19) -1(3)-177.3(18)2(4)-1(4)-2(4)3(4) -1(4) 175.2(19) -70(2)-179.2(18) 47(2)

C9B-P1B-C21B-C22B C15B-P1B-C21B-C22B Ir1B-P1B-C21B-C22B C9B-P1B-C21B-Fe1B C15B-P1B-C21B-Fe1B Ir1B-P1B-C21B-Fe1B C25B-C21B-C22B-C23B P1B-C21B-C22B-C23B Fe1B-C21B-C22B-C23B C25B-C21B-C22B-Fe1B P1B-C21B-C22B-Fe1B C21B-C22B-C23B-C24B Fe1B-C22B-C23B-C24B C21B-C22B-C23B-Fe1B C22B-C23B-C24B-C25B Fe1B-C23B-C24B-C25B C22B-C23B-C24B-Fe1B C22B-C21B-C25B-C24B P1B-C21B-C25B-C24B Fe1B-C21B-C25B-C24B C22B-C21B-C25B-C26B P1B-C21B-C25B-C26B Fe1B-C21B-C25B-C26B C22B-C21B-C25B-Fe1B P1B-C21B-C25B-Fe1B C23B-C24B-C25B-C21B Fe1B-C24B-C25B-C21B C23B-C24B-C25B-C26B Fe1B-C24B-C25B-C26B C23B-C24B-C25B-Fe1B C21B-C25B-C26B-S1B C24B-C25B-C26B-S1B Fe1B-C25B-C26B-S1B C32B-S1B-C26B-C25B Ir1B-S1B-C26B-C25B C31B-C27B-C28B-C29B Fe1B-C27B-C28B-C29B C31B-C27B-C28B-Fe1B

105(2)-4(2) -137(2)-158.1(14)93.2(16) -40.2(16)4(3) -172(2)61.9(18) -58.3(17) 126(2) -4(3)54.8(19) -59.3(17) 4(3) 59.2(17) -55.7(19) -1(3) 175.1(18) -60.5(17)-167(2)9(3) 133(2)59.1(16) -124.4(17)-1(3)61.1(17) 165(2)-132(2)-62.4(18)-62(3)134(2) 39(2) 171.1(15) 48.6(16) -9(5) -65(3) 56(3)

C27B-C28B-C29B-C30B Fe1B-C28B-C29B-C30B C27B-C28B-C29B-Fe1B C28B-C29B-C30B-C31B Fe1B-C29B-C30B-C31B C28B-C29B-C30B-Fe1B C29B-C30B-C31B-C27B Fe1B-C30B-C31B-C27B C29B-C30B-C31B-Fe1B C28B-C27B-C31B-C30B Fe1B-C27B-C31B-C30B C28B-C27B-C31B-Fe1B C31"-C27"-C28"-C29" Fe1B-C27"-C28"-C29" C31"-C27"-C28"-Fe1B C27"-C28"-C29"-C30" Fe1B-C28"-C29"-C30" C27"-C28"-C29"-Fe1B C28"-C29"-C30"-C31" Fe1B-C29"-C30"-C31" C28"-C29"-C30"-Fe1B C29"-C30"-C31"-C27" Fe1B-C30"-C31"-C27" C29"-C30"-C31"-Fe1B C28"-C27"-C31"-C30" Fe1B-C27"-C31"-C30" C28"-C27"-C31"-Fe1B C26B-S1B-C32B-C34B Ir1B-S1B-C32B-C34B C26B-S1B-C32B-C35B Ir1B-S1B-C32B-C35B C26B-S1B-C32B-C33B Ir1B-S1B-C32B-C33B C17C-B1C-C1C-C6C C25C-B1C-C1C-C6C C9C-B1C-C1C-C6C C17C-B1C-C1C-C2C C25C-B1C-C1C-C2C

6(6) -57(4)63(3) 0(7)-55(5)55(4) -6(7)-63(4)57(4) 9(6) 65(4) -55(3) 0(8) -56(5)56(5) 0(8)-63(5)63(5) 1(10)-66(6) 67(5) -1(9)-61(6)60(6) 1(8) 54(6) -53(5)-82(2)41(2) 155.8(14) -82.0(14)41.1(15) 163.3(11) 96(2) -25(3)-144.7(19)-81(2) 157.7(18)

