Paper

Pd(OAc)₂-Catalyzed Desulfinative Cross-Coupling of Sodium Sulfinates with β-Bromostyrenes: Synthesis of Tamoxifen

Α

Meng-Yang Chang^{*}^a Yu- Chieh Cheng^a Pei- Pei Sun^b

^a Department of Medicinal and Applied Chemistry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC mychang@kmu.edu.tw

^b Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan, ROC

Abstract A Pd(OAc)₂-catalyzed desulfinative cross-coupling of (*Z*)- β -halostyrenes with sodium sulfinates in the presence of PPh₃ and Na₂CO₃ at reflux in good yields is reported. The stereocontrolled cross-coupling process provides a series of sulfonylmethyl (*Z*)-stilbenes. A synthesis of tamoxifen was studied.

Key words desulfinative cross coupling, halostyrenes, sodium sulfinates, stilbenes, tamoxifen

The expeditious, regioselective, and stereocontrolled synthesis of disubstituted olefins, including (E)- or (Z)-stilbenes, has provided an ongoing challenge for organic chemists.¹ Stilbene and its derivatives are ubiquitous in scientific applications of bioactive molecules² and functionalized materials.³ Stilbenoid molecules can be obtained easily by some synthetic routes, including (i) carbonyl olefination type reactions (e.g., Julia-Kocienski olefination,⁴ the Horner-Wadsworth-Emmons reaction,⁵ Ramberg-Backlund rearrangement,⁶ and McMurry coupling),⁷ (ii) transitionmetal-promoted (e.g., Pd^{2+,8} Co^{2+,9} Ni^{2+,10} Rh^{3+,11} and Fe³⁺)¹² cross-coupling of styrene with diversified aryl variants (e.g., aryl halides, arylboronic acids, aryl silanes, aryl diazonium salts), and (iii) photoisomerization.¹³ Among these recent transition-metal-mediated syntheses of stilbenoids, the desulfinative cross-coupling strategy takes advantage of the tandem protocol that was established by Wang,^{14a} Tian,^{14b} and Deng^{14c} (Scheme 1). In recent years, the development of palladium complex-mediated desulfinative carbon-carbon bond formation has been investigated via carbon-sulfur bond cleavage.¹⁵ Despite remarkable advances in the types of desulfinative transformations (e.g., carbonylation,¹⁶ conjugated addition,¹⁷ arylation of heterocycles),¹⁸ the continuing investigation for a new alternative route is

still important. Sodium sulfinates (RSO₂Na) have been widely used as sulfonylating reagents for the formation of carbon–sulfur and heteroatom–sulfur bonds and have been demonstrated as electrophilic partners in transition-metal-catalyzed desulfinative cross-coupling.¹⁹ Because of their readily availability, inexpensiveness, ease of operation and high air stability, sodium sulfinates are generally used more as arylating surrogates than other sulfonyl synthons, such as sulfonyl chlorides, sulfonyl acids, or sulfonyl hydrazines.²⁰

Scheme 1 Synthetic routes of stilbenoids

Our interest in the utilization of facile and cascade protocols for sodium sulfinates-based synthesis of diverse scaffolds led us to explore protocols wherein stilbenoids were combined with a sulfonylmethyl substituent. As part of our efforts in the synthetic chemistry of β -ketosulfone,²¹ we streamlined the stereocontrolled synthesis of sulfonyl-

methyl (*Z*)-stilbenes **6** via Pd(OAc)₂ (**5a**)-mediated desulfinative cross-coupling of β-halovinyl sulfones **4** with sodium sulfinates (R¹SO₂Na), as shown in Scheme 2. The preparation of a range of β-halovinyl sulfones **4** in 85–90% yields via nucleophilic substitution of 1,3-dihalostyrenes **3** with a 1.1 equivalents of sodium sulfinates **2** (RSO₂Na; R = Tol, Ph, Me, 4-FC₆H₄, 4-MeOC₆H₄) in a co-solvent of 1,4-dioxane and H₂O (v/v =1:1) was first carried out. According to the known procedure, synthesis of 1,3-dihalostyrenes **3** (Ar' = Ph, 4-FC₆H₄, 4-PhC₆H₄, 2-naphthyl; X = Br, Cl) was achieved by NXS-mediated double halogenation of α-methylstyrene (**1**) in the presence of *p*-TsOH in CH₂Cl₂ at reflux.²² A structural template (such as tryptamines, pyrimidines, or chalcones) with a sulfonylmethyl motif could be found in a large number of biologically active molecules.²³

Pd(OAc)₂ (5a)-promoted desulfinative cross-coupling of model substrate 4a (Ar' = Ph, X = Br, R = Tol) with sodium sulfinate **2a** (R^1 = Ph) in 1,2-dimethoxyethane (DME) providing **6a** in 78% yield is shown in Table 1 (entry 1). The reactions were performed under EtOH and MeCN conditions, which gave 6a in 51% and 30% yield, respectively. Next, some Pd-complexes were studied, such as $Pd(PPh_3)_4$ (**5b**), $Pd(MeCN)Cl_2$ (**5c**), and $PdCl_2$ (**5d**); however, none of these provided higher yields of **4a** than Pd(OAc)₂ (52% for **5b**; 42% for **5c**; 38% for **5d**). Changing the base from Na₂CO₃ to Cs₂CO₃ or K₂CO₃ provided 70% and 73% yield, respectively. Furthermore, different phosphine ligands were explored. We found that the use of PCy₃ (an alkyl ligand), dppp (an alkyl-aryl ligand) or BINAP (a bis-binaphthyl-type ligand) was not more effective than the PPh₃ (an aryl ligand) in the resulting transformation (57% for PCy₃; 68% for dppp; 52% for BINAP). Other catalytic amounts (1 and 10 mol%) of $Pd(OAc)_2$ were also examined; however, the isolated yields were similar (70% and 72%). From these observations, we concluded that Pd(OAc)₂, Na₂CO₃, and PPh₃ in refluxing DME provided optimal reaction conditions for desulfinative cross-coupling. For the groups of 4a-i [Ar' = Ph, $4-FC_6H_4$, 4- PhC_6H_4 , 2-naphthyl; X = Br, Cl; R = Tol, Ph, Me, 4-FC₆H₄, 4- $MeOC_6H_4$) and **2a-l** (R¹ = Ph, Tol, 4-FC₆H₄, 4-MeOC₆H₄, 3-MeC₆H₄, 4-CF₃C₆H₄, 4-CHOC₆H₄, 4-PhC₆H₄, 2-PhC₆H₄, 3,4 $(MeO)_2C_6H_3, 3,4,5-(MeO)_3C_6H_2, Me]$, alkyl and aryl substituents (electron-withdrawing, electron-neutral, electron-donating groups) provided the desired products **6a–v** in good yields (67–78%) under the above-mentioned conditions, as shown in entries 1–23. The substituents on the scaffold **2** did not affect the *E*-configured outcome of the desulfinative cross-coupling procedure except that **6v** (R¹ = Me) was obtained as a mixture of stereoisomers (*E*/*Z* = 6:4, entry 22), and no obvious changes in yields were observed for the generation of **6a–v**. Stereocontrolled retention of all products **6a–u** was observed. The structures of **6n** and **6s** were determined by single-crystal X-ray crystallography.²⁴

Table 1	Synthesis of 6 ^a
---------	------------------------------------

В

	$Ar' \xrightarrow[O = S = 0]{R} \frac{Pd(OAc)_2}{PPh_3, N}$	$\xrightarrow{(5a), R^1SO_2Na}_{Ar} \xrightarrow{(2)}_{Ar} Ar \xrightarrow{(2)}_{C} \xrightarrow{R^1}_{R} Ar \xrightarrow{(2)}_{R} \xrightarrow{R^1}_{R} \xrightarrow{(2)}_{R} \xrightarrow{(2)} \xrightarrow{(2)}_{R} \xrightarrow{(2)}_{R} \xrightarrow{(2)}_{R} \xrightarrow{(2)}_{R} (2$	ō
Entry	4 , Ar', X, R	2 , R ¹	6 , (%) ^b
1	4a , Ph, Br, Tol	2a , Ph	6a , 78
2	4a , Ph, Br, Tol	2b , Tol	6b , 75
3	4a , Ph, Br, Tol	2c , 4-FC ₆ H ₄	6c , 72
4	4a , Ph, Br, Tol	2d , 4-MeOC ₆ H ₄	6d , 72
5	4a , Ph, Br, Tol	2e , 3-MeC ₆ H ₄	6e , 74
6	4a , Ph, Br, Tol	2f , 4-CF ₃ C ₆ H ₄	6f , 70
7	4a , Ph, Br, Tol	2g , 4-CHOC ₆ H ₄	6g , 70
8	4a , Ph, Br, Tol	2h , 4-PhC ₆ H ₄	6h , 74
9	4a , Ph, Br, Tol	2i , 2-PhC ₆ H ₄	6i , 73
10	4a , Ph, Br, Tol	2j , 3,4-(MeO) ₂ C ₆ H ₃	6j , 76
11	4a , Ph, Br, Tol	2k , 3,4,5-(MeO) ₃ C ₆ H ₂	6k , 76
12	4b , Ph, Br, Ph	2a , Ph	6I , 78
13	4b , Ph, Br, Ph	2c , 4-FC ₆ H ₄	6m , 74
14	4b , Ph, Br, Ph	2d , 4-MeOC ₆ H ₄	6n , 74
15	4b , Ph, Br, Ph	2h , 4-PhC ₆ H ₄	60 , 75
16	4c , Ph, Br, Me	2a , Ph	6p , 76
17	4d , Ph, Br, 4-FC ₆ H ₄	2a , Ph	6q , 76
18	4e , Ph, Br, 4-MeOC ₆ H ₄	2a , Ph	6r , 74
19	4f , 4-FC ₆ H ₄ , Br, Tol	2a , Ph	6s , 73
20	4g , 4-PhC ₆ H ₄ , Br, Tol	2a , Ph	6t , 73
21	4h , 2-naphthyl, Br, Tol	2a , Ph	6u , 72
22	4a , Ph, Br, Tol	2I , Me	6ν , 67 ^α
23	4i , Ph, Cl, Tol	2a , Ph	6a , 70

^a The reactions were run on a 0.5 mmol scale with **4**, Pd(OAc)₂ (5 mol%), $R^{1}SO_{2}Na_{2}(1.0 \text{ equiv})$, $Na_{2}CO_{3}$ (2.0 equiv), PPh₃ (1.2 equiv), DME (10 mL) for

5 h at reflux.

