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ABSTRACT: This article describes a detailed investigation of
ligand effects on Ph−CF3 coupling from phosphinoferrocene-
ligated PdII(Ph)(CF3) complexes. This study reveals that
increasing the size of the phosphine substituents results in an
enhanced rate of Ph−CF3 coupling, with (DtBPF)Pd(Ph)-
(CF3) (DtBPF = 1,1′-bis(di-tert-butylphosphino)ferrocene)
being the most reactive complex. The mechanism of Ph−CF3
bond formation from both (DtBPF)Pd(Ph)(CF3) and
(DiPrPF)Pd(Ph)(CF3) (DiPrPF = 1,1′-bis(diisopropylphosphino)ferrocene) was interrogated experimentally and computa-
tionally. These studies implicate a pathway involving concerted Ph−CF3 bond-forming reductive elimination from the four-
coordinate PdII centers. An alternative pathway involving α-fluoride elimination and subsequent PhF2C−F coupling from
PdII(CF2Ph)(F) intermediates was also evaluated but was ruled out based on DFT as well as the independent synthesis and
reactivity studies of (DiPrPF)Pd(CF2Ph)(F).

■ INTRODUCTION

Over the past 20 years, transition-metal-catalyzed cross-
coupling reactions between aryl halides and trifluoromethyl
nucleophiles have received widespread attention.1 Whereas a
variety of copper-catalyzed methods have been developed,2

analogous Pd-catalyzed transformations remain much more
limited.1,3,4 The quest for palladium catalysts for arene
trifluoromethylation has focused on the identification of
ligands that promote the challenging aryl−trifluoromethyl
bond-forming step of the catalytic cycle. To date, only five
ligands, Xantphos (A),5 dfmpe (B),6 RuPhos,7 BrettPhos
(C),3a and tri-tert-butylphosphine (PtBu3, D),8 have been
identified that promote high-yielding aryl−CF3 coupling from
palladium(II) centers (Figure 1).
The efficacy of these ligands has been rationalized based on

a combination of steric effects, electronic effects, and ligand
denticity. For instance, the bidentate Xantphos ligand has an
unusually wide bite angle (102.07°), which was proposed to be

an enabling feature for its unique reactivity.5,9 In contrast,
bidentate dfmpe has a much smaller bite angle (84.12°);
however, its trifluoromethyl substituents are believed to
promote Ph−CF3 coupling by withdrawing electron density
from the PdII center as well as by participating in unfavorable
electrostatic interactions with the σ-phenyl and CF3 ligands.

6,10

BrettPhos is a hemilabile bidentate ligand that coordinates to
PdII via a strong Pd−P and a weak Pd−O interaction. The
hemilabile nature of the Pd−O interaction provides facile
access to a reactive three-coordinate PdII center.11−13 Finally,
the large size of PtBu3 enforces a three-coordinate geometry at
PdII, which is believed to lower the barrier for Ph−CF3
coupling.8,11−13

The structural diversity of ligands A−D has precluded
meaningful comparisons of the relative impact of steric effects,
electronic effects, and ligand denticity/bite angle on aryl−CF3
coupling between these systems. Even within a given ligand
class, there are only two computational studies that have
systemically explored the role of ligand properties on the
barrier for aryl−CF3 bond formation. In one example,
Schoenebeck probed reductive elimination from LPdII(Ph)-
(CF3), where L = bidentate Xantphos and DPPE (1,2-
bis(diphenylphosphino)ethane) derivatives. Her work con-
cluded that the relative barriers for Ph−CF3 coupling were
primarily governed by changes in steric repulsions at the
ground state relative to the transition state.14 In a related
theoretical study of Ph−CF3 coupling from (Xantphos)-
PdII(Ph)(CF3), Bakhmutov, Grushin, and Macgregor con-

Received: November 10, 2018Figure 1. Ligands that promote Ph−CF3 coupling at PdII centers.
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cluded that the presence of sterically large cis ligands was
important for facilitating reductive elimination in this system.15