C9C-B1C-C1C-C2C C6C-C1C-C2C-C3C B1C-C1C-C2C-C3C C1C-C2C-C3C-C4C C1C-C2C-C3C-C7C C2C-C3C-C4C-C5C C7C-C3C-C4C-C5C C3C-C4C-C5C-C6C C3C-C4C-C5C-C8C C2C-C1C-C6C-C5C B1C-C1C-C6C-C5C C4C-C5C-C6C-C1C C8C-C5C-C6C-C1C C4C-C3C-C7C-F6C C2C-C3C-C7C-F6C C4C-C3C-C7C-F5C C2C-C3C-C7C-F5C C4C-C3C-C7C-F4C C2C-C3C-C7C-F4C C4C-C5C-C8C-F2C C6C-C5C-C8C-F2C C4C-C5C-C8C-F1C C6C-C5C-C8C-F1C C4C-C5C-C8C-F3C C6C-C5C-C8C-F3C C17C-B1C-C9C-C14C C25C-B1C-C9C-C14C C1C-B1C-C9C-C14C C17C-B1C-C9C-C10C C25C-B1C-C9C-C10C C1C-B1C-C9C-C10C C14C-C9C-C10C-C11C B1C-C9C-C10C-C11C C9C-C10C-C11C-C12C C9C-C10C-C11C-C15C C10C-C11C-C12C-C13C C15C-C11C-C12C-C13C C11C-C12C-C13C-C14C

38(2) -2(3)175.7(18) 3(3) -178(2)-3(3)179.0(19) 1(3) -177.9(19)0(3) -177.3(17) 1(3) 179.2(19) 6(3) -172(2)-116(2)65(3) 126(2) -53(3)178.6(19) 0(3) -59(3) 122(2) 55(3) -123(2)-43(2)77(2) -158.0(17)147.2(17) -93(2)32(2) 3(3) 173.6(17) -4(3)-176.5(18)4(3) 176.3(19) -3(3)

| C11C-C12C-C13C-C16C |
|---------------------|
| C10C-C9C-C14C-C13C  |
| B1C-C9C-C14C-C13C   |
| C12C-C13C-C14C-C9C  |
| C16C-C13C-C14C-C9C  |
| C12C-C11C-C15C-F7C  |
| C10C-C11C-C15C-F7C  |
| C12C-C11C-C15C-F9C  |
| C10C-C11C-C15C-F9C  |
| C12C-C11C-C15C-F8C  |
| C10C-C11C-C15C-F8C  |
| C12C-C13C-C16C-F12C |
| C14C-C13C-C16C-F12C |
| C12C-C13C-C16C-F10C |
| C14C-C13C-C16C-F10C |
| C12C-C13C-C16C-F11C |
| C14C-C13C-C16C-F11C |
| C25C-B1C-C17C-C18C  |
| C1C-B1C-C17C-C18C   |
| C9C-B1C-C17C-C18C   |
| C25C-B1C-C17C-C22C  |
| C1C-B1C-C17C-C22C   |
| C9C-B1C-C17C-C22C   |
| C22C-C17C-C18C-C19C |
| B1C-C17C-C18C-C19C  |
| C17C-C18C-C19C-C23C |
| C17C-C18C-C19C-C20C |
| C18C-C19C-C20C-C21C |
| C23C-C19C-C20C-C21C |
| C19C-C20C-C21C-C22C |
| C19C-C20C-C21C-C24C |
| C20C-C21C-C22C-C17C |
| C24C-C21C-C22C-C17C |
| C18C-C17C-C22C-C21C |
| B1C-C17C-C22C-C21C  |
| C18C-C19C-C23C-F13C |
| C20C-C19C-C23C-F13C |
| C18C-C19C-C23C-F14C |

-180(2) -2(3)-172.9(17) 3(3) 179.4(19) 13(3) -174.2(19) -111(2) 61(3) 134(2) -54(3) 123(2) -54(3) -1(3) -177.6(18) -117(2) 66(2) -148.7(18) 87(2) -33(3) 39(2) -85(2) 154.6(17) -1(3) -173.9(19) 177(2) -1(3) 3(3) -174(2) -4(3) 178(2) 2(4) -180(2) 1(3) 173.8(19) -78(3) 99(3) 45(3)