^b Isolated yields.

^c A mixture of stereoisomers (E/Z = 6:4) was isolated.

۸

С

On the basis of the results, a plausible mechanism with the reasonable explanation is described in Scheme 3. At first, catalyst Pd⁰(PPh₃)₂, is generated in situ from the reaction of Pd(OAc)₂ and phosphine (PPh₃). Initial oxidative addition of the Pd⁰ complex into the vinyl–halide bond of **4** followed by a ligand exchange of **A** and **2** from halide to sulfinate produces Pd²⁺ sulfinic intermediate **B**. Next, **B** undergoes desulfination to yield **C** with a four-coordinate Pd²⁺ complex. At least, the catalytic cycle is completed by reductive elimination of **C**, generating the vinyl–aryl bond and Pd⁰(PPh₃)₂. For the generation of **6v** (R¹ = Me), the possible reason could be that complexation of (*E*)-**6v** with Pd⁰(PPh₃)₂. produces **D**. After intramolecular hydride shift and carbopalladation of **D**, the transformation from **D** to **E** is accomplished. Subsequently, $Pd^{0}(PPh_{3})_{2}$ is regenerated and **6v** having two stereoisomers is obtained by the reductive elimination of **E** under the isomerization conditions.

To explore the synthetic applications of the sodium sulfinate-based synthesis of diverse skeletons, the synthesis of β -sulfonyl styrenes was examined next by treatment of 1,3-dihalostyrene **3** with RSO₂Na. The effect of the removal of Pd(OAc)₂ (**5a**) on cross-coupling was investigated, as shown in Table 2. By increasing the equivalents of RSO₂Na **2** (R = Tol, Ph, Me, 4-FC₆H₄, 4-MeOC₆H₄) from 1.1 to 3.2 equiva-

DEO No (2)

Downloaded by: University of Colorado. Copyrighted material.

Table 2 Synthesis of 7^a

	$Ar' \xrightarrow{X} X \xrightarrow{RSO_2Na}(2), PPh_3 \qquad \qquad$				
	3	$\begin{bmatrix} 0^{\prime} + 2^{\prime} \\ R \end{bmatrix}$	R 7		
Entry	3 , Ar', X	2 , R	7 (%) ^b		
1	3a , Ph, Br	2b , Tol	7a , 86		
2	3a , Ph, Br	2a , Ph	7b , 81		
3	3a , Ph, Br	2I , Me	7 c, 80		
4	3a , Ph, Br	2c , 4-FC ₆ H ₄	7d , 84		
5	3a , Ph, Br	2d , 4-MeOC ₆ H ₄	7e , 83		
6	3b , 4-FC ₆ H ₄ , Br	2b , Tol	7f , 82		
7	3d , 2-naphthyl, Br	2b , Tol	7 g, 84		
8	3e , Ph, Cl	2b , Tol	7a , 80 (86) ^c		

alafin migration

^a The reactions were run on a 0.5 mmol scale with **3**, RSO₂Na (3.2 equiv), Na₂CO₃ (2.0 equiv), PPh₃ (1.2 equiv), DME (10 mL) for 5 h at reflux.

^b Isolated yields.

^c Reaction time: 15 h.

D

lents, 1,3-disulfonylstyrenes 7a-g were formed in 80-86% vields via double nucleophilic substitution of 1,3-dihalostyrene **3**. With these results in hand, we believe that the reasonable explanation should be that the key olefin migration from 4 to 4' was first initiated during the non-desulfinative process. Then, another RSO₂Na reacted with the in situ formed **4'** to give **7** via an intermolecular $S_N 2$ reaction. The structures of 7c and 7g were determined by single-crystal X-ray crystallography.²⁴

In a different approach, the synthetic application of Pd(OAc)₂-catalyzed synthesis of symmetrical diaryl 1,3dienes was demonstrated by the intermolecular cross coupling of β -bromostyenes in the presence of PPh₃ and Na₂CO₃ under the boiling DME conditions. In the absence of RSO₂Na **2**, Pd(OAc)₂-promoted self-dimerization of β-bromostyrenes 4 is shown in Scheme 4.^{25,26} Under similar conditions, treatment of **4a,b**, **4f**, and **4g** (Ar' = Ph, 4-FC₆H₄, 4-PhC₆H₄; R = Tol, Ph) with $Pd(OAc)_2$ (5a) afforded 8a-d with selfcoupling Z,Z-dimer in a yield range of 72–78%. Although the exact explanation of homocoupling reaction was not clear at this stage, on the basis of the results and the suggested pathways in the literature,²⁶ intermediate **A** should be first generated by complexation of **4** with $Pd^{0}(PPh_{3})_{2}$ in the initial step. Following coordination of A with another 4, A-1 is formed. Subsequently, Pd⁰(PPh₃)₂ is regenerated and **8** is obtained by the reductive elimination. The structure of 8a was determined by single-crystal X-ray crystallography.²⁴

Tamoxifen (12) is a therapeutic agent for the treatment of estrogen-dependent breast cancer and serves for other emerging clinical applications.²⁷ A number of novel and efficient synthetic routes have been developed.²⁸ On the basis of the Pd(OAc)₂-catalyzed desulfinative cross-coupling shown, synthesis of tamoxifen was investigated. By desulfonylative methylenation of 6a with formaldehyde, vinyl stilbene 9 was isolated in 78% yield (Scheme 5). Controlling the hydrogenated time, terminal olefin of 9 was selectively hydrogenated to produce 10 in 68% yield. Finally, Pd(OAc)2catalyzed Heck-type cross-coupling of 10 with 11 [prepared by O-alkylation of 4-bromophenoxide with $Me_2N(CH_2)_2Cl \cdot HCl$ provided **12** in 65% yield.

(CH2O)n, KOH 5% Pd/C, H₂ dioxane, reflux, 10 h EtOAc. rt. 1 h 0 EC. Tol 9 (78%) 11 Me Pd(OAc)₂ (5a), Na₂CO₃, PPh₃ DME, reflux, 10 h 10 (68%) tamoxifen 12 (65%) Scheme 5 Synthesis of tamoxifen (12)

In summary, we have developed a $Pd(OAc)_2$ (5a)-catalyzed desulfinative cross coupling of (Z)- β -halostyrenes 4 with sodium sulfinates 2 in the presence of PPh₃ and Na₂CO₃ at reflux in good yields. The stereocontrolled crosscoupling process provides a series of sulfonylmethyl (Z)stilbenes 6. In the absence of the palladium catalyst or sodium sulfinate, two kinds of sulfonyl styrenes (1,3-disulfonyl styrenes 7 and self-homocoupling dimers 8) have been observed in good vields under similar conditions. A synthesis of tamoxifen (12) was also studied. The structures of the key products were confirmed by X-ray crystallography. Further investigations regarding the synthetic application of sodium sulfinates will be conducted and published in due course.

All reagents and solvents were obtained from commercial sources and used without further purification. Reactions were routinely carried out under an atmosphere of dry air with magnetic stirring. Products in organic solvents were dried with anhyd MgSO₄ before concentration in vacuo. Melting points were determined with a SMP3 melting apparatus. ¹H and ¹³C NMR spectra were recorded on a Varian INOVA-400 spectrometer operating at 400 and at 100 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm) and the coupling constants (J) are given in hertz. High-resolution mass spectra (HRMS) were recorded on Finnigan/Thermo Quest MAT 95XL mass spectrometer. X-ray crystal structures were obtained with an

Paper

Enraf-Nonius FR-590 diffractometer (CAD4, Kappa CCD). Elemental analyses were carried out with Heraeus Vario III-NCSH, Heraeus CHN-OS-Rapid Analyzer or Elementar Vario EL III.

β-Halovinyl Sulfones 4a–i; General Procedure

Sodium arenesulfinate **2** (1.1 mmol) was added to a solution of dihalide **3** (1.0 mmol) in a co-solvent of 1,4-dioxane and H₂O (1:1, 10 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 5 min. Then, the mixture was stirred at reflux for 1 h. The mixture was cooled to 25 °C and concentrated. The residue was diluted with H₂O (10 mL) and the mixture was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated under reduced pressure to afford the crude product. Purification on silica gel (hexanes–EtOAc, 4:1 to 1:1) afforded **4**.

Compound 4a

Yield: 315 mg (90%); colorless solid; mp 88–89 °C (hexanes–EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.65 (d, *J* = 8.0 Hz, 2 H), 7.31–7.21 (m, 7 H), 6.65 (s, 1 H), 4.55 (s, 2 H), 2.40 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 144.75, 137.70, 135.84, 135.13, 129.49 (2 ×), 128.65 (2 ×), 128.56 (2 ×), 128.45, 126.68 (2 ×), 113.45, 59.94, 21.58.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₁₆H₁₆BrO₂S: 351.0054; found: 351.0059.

Compound 4b

Yield: 296 mg (88%); colorless gum.

 ^1H NMR (400 MHz, CDCl_3): δ = 7.76–7.73 (m, 2 H), 7.55–7.51 (m, 1 H), 7.42–7.37 (m, 2 H), 7.26–7.19 (m, 5 H), 6.62 (s, 1 H), 4.54 (s, 2 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 138.76, 137.58, 134.98, 133.72, 128.87 (2 ×), 128.67 (2 ×), 128.55,

128.50 (2 ×), 126.63 (2 ×), 113.54, 59.85.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₁₅H₁₄BrO₂S: 336.9898; found. 336.9896.

Compound 4c

Yield: 230 mg (84%); colorless solid; mp 109–110 $^\circ C$ (hexanes–EtOAc).