Inspired by these computational studies, we sought to
experimentally interrogate steric effects on Ph−CF3 coupling
using the highly modular and readily available phosphinoferro-
cene class of ligands. Phosphinoferrocene-ligated PdII com-
plexes are well-known to participate in numerous challenging
reductive elimination reactions, including the formation of
aryl−NR2

16 and aryl−OR17 bonds. We report herein that
phosphinoferrocene-ligated PdII(Ph)(CF3) complexes partic-
ipate in Ph−CF3 coupling reactions, and that the rates of these
reactions vary dramatically as a function of the ligand structure.
The mechanism of these transformations and origin of these
ligand effects are studied in detail using a combination of
experiment and DFT calculations. Ultimately, this work offers
insights that can aid the design of new ligands for Pd-catalyzed
aryl−trifluoromethyl cross-coupling reactions.

■ RESULTS AND DISCUSSION
Synthesis of Phosphinoferrocene-Ligated PdII(Ph)-

(CF3) Complexes. The phosphinoferrocene complexes 1−3
were prepared by the reaction of the appropriate phosphine
ligand with (TMEDA)Pd(Ph)(CF3) (TMEDA = N,N,N′,N′-
tetramethylethylenediamine).18 As shown in eq 1, the

phosphines 1,1′-bis(diethylphosphino)ferrocene (DEtPF),
1,1′-bis(diphenylphosphino)ferrocene (DPPF), and 1,1′-bis-
(diisopropylphosphino)ferrocene (DiPrPF) displace TMEDA
quantitatively upon heating at 80 °C to afford 1−3 in isolated
yields ranging from 45 to 67%.
In contrast, the 1,1′-bis(di-tert-butylphosphino)ferrocene

DtBPF complex 4 could not be isolated under these conditions.
Instead, the major product detected by 19F NMR spectroscopy
from the reaction between (TMEDA)Pd(Ph)(CF3) and
DtBPF was PhCF3. This result suggests that initial ligand
exchange to generate 4 is followed by rapid Ph−CF3 coupling
at the temperature required for TMEDA ligand substitution
(80 °C). To facilitate ligand exchange at lower temperature, we
next examined a PdII precursor bearing labile monodentate 3-
fluoropyridine ligands.6 The reaction of DtBPF with (3-
fluoropyridine)2Pd(Ph)(CF3) at room temperature initially
afforded an equi l ibr ium mixture of 4 and (3-
fluoropyridine)2Pd(Ph)(CF3). However, removal of the free
3-fluoropyridine under vacuum drove this equilibrium to afford
analytically pure 4 in 90% isolated yield (eq 2).

The X-ray crystal structures of complexes 1−4 are shown in
Figure 2, and selected bond distances and angles are presented
in Table 1. In all cases, the Pd−P1 bond distance is 0.0126−
0.0855 Å longer than the Pd−P2 bond distance, consistent
with the larger trans influence of the σ-phenyl relative to the
CF3 ligand.19 The C1−Pd−C2 bond angle becomes more

acute with increasing size of the substituents at phosphorus,
ranging from 84.83° in 1 to 79.36° in 4. Complexes 1−3 are all
square planar, with angles between the P1−Pd−P2 and C1−
Pd−C2 planes between 0.67 and 2.09°. In contrast, the DtBPF
ligand imparts a significant distortion to the square plane in 4,
with an angle of 27.46° between the P1−Pd−P2 and C1−Pd−
C2 planes.20 Additionally, the P−Pd bond distances in 4 are
approximately 0.1−0.2 Å longer than those in 1−3. At 2.478
and 2.564 Å, respectively, these represent the longest P−Pd
bonds reported for a mononuclear bidentate phosphine-ligated
PdII species.21 Furthermore, the C1−Pd−C2 bond angle
(79.36°) is the most acute C−Pd−C bond angle reported for a
PdII species containing two independent carbon ligands.21