C20C-C19C-C23C-F14C C18C-C19C-C23C-F15C C20C-C19C-C23C-F15C C20C-C21C-C24C-F16C C22C-C21C-C24C-F16C C20C-C21C-C24C-F17C C22C-C21C-C24C-F17C C20C-C21C-C24C-F18C C22C-C21C-C24C-F18C C17C-B1C-C25C-C30C C1C-B1C-C25C-C30C C9C-B1C-C25C-C30C C17C-B1C-C25C-C26C C1C-B1C-C25C-C26C C9C-B1C-C25C-C26C C30C-C25C-C26C-C27C B1C-C25C-C26C-C27C C25C-C26C-C27C-C28C C25C-C26C-C27C-C31C C26C-C27C-C28C-C29C C31C-C27C-C28C-C29C C27C-C28C-C29C-C30C C27C-C28C-C29C-C32C C26C-C25C-C30C-C29C B1C-C25C-C30C-C29C C28C-C29C-C30C-C25C C32C-C29C-C30C-C25C C26C-C27C-C31C-F21C C28C-C27C-C31C-F21C C26C-C27C-C31C-F19C C28C-C27C-C31C-F19C C26C-C27C-C31C-F20C C28C-C27C-C31C-F20C C28C-C29C-C32C-F22C C30C-C29C-C32C-F22C C28C-C29C-C32C-F24C C30C-C29C-C32C-F24C C28C-C29C-C32C-F23C

-137(2)160.7(19) -22(3) 3(3) -176(2)123(2)-55(3) -119(2)63(3) -152.1(18) -35(2)89(2) 35(2) 153.1(17) -83(2) 2(3)174.8(18) -1(3) 178(2) -1(3)-179(2)1(3) -179(2)-2(3)-174.5(18)0(3)-179.7(19)-174(2)4(4)62(3) -120(2)-58(3) 121(2)0(3) -180.0(18)121(2)-59(3) -119(2)

62(3) -39(3) -152.8(19) 86(2) 150(2)

| C30C-C29C-C32C-F23C |
|---------------------|
| C9D-B1D-C1D-C6D     |
| C25D-B1D-C1D-C6D    |
| C17D-B1D-C1D-C6D    |
| C9D-B1D-C1D-C2D     |
| C25D-B1D-C1D-C2D    |
| C17D-B1D-C1D-C2D    |
| C6D-C1D-C2D-C3D     |
| B1D-C1D-C2D-C3D     |
| C1D-C2D-C3D-C4D     |
| C1D-C2D-C3D-C7D     |
| C2D-C3D-C4D-C5D     |
| C7D-C3D-C4D-C5D     |
| C3D-C4D-C5D-C8D     |
| C3D-C4D-C5D-C6D     |
| C2D-C1D-C6D-C5D     |
| B1D-C1D-C6D-C5D     |
| C4D-C5D-C6D-C1D     |
| C8D-C5D-C6D-C1D     |
| C4D-C3D-C7D-F2D     |
| C2D-C3D-C7D-F2D     |
| C4D-C3D-C7D-F1D     |
| C2D-C3D-C7D-F1D     |
| C4D-C3D-C7D-F3D     |
| C2D-C3D-C7D-F3D     |
| C4D-C5D-C8D-F6D     |
| C6D-C5D-C8D-F6D     |
| C4D-C5D-C8D-F4D     |
| C6D-C5D-C8D-F4D     |
| C4D-C5D-C8D-F5D     |
| C6D-C5D-C8D-F5D     |
| C25D-B1D-C9D-C10D   |
| C17D-B1D-C9D-C10D   |
| C1D-B1D-C9D-C10D    |
| C25D-B1D-C9D-C14D   |
| C17D-B1D-C9D-C14D   |
| C1D-B1D-C9D-C14D    |
| C14D-C9D-C10D-C11D  |

36(3) -86(2) 1(3) 171.5(19) 2(4) 178(2) -3(4) -179(2) -176(2) 0(4) -3(3) -174.1(19) 3(4) 179(2) 125(3) -51(4) -116(3) 68(4) 7(4) -169(2) -11(4) 173(3) 119(3) -58(3)

53(3) 91(3)

-131(3)

-142(2) -28(3) -78(3)

49(3) 163(2)

-4(4)