 ^1H NMR (400 MHz, CDCl_3): δ = 7.39 (br s, 5 H), 6.84 (s, 1 H), 4.47 (s, 2 H), 2.78 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 137.61, 135.54, 129.01, 128.99 (2 ×), 126.71 (2 ×), 113.21, 58.82, 41.48.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₁₀H₁₂BrO₂S: 274.9741; found: 274.9745.

Compound 4d

Yield: 301 mg (85%); colorless gum.

 ^1H NMR (400 MHz, CDCl_3): δ = 7.79–7.76 (m, 2 H), 7.32–7.29 (m, 3 H), 7.25–7.22 (m, 2 H), 7.11–7.07 (m, 2 H), 6.67 (s, 1 H), 4.58 (s, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 165.91 (d, *J* = 255.4 Hz), 137.45, 134.97, 134.74 (d, *J* = 3.8 Hz), 131.48 (d, *J* = 9.9 Hz, 2 ×), 128.77 (2 ×), 128.70, 126.62 (2 ×), 116.16 (d, *J* = 22.0 Hz, 2 ×), 113.65, 59.95.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₁₅H₁₃BrFO₂S: 354.9804; found. 354.9808;

Compound 4e

Yield: 293 mg (80%); colorless solid; mp 107–108 $^\circ C$ (hexanes–EtOAc).

 ^1H NMR (400 MHz, CDCl_3): δ = 7.68 (d, J = 8.8 Hz, 2 H), 7.31–7.23 (m, 5 H), 6.88 (d, J = 8.8 Hz, 2 H), 6.65 (s, 1 H), 4.55 (s, 2 H), 3.84 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 163.84, 137.75, 135.28, 130.75 (2 ×), 130.34, 128.68 (2 ×), 128.49, 126.68 (2 ×), 114.08 (2 ×), 113.36, 60.06, 55.62.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₁₆H₁₆BrO₃S: 367.0004; found: 367.0010.

Compound 4f

Yield: 324 mg (88%); colorless solid; mp 110-111 °C (hexanes-EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.69 (d, J = 8.4 Hz, 2 H), 7.30–7.25 (m, 4 H), 7.06–7.00 (m, 2 H), 6.66 (s, 1 H), 4.56 (s, 2 H), 2.45 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 162.75 (d, J = 247.1 Hz), 144.92, 135.85, 134.14, 133.86 (d, J = 3.8 Hz), 129.57 (2 ×), 128.55, 128.51 (2 ×), 128.47, 115.65 (d, J = 22.0 Hz, 2 ×), 113.42 (d, J = 1.5 Hz), 60.04, 21.56.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₁₆H₁₅BrFO₂S: 368.9960; found: 368.9963.

Compound 4g

Yield: 358 mg (84%); colorless solid; mp 152-153 °C (hexanes-EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.68 (d, *J* = 8.0 Hz, 2 H), 7.59–7.56 (m, 2 H), 7.52 (d, *J* = 8.4 Hz, 2 H), 7.47–7.43 (m, 2 H), 7.39–7.34 (m, 1 H), 7.32 (d, *J* = 8.4 Hz, 2 H), 7.22 (d, *J* = 8.0 Hz, 2 H), 6.73 (s, 1 H), 4.59 (s, 2 H), 2.38 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 144.80, 141.36, 140.16, 136.53, 135.97, 134.76, 129.53 (2 ×), 128.83 (2 ×), 128.63 (2 ×), 127.62, 127.32 (2 ×), 127.10 (2 ×), 126.95 (2 ×), 113.39, 59.90, 21.59.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₂H₂₀BrO₂S: 427.0367; found: 427.0364.

Compound 4h

Yield: 332 mg (83%); colorless solid; mp 99-100 °C (hexanes-EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.80–7.75 (m, 1 H), 7.74 (s, 1 H), 7.72 (s, 1 H), 7.63–7.61 (m, 3 H), 7.51–7.46 (m, 2 H), 7.33 (dd, J = 1.6, 8.4 Hz, 1 H), 7.08 (d, J = 8.0 Hz, 2 H), 6.80 (s, 1 H), 4.67 (s, 2 H), 2.22 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 144.74, 135.86, 135.09, 134.79, 133.01, 132.91, 129.37 (2 ×), 128.49 (2 ×), 128.37, 128.13, 127.50, 126.54, 126.52, 126.22, 124.05, 113.73, 56.92, 21.35.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₀H₁₈BrO₂S: 401.0211; found: 401.0215.

Compound 4i

Yield: 245 mg (80%); colorless gum.

¹H NMR (400 MHz, CDCl₃): δ = 7.65 (d, J = 8.4 Hz, 2 H), 7.31–7.21 (m, 7 H), 6.46 (s, 1 H), 4.53 (s, 2 H), 2.40 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 144.72, 136.94, 135.95, 132.20, 129.49 (2 ×), 128.68 (2 ×), 128.53 (2 ×), 128.43, 126.70 (2 ×), 123.35, 57.78, 21.58.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₁₆H₁₆ClO₂S: 307.0560: found: 307.0568.

Sulfonylmethyl (Z)-Stilbenes 6a-v; General Procedure

 Na_2CO_3 (106 mg, 1.0 mmol) and PPh₃ (157 mg, 0.6 mmol) were added to a solution of vinyl halide **4** (0.5 mmol) in DME (10 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 5 min. Then, sodium arenesulfinate **2** (0.5 mmol) was added to the mixture at 25 °C. The mixture was stirred at 25 °C for 5 min. Pd(OAc)₂ (11 mg, 0.05 mmol) was added to the mixture at 25 °C and the mixture was stirred at reflux for 5 h. The mixture was cooled to 25 °C and concentrated. The residue was diluted with H₂O (10 mL) and extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated under reduced pressure to afford the crude product. Purification on silica gel (hexanes–EtOAc, 4:1 to 1:1) afforded **6**.

Compound 6a

Yield: 136 mg (78%); colorless solid; mp 126–127 $^\circ C$ (hexanes–EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.47 (d, J = 8.0 Hz, 2 H), 7.37–7.33 (m, 4 H), 7.28–7.21 (m, 6 H), 7.07 (d, J = 8.0 Hz, 2 H), 7.01 (s, 1 H), 4.56 (s, 2 H), 2.35 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 144.22, 140.29, 136.74, 136.40, 136.03, 130.37, 129.32 (2 ×), 128.58 (2 ×), 128.50 (2 ×), 128.32 (2 ×), 128.25 (2 ×), 127.73, 127.54, 126.74 (2 ×), 57.93, 21.48.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₂H₂₁O₂S: 349.1262; found: 349.1266.

Compound 6b

Yield: 136 mg (75%); colorless solid; mp 130–131 °C (hexanes-EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.48 (d, J = 8.4 Hz, 2 H), 7.27–7.20 (m, 7 H), 7.17 (d, J = 7.6 Hz, 2 H), 7.06 (d, J = 8.4 Hz, 2 H), 6.98 (s, 1 H), 4.56 (s, 2 H), 2.38 (s, 3 H), 2.35 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 144.17, 140.47, 137.65, 136.82, 136.51, 133.18, 129.68, 129.28 (2 ×), 129.18 (2 ×), 128.53 (2 ×), 128.27 (4 ×), 127.39, 126.71 (2 ×), 58.03, 21.47, 21.21.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₃H₂₃O₂S: 363.1419; found: 363.1425.

Compound 6c

Yield: 132 mg (72%); colorless solid; mp 103–104 $^\circ C$ (hexanes–EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.47 (d, J = 8.0 Hz, 2 H), 7.39–7.36 (m, 2 H), 7.24–7.19 (m, 5 H), 7.08–7.03 (m, 4 H), 6.96 (s, 1 H), 4.50 (s, 2 H), 2.35 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 162.25 (d, J = 245.6 Hz), 144.34, 140.15, 136.39, 135.61, 132.08 (d, J = 3.8 Hz), 130.45 (d, J = 8.3 Hz, 2 ×), 129.49, 129.34 (2 ×), 128.33 (2 ×), 128.22 (2 ×), 127.57, 126.68 (2 ×), 115.47 (d, J = 21.9 Hz, 2 ×), 57.94, 21.46.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₂H₂₀FO₂S: 367.1168; found: 367.1172.

Compound 6d

Yield: 136 mg (72%); colorless solid; mp 162–163 $^\circ C$ (hexanes–EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.48 (d, *J* = 8.0 Hz, 2 H), 7.36 (d, *J* = 8.0 Hz, 2 H), 7.23–7.17 (m, 5 H), 7.05 (d, *J* = 8.4 Hz, 2 H), 6.95 (s, 1 H), 6.90 (d, *J* = 8.4 Hz, 2 H), 4.56 (s, 2 H), 3.84 (s, 3 H), 2.34 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 159.26, 144.19, 140.62, 136.58, 136.54, 130.06 (2 ×), 129.28 (2 ×), 128.86, 128.63, 128.29 (2 ×), 128.26 (2 ×), 127.27 (2 ×), 126.65 (2 ×), 113.93, 58.16, 55.28, 21.47.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₃H₂₃O₃S: 379.1368; found: 379.1362.

Compound 6e

Yield: 134 mg (74%); colorless solid; mp 130–131 $^\circ C$ (hexanes-EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.46 (d, *J* = 8.0 Hz, 2 H), 7.27–7.19 (m, 7 H), 7.12–7.09 (m, 2 H), 7.06 (d, *J* = 8.0 Hz, 2 H), 6.95 (s, 1 H), 4.53 (s, 2 H), 2.33 (s, 6 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 144.16, 140.27, 138.01, 136.79, 135.94, 136.34, 130.16, 129.27 (2 ×), 129.10, 128.43, 128.36, 128.27 (2 ×), 128.22 (2 ×), 127.48, 126.69 (2 ×), 125.53, 57.86, 21.45, 21.35.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₃H₂₃O₂S: 363.1419; found: 363.1423.

Compound 6f

Yield: 146 mg (70%); colorless solid; mp 117–118 $^\circ C$ (hexanes–EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.61 (d, J = 8.0 Hz, 2 H), 7.48–7.44 (m, 4 H), 7.31–7.21 (m, 5 H), 7.06 (d, J = 8.0 Hz, 2 H), 7.01 (s, 1 H), 4.50 (s, 2 H), 2.35 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 144.49, 139.83, 139.61, 136.23, 134.92, 132.31, 129.43 (2 ×), 128.91 (2 ×), 128.67, 128.45 (2 ×), 128.21 (2 ×), 127.97 (2 ×), 126.77 (2 ×), 125.42 (q, *J* = 3.8 Hz), 113.47, 57.81, 21.47.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₃H₂₀F₃O₂S: 417.1136; found: 417.1135.

Compound 6g

Yield: 132 mg (70%); colorless solid; mp 119–120 °C (hexanes-EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 10.03 (s, 1 H), 7.88 (d, *J* = 8.4 Hz, 2 H), 7.55 (d, *J* = 8.0 Hz, 2 H), 7.46 (d, *J* = 8.0 Hz, 2 H), 7.29–7.22 (m, 5 H), 7.07 (d, *J* = 8.0 Hz, 2 H), 7.02 (s, 1 H), 4.52 (s, 2 H), 2.35 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 191.65, 144.53, 142.18, 139.83, 136.28, 135.39, 135.23, 132.67, 129.89 (2 ×), 129.44 (2 ×), 129.27 (2 ×), 128.45 (2 ×), 128.21 (2 ×), 128.02, 126.78 (2 ×), 57.99, 21.49.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₃H₂₁O₃S: 377.1211; found: 377.1215.

Compound 6h

Yield: 157 mg (74%); colorless solid; mp 178–179 °C (hexanes-EtOAc).

¹H NMR (400 MHz, $CDCl_3$): δ = 7.64 (d, J = 8.0 Hz, 2 H), 7.62 (d, J = 8.0 Hz, 2 H), 7.52–7.46 (m, 6 H), 7.41–7.38 (m, 1 H), 7.31–7.23 (m, 5 H), 7.07 (d, J = 8.0 Hz, 2 H), 7.05 (s, 1 H), 4.62 (s, 2 H), 2.35 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 144.24, 140.43, 140.36, 136.41, 136.29 (2 ×), 135.00, 130.37, 129.29 (2 ×), 129.07 (2 ×), 128.81 (2 ×), 128.30 (2 ×), 128.23 (2 ×), 127.51, 127.47, 127.08 (2 ×), 126.91 (2 ×), 126.71 (2 ×), 58.01, 21.46.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₈H₂₅O₂S: 425.1575; found: 425.1580.

Compound 6i

Yield: 155 mg (73%); colorless solid; mp 84-85 °C (hexanes-EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.49–7.27 (m, 12 H), 7.19–7.08 (m, 6 H), 6.77 (s, 1 H), 4.56 (s, 2 H), 2.35 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 144.17, 141.60, 140.55, 140.01, 136.85, 134.05, 130.03, 129.84, 129.61 (2 ×), 129.37 (2 ×), 129.31, 128.65, 128.57, 128.16 (2 ×), 128.08 (2 ×), 127.99 (2 ×), 127.38, 127.33, 127.16, 126.85 (2 ×), 57.86, 21.47.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₈H₂₅O₂S: 425.1575; found: 425.1581.

Compound 6j

Yield: 155 mg (76%); colorless solid; mp 183–184 $^\circ C$ (hexanes–EtOAc).

¹H NMR (400 MHz, $CDCl_3$): δ = 7.45 (d, *J* = 8.4 Hz, 2 H), 7.22 (d, *J* = 2.0 Hz, 1 H), 7.18–7.12 (m, 5 H), 7.02 (d, *J* = 8.4 Hz, 2 H), 6.98 (d, *J* = 2.0 Hz, 1 H), 6.97 (s, 1 H), 6.88 (d, *J* = 8.4 Hz, 1 H), 4.58 (s, 2 H), 3.95 (s, 3 H), 3.92 (s, 3 H), 2.32 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 148.82, 148.77, 144.17, 140.51, 136.88, 136.60, 129.24 (2 ×), 128.99, 128.92, 128.21 (4 ×), 127.21, 126.58 (2 ×), 121.58, 111.88, 111.03, 58.36, 56.07, 55.87, 21.43.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₄H₂₅O₄S: 409.1474; found: 409.1482.

Compound 6k

Yield: 166 mg (76%); colorless solid; mp 116–117 $^\circ C$ (hexanes–EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.43 (d, *J* = 8.4 Hz, 2 H), 7.16–7.12 (m, 5 H), 7.01 (d, *J* = 8.4 Hz, 2 H), 6.97 (s, 1 H), 6.84 (s, 2 H), 4.58 (s, 2 H), 3.90 (s, 6 H), 3.89 (s, 3 H), 2.31 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 153.18, 144.20, 140.21, 137.68, 137.01 (2 ×), 136.60, 131.56, 129.97, 129.25 (2 ×), 128.23 (2 ×), 128.13 (2 ×), 127.32, 126.57 (2 ×), 105.91 (2 ×), 60.85, 58.46, 56.23 (2 ×), 21.41.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₅H₂₇O₅S: 439.1579; found: 439.1582.

Compound 61

Yield: 130 mg (78%); colorless solid; mp 130–131 $^\circ C$ (hexanes–EtOAc).

 ^1H NMR (400 MHz, CDCl_3): δ = 7.62–7.59 (m, 2 H), 7.49–7.45 (m, 1 H), 7.37–7.21 (m, 12 H), 7.03 (s, 1 H), 4.58 (s, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 140.15, 139.51, 136.89, 136.01, 133.29, 130.28, 128.71 (2 ×), 128.58 (4 ×), 128.39 (2 ×), 128.23 (2 ×), 127.77 (2 ×), 126.73 (2 ×), 57.89.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₁H₁₉O₂S: 335.1106; found: 335.1112.

Compound 6m

Yield: 130 mg (74%); colorless solid; mp 115–116 $^\circ C$ (hexanes–EtOAc).

 ^1H NMR (400 MHz, CDCl_3): δ = 7.61–7.58 (m, 2 H), 7.49–7.44 (m, 1 H), 7.40–7.35 (m, 2 H), 7.32–7.18 (m, 7 H), 7.09–7.03 (m, 2 H), 6.97 (s, 1 H), 4.53 (s, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 162.29 (d, J = 246.4 Hz), 140.02, 139.49, 135.77, 133.38, 132.06 (d, J = 3.0 Hz), 130.46 (d, J = 7.6 Hz, 2 ×), 128.76 (2 ×), 128.58, 128.40 (2 ×), 128.21 (2 ×), 127.83, 126.67 (2 ×), 115.57 (d, J = 21.2 Hz, 2 ×), 57.91.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₁H₁₈FO₂S: 353.1012; found: 353.1015.

Compound 6n

Yield: 135 mg (74%); colorless solid; mp 130-131 °C (hexanes-EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.63–7.60 (m, 2 H), 7.47–7.43 (m, 1 H), 7.36 (d, *J* = 8.8 Hz, 2 H), 7.31–7.16 (m, 7 H), 6.96 (s, 1 H), 6.91 (d, *J* = 8.8 Hz, 2 H), 4.58 (s, 2 H), 3.84 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 159.28, 140.44, 139.60, 136.70, 133.26, 130.04 (2 ×), 128.75, 128.67 (2 ×), 128.57, 128.31 (2 ×), 128.23 (2 ×), 127.50, 126.61 (2 ×), 113.99 (2 ×), 58.07, 55.28.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₂H₂₁O₃S: 365.1211; found: 365.1215.

X-ray Crystal Data²⁴

Crystals of compound **6n** were grown by slow diffusion of EtOAc into a solution of compound **6n** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/n, *a* = 9.4670(5) Å, *b* = 18.9214(9) Å, *c* = 10.2324(5) Å, *V* = 1831.17(16) Å³, *Z* = 4, *d*_{calcd} = 1.322 g/cm³, *F*(000) = 768, 2 θ range 2.264–26.386°, *R* indices (all data) *R*1 = 0.0425, *wR*2 = 0.0921.

Compound 6o

Yield: 154 mg (75%); colorless solid; mp 197-198 °C (hexanes-EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.64–7.59 (m, 6 H), 7.50–7.44 (m, 5 H), 7.41–7.36 (m, 1 H), 7.32–7.27 (m, 4 H), 7.24–7.21 (m, 3 H), 7.05 (s, 1 H), 4.63 (s, 2 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 140.57, 140.43, 140.25, 139.54, 136.51, 135.01, 133.33, 130.31, 129.10 (2 ×), 128.86 (2 ×), 128.74 (2 ×), 128.42 (2 ×), 128.27 (2 ×), 127.80, 127.52, 127.23 (2 ×), 126.99 (2 ×), 126.74 (2 ×), 58.03.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₇H₂₃O₂S: 411.1419; found: 411.1422.

Compound 6p

Yield: 103 mg (76%); colorless solid; mp 101–102 $^\circ C$ (hexanes–EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.54–7.50 (m, 4 H), 7.46–7.32 (m, 6 H), 7.12 (s, 1 H), 4.46 (s, 2 H), 2.49 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 140.71, 137.12, 135.86, 130.03, 128.93 (2 ×), 128.74 (2 ×), 128.68 (2 ×), 128.31, 128.05, 126.85 (2 ×), 57.03, 42.07.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₁₆H₁₇O₂S: 273.0949; found: 273.0953.

Compound 6q

Yield: 134 mg (76%); colorless solid; mp 137–138 $^\circ C$ (hexanes–EtOAc).

 ^1H NMR (400 MHz, CDCl_3): δ = 7.59–7.54 (m, 2 H), 7.41–7.29 (m, 5 H), 7.26–7.22 (m, 5 H), 7.02 (s, 1 H), 6.95–6.89 (m, 2 H), 4.59 (s, 2 H).

Synthe	
Syn che	

Paper

¹³C NMR (100 MHz, CDCl₃): δ = 165.52 (d, J = 254.7 Hz), 140.06, 136.94, 135.89, 135.34, 131.11 (d, J = 9.1 Hz, 2 ×), 130.09, 128.61 (2 ×), 128.55 (2 ×), 128.44 (2 ×), 127.87, 127.82, 126.71 (2 ×), 115.88 (d, J = 22.8 Hz, 2 ×), 57.97.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₁H₁₈FO₂S: 353.1012; found: 353.1015.