B1D-C9D-C10D-C11D C9D-C10D-C11D-C12D C9D-C10D-C11D-C15D C10D-C11D-C12D-C13D C15D-C11D-C12D-C13D C11D-C12D-C13D-C14D C11D-C12D-C13D-C16D C12D-C13D-C14D-C9D C16D-C13D-C14D-C9D C10D-C9D-C14D-C13D B1D-C9D-C14D-C13D C12D-C11D-C15D-F7D C10D-C11D-C15D-F7D C12D-C11D-C15D-F8D C10D-C11D-C15D-F8D C12D-C11D-C15D-F9D C10D-C11D-C15D-F9D C12D-C13D-C16D-F12D C14D-C13D-C16D-F12D C12D-C13D-C16D-F10D C14D-C13D-C16D-F10D C12D-C13D-C16D-F11D C14D-C13D-C16D-F11D C9D-B1D-C17D-C18D C25D-B1D-C17D-C18D C1D-B1D-C17D-C18D C9D-B1D-C17D-C22D C25D-B1D-C17D-C22D C1D-B1D-C17D-C22D C22D-C17D-C18D-C19D B1D-C17D-C18D-C19D C17D-C18D-C19D-C20D C17D-C18D-C19D-C23D C18D-C19D-C20D-C21D C23D-C19D-C20D-C21D C19D-C20D-C21D-C22D C19D-C20D-C21D-C24D C18D-C17D-C22D-C21D

-173(2)1(4) -179(3)2(5) -178(3)-2(5)177(3) -2(5)-180(3)5(4) 174(3)36(4) -144(3)162(3)-18(4) -84(4)96(3) -88(4) 90(4) 38(5) -143(3)156(3) -26(5)31(3) 152.3(19) -87(2)-158.9(19) -38(3)82(2) -1(3)169.5(19) -1(3)-177.0(18)1(3) 177.3(18) 0(3) 179.8(18) 2(3)

B1D-C17D-C22D-C21D C20D-C21D-C22D-C17D C24D-C21D-C22D-C17D C18D-C19D-C23D-F15D C20D-C19D-C23D-F15D C18D-C19D-C23D-F13D C20D-C19D-C23D-F13D C18D-C19D-C23D-F14D C20D-C19D-C23D-F14D C22D-C21D-C24D-F17D C20D-C21D-C24D-F17D C22D-C21D-C24D-F18D C20D-C21D-C24D-F18D C22D-C21D-C24D-F16D C20D-C21D-C24D-F16D C9D-B1D-C25D-C30D C17D-B1D-C25D-C30D C1D-B1D-C25D-C30D C9D-B1D-C25D-C26D C17D-B1D-C25D-C26D C1D-B1D-C25D-C26D C30D-C25D-C26D-C27D B1D-C25D-C26D-C27D C25D-C26D-C27D-C28D C25D-C26D-C27D-C31D C26D-C27D-C28D-C29D C31D-C27D-C28D-C29D C27D-C28D-C29D-C32D C27D-C28D-C29D-C30D C26D-C25D-C30D-C29D B1D-C25D-C30D-C29D C28D-C29D-C30D-C25D C32D-C29D-C30D-C25D C26D-C27D-C31D-F20D C28D-C27D-C31D-F20D C26D-C27D-C31D-F21D C28D-C27D-C31D-F21D C26D-C27D-C31D-F19D

-167.7(19) -2(3)178.4(18) 72(3) -104(2)-48(3)136.5(19) -167.1(18)17(3) 81(2) -99(2)-40(3) 140.0(19) -159.2(17) 21(3) -92(3)139(2) 26(3) 75(2) -54(3) -167(2)-1(4) -169(2)2(4)-179(3)-1(4) 180(3) -175(3)0(4)0(4)167(2) 0(4)175(3) 52(5) -128(3)179(3) -1(5)-67(4)

| C28D-C27D-C31D-F19D | 113(3)  |
|---------------------|---------|
| C28D-C29D-C32D-F22D | 59(5)   |
| C30D-C29D-C32D-F22D | -116(3) |
| C28D-C29D-C32D-F24D | -168(3) |
| C30D-C29D-C32D-F24D | 18(5)   |
| C28D-C29D-C32D-F23D | -61(4)  |
| C30D-C29D-C32D-F23D | 125(3)  |
|                     |         |