Compound 6r

Yield: 135 mg (74%); colorless solid; mp 99-100 °C (hexanes-EtOAc).

¹H NMR (400 MHz, $CDCl_3$): δ = 7.50 (d, *J* = 9.2 Hz, 2 H), 7.38 (br s, 2 H), 7.37 (br s, 2 H), 7.35–7.21 (m, 6 H), 7.01 (s, 1 H), 6.72 (d, *J* = 9.2 Hz, 2 H), 4.56 (s, 2 H), 3.81 (s, 3 H)...

 ^{13}C NMR (100 MHz, CDCl₃): δ = 163.40, 140.32, 136.62 (2 ×), 136.03, 130.90, 130.48, 130.35 (2 ×), 128.57 (2 ×), 128.49 (2 ×), 128.33 (2 ×), 127.71, 127.58, 126.71 (2 ×), 113.88, 57.97, 55.53.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₂H₂₁O₃S: 365.1212; found 365.1215.

Compound 6s

Yield: 134 mg (73%); colorless solid; mp 156–157 °C (hexanes-EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.47 (d, J = 8.4 Hz, 2 H), 7.38–7.30 (m, 5 H), 7.26–7.23 (m, 2 H), 7.11 (d, J = 8.0 Hz, 2 H), 6.96 (s, 1 H), 6.94–6.90 (m, 2 H), 4.51 (s, 2 H), 2.37 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 162.36 (d, *J* = 245.6 Hz), 144.45, 136.69, 136.48, 136.40, 135.86, 129.40 (2 ×), 128.54 (4 ×), 128.46 (d, *J* = 7.6 Hz, 2 ×), 128.21 (2 ×), 127.82 (2 ×), 115.19 (d, *J* = 22.0 Hz, 2 ×), 58.04, 21.46.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₂H₂₀FO₂S: 367.1168; found: 367.1170.

X-ray Crystal Structure²⁴

Crystals of compound **6s** were grown by slow diffusion of EtOAc into a solution of compound **6s** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21, a = 9.060(2) Å, b = 5.6003(14) Å, c = 18.336(5) Å, V = 909.4(4) Å³, Z = 2, $d_{calcd} = 1.338$ g/cm³, F(000) = 384, 2θ range 1.136–26.516°, R indices (all data) R1 = 0.0416, wR2 = 0.0810.

Compound 6t

Yield: 155 mg (73%); colorless solid; mp 161–162 $^\circ C$ (hexanes–EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.58–7.55 (m, 2 H), 7.51–7.30 (m, 14 H), 7.08 (s, 1 H), 7.07–7.05 (m, 2 H), 4.59 (s, 2 H), 2.29 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 144.30, 140.50, 140.46, 139.19, 136.62, 136.58, 136.05, 129.99, 129.34 (2 ×), 128.81 (2 ×), 128.68 (2 ×), 128.57 (2 ×), 128.36 (2 ×), 127.82, 127.44, 127.19 (2 ×), 126.98 (2 ×), 126.91 (2 ×), 57.97, 21.48.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₈H₂₅O₂S: 425.1575; found: 425.1577.

Compound 6u

Yield: 143 mg (72%); colorless solid; mp 146–147 $^\circ C$ (hexanes–EtOAc).

 ^1H NMR (400 MHz, CDCl₃): δ = 7.79–7.77 (m, 1 H), 7.68 (d, J = 9.2 Hz, 1 H), 7.67 (d, J = 8.4 Hz, 1 H), 7.58 (d, J = 1.2 Hz, 1 H), 7.49–7.31 (m, 10 H), 7.15 (s, 1 H), 6.83 (d, J = 8.0 Hz, 2 H), 4.66 (s, 2 H), 2.06 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 144.31, 137.42, 137.10 (2 ×), 136.42, 136.04, 133.04, 132.65, 130.39, 129.10 (2 ×), 128.71 (2 ×), 128.58 (2 ×), 128.20 (2 ×), 127.99, 127.84, 127.37, 126.17, 126.05, 125.97, 124.72, 58.09, 21.14.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₆H₂₃O₂S: 399.1419; found: 399.1428.

Compound 6v

Two isomers (ratio = 6:4); yield: 96 mg (67%); colorless gum.

¹H NMR (400 MHz, CDCl₃): δ = 7.62 (d, *J* = 8.0 Hz, 2 H), 7.23–7.16 (m, 6 H), 7.06–7.04 (m, 1 H), 6.09 (q, *J* = 7.2 Hz, 1 H), 4.34 (s, 2 H), 2.36 (s, 3 H), 1.67 (d, *J* = 7.2 Hz, 3 H).

HRMS (ESI): m/z [M⁺ + 1] calcd for C₁₇H₁₉O₂S: 287.1106; found: 287.1112.

1,3-Disulfonyl Styrenes 7a-g; General Procedure

 Na_2CO_3 (106 mg, 1.0 mmol) and PPh₃ (157 mg, 0.6 mmol) were added to a solution of dihalide **3** (0.5 mmol) in DME (10 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 5 min. Then, arenesulfinic acid sodium salt **2** (1.6 mmol) was added to the mixture at 25 °C. The mixture was stirred at 25 °C for 5 min and then stirred at reflux for 5 h. The mixture was cooled to 25 °C and concentrated. The residue was diluted with H₂O (10 mL) and the mixture was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated under reduced pressure to afford the crude product. Purification on silica gel (hexanes–EtOAc, 4:1 to 1:1) afforded **7**.

Compound 7a

Yield: 183 mg (86%); colorless solid; mp 128–129 $^\circ C$ (hexanes–EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.88 (d, *J* = 8.4 Hz, 2 H), 7.72 (d, *J* = 8.4 Hz, 2 H), 7.37–7.30 (m, 7 H), 7.26 (d, *J* = 8.4 Hz, 2 H), 6.53 (s, 1 H), 5.20 (s, 2 H), 2.44 (s, 3 H), 2.42 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 144.90, 144.81, 141.84, 137.64, 137.52, 136.43, 132.65, 130.06, 129.96 (2 ×), 129.61 (2 ×), 128.76 (2 ×), 128.49 (2 ×), 127.94 (2 ×), 127.21 (2 ×), 55.44, 21.64, 21.60.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₃H₂₃O₄S₂: 427.1038; found: 427.1041.

Compound 7b

Yield: 161 mg (81%); colorless solid; mp 73-74 °C (hexanes-EtOAc).

 ^1H NMR (400 MHz, CDCl_3): δ = 8.03–8.00 (m, 2 H), 7.87–7.84 (m, 2 H), 7.68–7.55 (m, 4 H), 7.50–7.46 (m, 2 H), 7.39–7.31 (m, 5 H), 6.55 (s, 1 H), 5.24 (s, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 142.25, 140.50, 139.28, 137.37, 133.85, 133.84, 132.39, 130.30, 129.38 (2 ×), 129.06 (2 ×), 128.86 (2 ×), 128.48 (2 ×), 127.89 (2 ×), 127.21 (2 ×), 55.44.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₁H₁₉O₄S₂: 399.0725; found: 399.0726.

Compound 7c

Yield: 110 mg (80%); colorless solid; mp 139–140 $^\circ C$ (hexanes–EtOAc).

 1H NMR (400 MHz, CDCl_3): δ = 7.55–7.52 (m, 2 H), 7.49–7.45 (m, 3 H), 6.74 (s, 1 H), 5.04 (s, 2 H), 3.20 (s, 3 H), 2.92 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 143.95, 137.64, 131.40, 130.78, 129.31 (2 ×), 127.12 (2 ×), 54.33, 43.85, 42.70.

HRMS (ESI): m/z [M⁺ + 1] calcd for $C_{11}H_{15}O_4S_2$: 275.0412; found: 275.0419.

X-ray Crystal Data²⁴

Crystals of compound **7c** were grown by slow diffusion of EtOAc into a solution of compound **7c** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group C2/*c*, *a* = 19.862(4) Å, *b* = 8.7119(16) Å, *c* = 16.377(3) Å, *V* = 2517.1(9) Å³, *Z* = 8, *d*_{calcd} = 1.448 g/cm³, *F*(000) = 1152, 2 θ range 2.607–26.418°, *R* indices (all data) *R*1 = 0.0536, *wR*2 = 0.1151.

Compound 7d

Yield: 182 mg (84%); colorless solid; mp 133-134 °C (hexanes-EtOAc).

 ^1H NMR (400 MHz, CDCl_3): δ = 8.09–8.04 (m, 2 H), 7.86–7.81 (m, 2 H), 7.40–7.29 (m, 5 H), 7.27–7.22 (m, 2 H), 7.15–7.09 (m, 2 H), 6.54 (s, 1 H), 5.22 (s, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 165.95 (d, *J* = 255.5 Hz), 165.91 (d, *J* = 255.4 Hz), 142.16, 137.15, 136.46 (d, *J* = 3.0 Hz), 135.23 (d, *J* = 3.0 Hz), 132.26, 131.39 (d, *J* = 9.9 Hz, 2 ×), 130.92 (d, *J* = 9.9 Hz, 2 ×), 130.44, 128.94 (2 ×), 127.17 (2 ×), 116.73 (d, *J* = 22.8 Hz, 2 ×), 116.34 (d, *J* = 22.7 Hz, 2 ×), 55.56.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₁H₁₇F₂O₄S₂: 435.0536; found: 435.0539.

Compound 7e

Yield: 190 mg (83%); colorless solid; mp 143–144 $^\circ C$ (hexanes–EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.92 (d, *J* = 8.8 Hz, 2 H), 7.73 (d, *J* = 9.2 Hz, 2 H), 7.35–7.29 (m, 5 H), 7.01 (d, *J* = 9.2 Hz, 2 H), 6.89 (d, *J* = 8.8 Hz, 2 H), 6.51 (s, 1 H), 5.19 (s, 2 H), 3.86 (s, 3 H), 3.84 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 163.85, 163.77, 141.33, 137.48, 132.79, 132.00, 130.84, 130.60 (2 ×), 130.14 (2 ×), 129.97, 128.71 (2 ×), 127.14 (2 ×), 114.52 (2 ×), 114.14 (2 ×), 55.64, 55.61, 55.45.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₃H₂₃O₆S₂: 459.0936; found: 459.0939.

Compound 7f

Yield: 182 mg (82%); colorless solid; mp 103–104 $^\circ C$ (hexanes–EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.88 (d, *J* = 8.4 Hz, 2 H), 7.72 (d, *J* = 8.4 Hz, 2 H), 7.36 (d, *J* = 8.0 Hz, 2 H), 7.39–7.29 (m, 2 H), 7.28 (d, *J* = 8.0 Hz, 2 H), 7.02–6.97 (m, 2 H), 6.50 (s, 1 H), 5.17 (s, 2 H), 2.44 (s, 3 H), 2.43 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 163.74 (d, *J* = 250.2 Hz), 144.98, 140.63, 137.47, 136.37, 133.52 (d, *J* = 3.1 Hz), 132.57, 129.99 (2 ×), 129.66 (2 ×), 129.50, 129.28 (d, *J* = 8.3 Hz, 2 ×), 128.41 (2 ×), 127.92 (2 ×), 115.85 (d, *J* = 21.9 Hz, 2 ×), 55.43, 21.61, 21.56.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₃H₂₂FO₄S₂: 445.0944; found: 445.0948.

Compound 7g

Yield: 200 mg (84%); colorless solid; mp 156–160 °C (hexanes–EtO-Ac).

¹H NMR (400 MHz, CDCl₃): δ = 7.95 (d, J = 8.4 Hz, 2 H), 7.78–7.70 (m, 4 H), 7.64 (d, J = 8.0 Hz, 2 H), 7.51–7.45 (m, 2 H), 7.37 (d, J = 8.0 Hz, 2 H), 7.33 (dd, J = 2.0, 8.4 Hz, 1 H), 7.07 (d, J = 8.4 Hz, 2 H), 6.66 (s, 1 H), 5.33 (s, 2 H), 2.44 (s, 3 H), 2.23 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 144.88, 144.72, 141.89, 137.63, 136.29, 134.35, 133.63, 132.70, 132.66, 129.96 (2 ×), 129.40 (2 ×), 128.56, 128.46, 128.32 (2 ×), 127.96 (2 ×), 127.47 (2 ×), 127.31, 126.70, 123.89, 55.37, 21.60, 21.34.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₇H₂₅O₄S₂: 477.1194; found: 477.1198.

X-ray Crystal Data²⁴

L

Crystals of compound **7g** were grown by slow diffusion of EtOAc into a solution of compound **7g** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/c, a = 14.3518(12) Å, b = 11.3055(9) Å, c = 15.0648(13) Å, V =2301.5(3) Å³, Z = 4, $d_{calcd} = 1.375$ g/cm³, F(000) = 1000, 2θ range 2.304– 26.397°, R indices (all data) R1 = 0.0430, wR2 = 0.0884.

Sulfonyl Dimers 8a-d; General Procedure

 Na_2CO_3 (106 mg, 1.0 mmol) and PPh₃ (157 mg, 0.6 mmol) were added to a solution of vinyl halide **4** (0.5 mmol) in DME (10 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 5 min. Then, Pd(OAc)₂ (11 mg, 0.05 mmol) was added to the mixture at 25 °C. The mixture was stirred at 25 °C for 5 min and then stirred at reflux for 5 h. The mixture was cooled to 25 °C and concentrated. The residue was diluted with H₂O (10 mL) and the mixture was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated under reduced pressure to afford the crude product. Purification on silica gel (hexanes–EtOAc, 4:1 to 1:1) afforded **8**.

Compound 8a

Yield: 211 mg (78%); colorless solid; mp 180–181 $^\circ C$ (hexanes–EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.63 (d, *J* = 8.0 Hz, 4 H), 7.23 (br s, 10 H), 7.10 (d, *J* = 8.0 Hz, 4 H), 6.77 (s, 2 H), 4.47 (s, 4 H), 2.27 (s, 6 H).

¹³C NMR (100 MHz, CDCl₃): δ = 144.76 (2 ×), 140.37 (2 ×), 135.48 (2 ×), 131.32 (2 ×), 129.92 (2 ×), 129.58 (4 ×), 128.59 (4 ×), 128.36 (4 ×), 127.85 (2 ×), 126.53 (4 ×), 57.95 (2 ×), 21.47 (2 ×).

HRMS (ESI): m/z [M⁺ + 1] calcd for C₃₂H₃₁O₄S₂: 543.1664; found: 543.1669.

X-ray Crystal Data²⁴

Crystals of compound **8a** were grown by slow diffusion of EtOAc into a solution of compound **8a** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the tetragonal crystal system, space group I 41/a, a = 20.4669(8) Å, b = 20.4669(8) Å, c = 13.5548(6) Å, V = 5678.0(5) Å³, Z = 16, $d_{calcd} = 1.270$ g/cm³, F(000) = 2288, 2θ range 1.802–26.411°, R indices (all data) R1 = 0.0573, wR2 = 0.1170.

Compound 8b

Yield: 190 mg (74%); colorless solid; mp 165–166 $^\circ C$ (hexanes–EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.76 (d, J = 8.4 Hz, 4 H), 7.45–7.41 (m, 2 H), 7.34–7.30 (m, 4 H), 7.22 (br s, 10 H), 6.86 (s, 2 H), 4.51 (s, 4 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 140.29 (2 ×), 138.53 (2 ×), 133.67 (2 ×), 131.29 (2 ×), 130.25 (2 ×), 128.91 (4 ×), 128.64 (4 ×), 128.46 (4 ×), 128.02 (2 ×), 126.53 (4 ×), 57.89 (2 ×).

HRMS (ESI): m/z [M⁺ + 1] calcd for C₃₀H₂₇O₄S₂: 515.1351; found: 515.1356.

Compound 8c

Yield: 208 mg (72%); colorless solid; mp 211–212 $^\circ C$ (hexanes–EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.64 (d, J = 8.4 Hz, 4 H), 7.24–7.20 (m, 4 H), 7.15 (d, J = 8.0 Hz, 4 H), 6.95–6.91 (m, 4 H), 6.77 (s, 2 H), 4.43 (s, 4 H), 2.31 (s, 6 H).

¹³C NMR (100 MHz, CDCl₃): δ = 162.51 (d, J = 247.1 Hz, 2 ×), 144.97 (2 ×), 136.64 (d, J = 3.0 Hz, 2 ×), 135.57 (2 ×), 130.28 (2 ×), 130.00 (2 ×), 129.68 (4 ×), 128.60 (4 ×), 128.37 (d, J = 8.3 Hz, 4 ×), 115.33 (d, J = 21.2 Hz, 4 ×), 58.16 (2 ×), 21.50 (2 ×).

HRMS (ESI): m/z [M⁺ + 1] calcd for $C_{32}H_{29}F_2O_4S_2$: 579.1475; found: 579.1481.

Compound 8d

Yield: 260 mg (75%); colorless solid; mp 201–202 °C (hexanes-EtOAc).

¹H NMR (400 MHz, CDCl₃): δ = 7.67 (d, *J* = 8.0 Hz, 4 H), 7.59 (d, *J* = 8.0 Hz, 4 H), 7.50–7.45 (m, 10 H), 7.32 (d, *J* = 8.8 Hz, 4 H), 7.13 (d, *J* = 8.0 Hz, 4 H), 6.89 (s, 2 H), 4.53 (s, 4 H), 2.25 (s, 6 H).

¹³C NMR (100 MHz, $CDCI_3$): $\delta = 144.85 (2 \times), 140.77 (2 \times), 140.32 (2 \times), 139.21 (2 \times), 135.69 (2 \times), 130.94 (2 \times), 129.78 (2 \times), 129.65 (4 \times), 128.87 (4 \times), 128.70 (4 \times), 127.58 (2 \times), 127.11 (4 \times), 127.04 (4 \times), 126.99 (4 \times), 57.94 (2 \times), 21.53 (2 \times).$

HRMS (ESI): m/z [M⁺ + 1] calcd for C₄₄H₃₉O₄S₂: 695.2290; found: 695.2296.

Compound 9

KOH (112 mg, 2.0 mmol) was added to a solution of **6a** (350 mg, 1.0 mmol) in 1,4-dioxane (10 mL) at 25 °C. Formaldehyde (37% in H₂O, 2 mL) was added and the reaction mixture was stirred at 25 °C for 5 min. The mixture was stirred at reflux for 10 h, cooled to 25 °C, and concentrated. The residue was diluted with H₂O (10 mL) and the mixture was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated under reduced pressure to afford the crude product. Purification on silica gel (hexanes–EtOAc, 100:1 to 50:1) afforded **9**; yield: 161 mg (78%); colorless oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.42–7.33 (m, 3 H), 7.20–7.17 (m, 2 H), 7.13–7.09 (m, 3 H), 6.93–6.90 (m, 2 H), 6.76 (dd, J = 10.4, 17.2 Hz, 1 H), 6.62 (s, 1 H), 5.17 (d, J = 10.8 Hz, 1 H), 4.86 (d, J = 17.2 Hz, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 141.73, 137.88 (2 ×), 136.65, 131.46, 129.59 (2 ×), 129.40 (2 ×), 128.74 (2 ×), 127.93 (2 ×), 127.27, 126.88, 116.40.

HRMS (ESI): *m*/*z* [M⁺ + 1] calcd for C₁₆H₁₅: 207.1174; found: 207.1179.

Compound 10

Pd/C (5%, 10 mg) was added to a solution of **9** (173 mg, 0.8 mmol) in EtOAc (10 mL) at 25 °C. H_2 was bubbled through the reaction mixture at 25 °C and stirred for 1 h. The mixture was filtered and concentrated. Purification on silica gel (hexanes–EtOAc, 10:1 to 1:1) afforded **10**; yield: 113 mg (68%); colorless oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.64–7.61 (m, 2 H), 7.53–7.48 (m, 4 H), 7.45–7.37 (m, 4 H), 6.86 (s, 1 H), 2.91 (q, J = 7.6 Hz, 2 H), 1.23 (t, J = 7.6 Hz, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 144.41, 142.65, 138.26, 128.68 (2 ×), 128.30 (2 ×), 128.10 (2 ×), 127.58, 127.11, 126.75 (2 ×), 126.48, 23.22, 13.45.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₁₆H₁₇: found: 244.0339.

Compound 11

 K_2CO_3 (276 mg, 2.0 mmol) was added to a solution of 4-bromophenol (173 mg, 1.0 mmol) in acetone (10 mL) at 25 °C. $Me_2NCH_2CH_2CH_2CI$ -HCl (173 mg, 1.2 mmol) was added and the reaction mixture was stirred at 25 °C for 5 min. The mixture was stirred at reflux for 10 h, cooled to 25 °C, and concentrated. The residue was diluted with H_2O (10 mL) and the mixture was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated under reduced pressure to afford the crude product. Purification on silica gel (hexanes–EtOAc, 10:1 to 1:1) afforded **11**; yield: 214 mg (88%); colorless oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.35 (d, *J* = 8.8 Hz, 2 H), 6.79 (d, *J* = 8.8 Hz, 2 H), 4.03 (t, *J* = 5.6 Hz, 2 H), 2.74 (t, *J* = 5.6 Hz, 2 H), 2.35 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ = 157.86, 132.19 (2 ×), 116.36 (2 ×), 112.94, 66.10, 58.09, 45.77 (2 ×).

HRMS (ESI): m/z [M⁺ + 1] calcd for C₁₀H₁₅BrNO: 244.0337; found 244.0335.

Tamoxifen (12)

 Na_2CO_3 (106 mg, 1.0 mmol) and PPh₃ (157 mg, 0.6 mmol) were added to a solution of **10** (62 mg, 0.3 mmol) in DME (10 mL) at 25 °C and the reaction mixture was stirred at 25 °C for 5 min. Then, Pd(OAc)₂ (11 mg, 0.05 mmol) was added at 25 °C and the mixture was stirred at 25 °C for 5 min. Compound **11** (122 mg, 0.5 mmol) in DME (1 mL) was added to the mixture at 25 °C and stirred at reflux for 5 h. The mixture was cooled to 25 °C and concentrated. The residue was diluted with H₂O (10 mL) and the mixture was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated under reduced pressure to afford the crude product. Purification on silica gel (hexanes–EtOAc, 4:1 to 1:1) afforded **12**; yield: 76 mg (65%); colorless oil.

¹H NMR (400 MHz, $CDCI_3$): δ = 7.37–7.33 (m, 2 H), 7.28–7.23 (m, 3 H), 7.20–7.16 (m, 2 H), 7.13–7.09 (m, 3 H), 6.77 (d, *J* = 9.2 Hz, 2 H), 6.56 (d, *J* = 9.2 Hz, 2 H), 3.98 (t, *J* = 6.4 Hz, 2 H), 3.73 (t, *J* = 6.4 Hz, 2 H), 2.46 (q, *J* = 7.6 Hz, 2 H), 2.36 (s, 6 H), 0.92 (t, *J* = 7.6 Hz, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 156.53, 143.76, 142.38, 141.40, 138.20, 135.72, 131.84 (2 ×), 129.67 (2 ×), 129.43 (2 ×), 128.08 (2 ×), 127.84 (2 ×), 126.49, 126.00, 113.38 (2 ×), 65.30, 58.06, 45.57 (2 ×), 28.98, 13.54.

HRMS (ESI): m/z [M⁺ + 1] calcd for C₂₆H₃₀NO: 372.2327; found: 372.2331.

Acknowledgment

The authors would like to thank the Ministry of Science and Technology of the Republic of China for the financial support (MOST 105-2113-M-037-001).

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588705. Scanned photocopies of

К

NMR (CDCl₃) spectral data for all compounds and X-ray crystal structure analysis data of **6n**, **6s**, **7c**, **7g** and **8a** are included.

References

- (a) Likhtenshtein, G. Stilbenes: Applications in Chemistry, Life Sciences, and Materials Science; Wiley: New York, 2010. (b) Lo, S.-C.; Burn, P. L. Chem. Rev. 2007, 107, 1097.
- (2) (a) Roupe, K. A.; Remsberg, C. M.; Yanez, J. A.; Davies, N. M. Curr. Clin. Pharmacol. 2006, 1, 81. (b) Baur, J. A.; Sinclair, D. A. Nat. Rev. Drug Discov. 2006, 5, 493. (c) Cottart, C.-H.; Nivet-Antoine, V.; Beaudeux, J.-L. Mol. Nutr. Food Res. 2014, 58, 7.
- (3) (a) Cheng, L. T.; Tam, W.; Stevenson, S. H.; Meredith, G. R.; Rikken, G.; Marder, S. R. J. Phys. Chem. **1991**, 95, 10631.
 (b) Soomro, S. A.; Benmouna, R.; Berger, R.; Meier, H. Eur. J. Org. Chem. **2005**, 3586. (c) Dorlars, A.; Schellhammer, C.-W.; Schroeder, J. Angew. Chem., Int. Ed. Engl. **1975**, 14, 665.
 (d) Meier, H. Angew. Chem., Int. Ed. Engl. **1992**, 31, 1399.
- (4) For selected examples on Julia–Kocienski olefination, see:
 (a) Ghosh, A. K.; Zajc, B. J. Org. Chem. 2009, 74, 8531. (b) Aidhen,
 I. S.; Mukkamala, R.; Weidner, C.; Sauer, S. Org. Lett. 2015, 17, 194.
- (5) For selected examples on the Horner–Wadsworth–Emmons reaction, see: (a) Molander, G. A.; Ham, J.; Canturk, B. Org. Lett. **2007**, *7*, 821. (b) Hilt, G.; Hengst, C. J. Org. Chem. **2007**, *72*, 7337. (c) Ngwendson, J. N.; Atemnkeng, W. N.; Schultze, C. M.; Banerjee, A. Org. Lett. **2006**, *8*, 4085.
- (6) For selected examples on the Ramberg–Backlund rearrangement, see: (a) Soderman, S. C.; Schwan, A. L. J. Org. Chem. 2012, 77, 10978. (b) Elizabeta, T. H.; Rozen, A. S. Org. Lett. 2006, 8, 1213.
- (7) For selected examples on the McMurry coupling, see: (a) Xu, J.-F.; Chen, Y.-Z.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z. Org. Lett. 2014, 16, 684. (b) Burhardt, M. N.; Ahlburg, A.; Skrydstrup, T. J. Org. Chem. 2014, 79, 11830.
- (8) For Pd²⁺-mediated cross-coupling of styrenes, see: (a) Allolio, C.; Strassner, T. J. Org. Chem. 2014, 79, 12096. (b) Lu, G.-P.; Voigtritter, K. R.; Cai, C.; Lipshutz, B. H. J. Org. Chem. 2012, 77, 3700. (c) Xu, H.-J.; Zhao, Y.-Q.; Zhou, X.-F. J. Org. Chem. 2011, 76, 8036. (d) McLaughlin, M. G.; McAdam, C. A.; Cook, M. J. Org. Lett. 2015, 17, 10. (e) Lasch, R.; Fehler, S. K.; Heinrich, M. R. Org. Lett. 2016, 18, 1586.
- (9) For Co²⁺-mediated cross-coupling of styrenes, see: Moncomble,
 A.; Le Floch, P.; Lledos, A.; Gosmini, C. J. Org. Chem. 2012, 77, 5056.
- (10) For Ni²⁺-mediated cross-coupling of styrenes, see: Shimasaki, T.; Konno, Y.; Tobisu, M.; Chatani, N. Org. Lett. **2009**, *11*, 4890.
- (11) For Rh³⁺-mediated cross-coupling of styrenes, see: (a) Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 3024.
 (b) Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 5776. (c) Patureau, F. W.; Nimphius, C.; Glorius, F. Org. Lett. 2011, 13, 6346.
- (12) For Fe³⁺-mediated cross-coupling of styrenes, see: Heinrich, M. R.; Blank, O.; Ullrich, D.; Kirschstein, M. J. Org. Chem. 2007, 72, 9609.
- (13) For isomerization of stilbenes, see: (a) Saltiel, J. J. Am. Chem. Soc. 1967, 89, 1036. (b) Saltiel, J. J. Am. Chem. Soc. 1968, 90, 6394. (c) Saltiel, J.; Waller, A. S.; Sears, D. F. Jr.; Garrett, C. Z. J. Phys. Chem. 1993, 97, 2516. (d) Kim, I. S.; Dong, G. R.; Jung, Y. H. J. Org. Chem. 2007, 72, 5424. (e) Parthasarathy, A.; Kaanumalle, L. S.; Ramamurthy, V. Org. Lett. 2007, 9, 5059.

- (14) Desulfinative route toward the synthesis of stilbenes with Pd²⁺: For ArSO₂H/styrenes, see: (a) Wang, G.-W.; Miao, T. *Chem. Eur. J.* **2011**, *17*, 5787. For ArSO₂NHNH₂/styrenes, see: (b) Yang, F.-L.; Ma, X.-T.; Tian, S.-K. *Chem. Eur. J.* **2012**, *18*, 1582. For ArSO₂Na/styrenes, see: (c) Zhou, X.; Luo, J.; Liu, J.; Peng, S.; Deng, G.-J. Org. Lett. **2011**, *13*, 1432.
- (15) For reviews on desulfinative cross-coupling, see: (a) Aziz, J.; Messaoudi, S.; Alami, M.; Hamze, A. Org. Biomol. Chem. 2014, 12, 9743. (b) Modha, S. G.; Mehta, V. P.; van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 5042.
- (16) Selected examples on the desulfinative carbonylation of carbonyl synthons, for nitriles/Pd²⁺, see: (a) Behrends, M.; Savmarker, J.; Sjoberg, P. J. R.; Larhed, M. ACS Catal. 2011, 1, 1455. (b) Liu, J.; Zhou, X.; Rao, H.; Xiao, F.; Li, C.-J.; Deng, G.-J. Chem. Eur. J. 2011, 17, 7996. (c) Miao, T.; Wang, G.-W. Chem. Commun. 2011, 47, 9501. For aldehydes/Rh⁺, see: (d) Rao, H.; Yang, L; Shuai, Q.; Li, C.-J. Adv. Synth. Catal. 2011, 353, 1701.
- (17) For examples on desulfinative conjugation of enones, see: (a) Wang, H.; Li, Y.; Zhang, R.; Jin, K.; Zhao, D.; Duan, C. J. Org. *Chem.* **2012**, 77, 4849. (b) Chen, W.; Zhou, X.; Xiao, F.; Luo, J.; Deng, G.-J. *Tetrahedron Lett.* **2012**, 53, 4347.
- (18) For examples on direct desulfinative arylation of heterocycles with Pd2+: For indoles, see: (a) Wu, M.; Luo, J.; Xiao, F.; Zhang, S.; Deng, G.-J.; Luo, H.-A. Adv. Synth. Catal. 2012, 354, 335 For xanthines, see. (b) Liu, B.; Guo, Q.; Cheng, Y.; Lan, J.; You, J. Chem. Eur. J. 2011, 17, 13415. For thiazoles, benzoxazoles, and benzothiazoles, see: (c) Chen, R.; Liu, S.; Liu, X.; Yang, L.; Deng, G.-J. Org. Biomol. Chem. 2011, 9, 7675. For oxazoles, thiazoles, and 1,3,4-oxadiazoles, see: (d) Wang, M.; Li, D.; Xhou, W.; Wang, L. Tetrahedron 2012, 68, 1926. For benzothiophenes and thiophenes, see: (e) Yuan, K.; Doucet, H. Chem. Sci. 2014, 5, 392. For coumarins, see: (f) Jafarpour, F.; Olia, M. B. A.; Hazrati, H. Adv. Synth. Catal. 2013, 355, 3407. For furans, see: (g) Beladhria. A.; Yuan, K.; Ammar, H. B.; Soule, J. F.; Salem, R. B.; Doucet, H. Synthesis 2014, 46, 2515. For benzo[d]oxazoles, see: (h) Loukotova, L.; Yuan, K.; Doucet, H. ChemCatChem 2014, 6, 1303. For benzofurans, see: (i) Zhang, M.; Zhang, S.; Liu, M.; Cheng, J. Chem. Commun. 2011, 47, 11522. For lactones, see: (j) Li, J.; Yang, W.; Yang, S.; Huang, L.; Wu, W.; Sum, J.; Jiang, H. Angew. Chem. Int. Ed. 2014, 53, 7219.
- (19) (a) Liao, J.; Zhang, Z.; Tang, X.; Wu, W.; Guo, W.; Jiang, H. J. Org. Chem. 2015, 80, 8903. (b) Yuan, K.; Soule, J.-F.; Doucet, H. ACS Catal. 2015, 5, 978. (c) Skillinghaug, B.; Skold, C.; Rydfjord, J.; Svensson, F.; Behrends, M.; Savmarker, J.; Sjoberg, P. J. R.; Larhed, M. J. Org. Chem. 2014, 79, 12018. (d) Zhao, F.; Tan, Q.; Xiao, F.; Zhang, S.; Deng, G.-J. Org. Lett. 2013, 15, 1520. (e) Skillinghaug, B.; Rydfjord, J.; Odell, L. R. Tetrahedron Lett. 2016, 57, 533. (f) Ortgies, D. H.; Hassanpour, A.; Chen, F.; Woo, S.; Forgione, P. Eur. J. Org. Chem. 2016, 408. (g) Sun, S.; Yu, J.-T.; Jiang, Y.; Cheng, J. Adv. Synth. Catal. 2015, 357, 2022.
- (20) (a) Ortgies, D. H.; Chen, F.; Forgione, P. Eur. J. Org. Chem. 2014, 3917. (b) Miao, T.; Wang, L. Adv. Synth. Catal. 2014, 356, 967. (c) Miao, T.; Wang, L. Adv. Synth. Catal. 2014, 356, 429. (d) Xiao, F.; Xie, H.; Liu, S.; Deng, G.-J. Adv. Synth. Catal. 2014, 356, 364. (e) Chen, J.; Li, J.; Su, W. Org. Biomol. Chem. 2014, 12, 4078. (f) Cheng, K.; Yu, H.-Z.; Zhao, B.; Hu, S.; Zhang, X.-M.; Qi, C. RSC Adv. 2014, 4, 57923. (g) Li, J.; Bi, X.; Wang, H.; Xiao, J. RSC Adv. 2014, 4, 19214. (h) Aziz, J.; Messaoudi, S.; Alami, M.; Hamze, A. Org. Biomol. Chem. 2014, 12, 9743. (i) Liu, S.; Tang, L.; Chen, H.; Zhao, F.; Deng, G.-J. Org. Biomol. Chem. 2014, 12, 6076. (j) Miao, T.; Li, P.; Wang, G.-W.; Wang, L. Chem. Asian J. 2013, 8, 3185.
- (21) Chan, C.-K.; Huang, Y.-H.; Chang, M.-Y. *Tetrahedron* **2016**, *72*, 5521; and references cited therein.

- (22) (a) Vascher, C.; Berthelot, P.; Flouquet, N.; Vaccher, M.-P.; Debaert, M. Synth. Commun. **1993**, 23, 671. (b) Chang, M.-Y.; Chen, Y.-C. Org. Lett. **2016**, *18*, 1682.
- (23) Examples on biological activities of the core structures with the sulfonylmethyl motif, for styrenes, see: (a) Sravya, G.; Yamini, G.; Padmavathi, V.; Padmaja, A. Eur. J. Med. Chem. 2016, 122, 647. (b) Reddy, M. V. R.; Mallireddigari, M. R.; Cosenza, S. C.; Pallela, V. R.; Igbal, N. M.; Robell, K. A.; Kang, A. D.; Reddy, E. P. J. Med. Chem. 2008, 51, 86. (c) Reddy, M. V. R.; Venkatapuram, P.; Mallireddigari, M. R.; Pallela, V. R.; Cosenza, S. C.; Robell, K. A.; Akula, B.; Hoffman, B. S.; Reddy, E. P. J. Med. Chem. 2011, 54, 6254. (d) Lu, M.; Merali, S.; Gordon, R.; Jiang, J.; Li, Y.; Mandeli, J.; Duan, X.; Fallon, J.; Holland, J. F. Genes Cancer 2011, 2, 985. For pyrimidines, see: (e) Blades, K.; Demeritt, J.; Fillery, S.; Foote, K. M.; Greenwood, R.; Gregson, C.; Hassall, L. A.; McGuire, T. M.; Pike, K. G.; Williams, E. Tetrahedron Lett. 2014, 55, 3851; and references cited therein. For tryptamines, see: (f) Nirogim, R. V. S.; Reddy, T.; Konda, J.; Khagga, M. Pharma Chem. 2012, 4, 1567. For chalcones, see: (g) Sivakumar, P. M.; Prabhawathi, V.; Neelakandan, R.; Doble, M. Biomater. Sci. 2014, 2, 990.
- (24) CCDC 1502804 (6n), 1502806 (6s), 1502808 (7c), 1502809 (7g) and 1502810 (8a) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge via www.ccdc.cam.ac.uk/getstructures.

- (25) Desulfinative homocoupling of arylsulfinates with Pd²⁺, see:
 (a) Rao, B.; Zhang, W.; Hu, L.; Luo, M. *Green Chem.* 2012, 14, 3436. (b) Miao, T.; Wang, L. *Adv. Synth. Catal.* 2014, 356, 429.
- (26) Metal-catalyzed self-dimerization of β-bromostyrenes, for Ni²⁺, see: (a) Semmelhack, M. F.; Helquist, P.; Jones, L. D.; Keller, L.; Mendelson, L.; Ryono, L. S.; Smith, J. G.; Stauffer, R. D. *J. Am. Chem. Soc.* **1981**, *103*, 6460. (b) Rollin, Y.; Troupel, M.; Tuck, D. G.; Perichon, J. J. Organomet. Chem. **1986**, *303*, 131. For Cr³⁺, see: (c) Eisch, J. J.; Shi, X.; Alila, J. R.; Thiele, S. Chem. Ber. **1997**, *130*, 1175. For Pd²⁺, see: (d) Phil, H. L.; Seomoon, D.; Lee, K. Org. Lett. **2005**, *7*, 343. (e) Firouzabadi, H.; Iranpoor, N.; Kazemi, F. J. Mol. Catal. A: Chem. **2011**, *348*, 94. For Au³⁺, see: (f) Monopoli, A.; Cotugno, P.; Palazzo, G.; Ditaranto, N.; Mariano, B.; Cioffi, N.; Ciminale, F.; Naccia, A. Adv. Synth. Catal. **2012**, *354*, 2777. For Co²⁺, see: (g) Mayer, M.; Czaplik, W. M.; von Wangelin, A. J. Synlett **2009**, 2919.
- (27) (a) Jordan, V. C. *Nat. Rev. Drug Discov.* 2003, *2*, 205. (b) Knox, A. J. S.; Meegan, M. J.; Lloyd, D. G. *Curr. Top. Med. Chem.* 2006, *6*, 217. (c) Perez-Gracia, J. L.; Carrasco, E. M. *Gynecol. Oncol.* 2002, *84*, 201. (d) Jordan, V. C. *J. Med. Chem.* 2003, *46*, 883. (e) Jordan, V. C. *J. Med. Chem.* 2003, *46*, 883. (e) Jordan, V. C. *J. Med. Chem.* 2003, *46*, 1081.
- (28) (a) Potter, G. A.; McCague, R. J. Org. Chem. 1990, 55, 6184.
 (b) Brown, S. D.; Armstrong, R. W. J. Org. Chem. 1997, 62, 7076.
 (c) Yus, M.; Ramon, D. J.; Gomez, I. Tetrahedron 2003, 59, 3219.
 (d) Zhou, C.; Larock, R. C. J. Org. Chem. 2005, 70, 3765.
 (e) McKinley, N. F.; O'Shea, D. F. J. Org. Chem. 2006, 71, 9552.