Finally, the bite angle of DtBPF (103.15°) is among the widest
for PdII complexes bound to two independent carbon
ligands.21 Overall, these features suggest a relatively destabi-
lized ground-state structure for 4.
Complexes 1−4 were also characterized by 1H, 31P, and 19F

NMR spectroscopy in C6D6 or CD2Cl2. At room temperature,
the 31P NMR spectra of 1−3 show a doublet of quartets and a
quartet of doublets (Figure 3a). The observed signals implicate
the presence of two inequivalent phosphine ligands that are
coupled to one another as well as to the CF3 ligand. The

19F
NMR spectra of 1−3 show a doublet of doublets for the CF3
ligand, consistent with coupling to the two inequivalent
phosphine ligands (Figure 3b). These solution spectroscopic
data are consistent with the solid-state structures of 1−3.

Figure 2. ORTEP diagrams for PdII complexes 1−4. Hydrogen atoms
have been omitted for clarity, and ellipsoids are shown at 50%
probability.

Table 1. Selected Bond Distances (Å) and Selected Bond
Angles (deg) for 1−4

complex Pd−P1 Pd−P2 P1−Pd−P2 C1−Pd−C2

1 2.3732(8) 2.3309(8) 101.03(3) 84.83(13)
2 2.3670(5) 2.3370(5) 97.23(2) 83.40(8)
3 2.3959(6) 2.3833(6) 100.00(2) 80.90(10)
4 2.5639(7) 2.4784(8) 103.15(3) 79.36(12)
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In contrast, complex 4 is fluxional at room temperature on
the NMR time scale.22 At 25 °C, the 31P NMR spectrum of 4
shows two broad resonances (Figure 3c), whereas the 19F
NMR spectrum shows an apparent triplet (Figure 3d). When
the solution was cooled to −50 °C, the 31P NMR spectrum
sharpens significantly (although the expected doublet of
quartets and quartet of doublets do not completely resolve),
and the 19F NMR spectrum shows the expected doublet of
doublets. These data suggest that exchange between the two
phosphines in 4 is fast on the NMR time scale at room
temperature. A proposed mechanism for this exchange involves
initial dissociation of one phosphine to afford intermediate 4T

(i, Scheme 1), isomerization through a Y-complex (4Y) to
afford 4T′, and recoordination of the free phosphine (iv,
Scheme 1).23

Reductive Elimination from 1 to 4. Complexes 1−4 all
participate in Ph−CF3 coupling upon heating to 130 °C in p-

xylene. Notably, 1 equiv of the phosphinoferrocene ligand was
added to each reaction to trap the Pd0 product and limit side

Figure 3. (a) 31P NMR spectrum for complex 3 at room temperature. (b) 19F NMR spectrum for complex 3 at room temperature. (c) Variable
temperature (VT) 31P NMR spectrum of 4. (d) VT 19F NMR spectrum of 4.

Scheme 1. Proposed Mechanism for Phosphine Exchange at
4
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reactions.24 As shown in Figure 4, increasing the size of the
phosphine substituent from ethyl (DEtPF) to phenyl (DPPF)

to isopropyl (DiPrPF) to tert-butyl (DtBPF) results in a
significant increase in the reaction rate. The least reactive
DEtPF complex 1 afforded <5% of PhCF3 after 50 min at 130
°C. The initial rate of reductive elimination from 2 (3.11 ×
10−7 M/s) was approximately 1.3 times slower than that for 3
(3.98 × 10−7 M/s). Finally, the most reactive DtBPF complex
4 afforded complete conversion (and 75% yield of benzotri-
fluoride) after just 2 min under analogous conditions.
Further investigations were conducted to determine the

optimal temperatures and times for PhCF3 formation from 1−
4. As summarized in Table 2, the DEtPF complex 1 afforded
24% yield of PhCF3 after 7 days at 130 °C. At this time, 57% of
the starting material was consumed, suggesting that competing
decomposition pathways are occurring in this system. In
contrast, DPPF complex 2 yielded 89% of PhCF3 after 36 h at

130 °C, whereas the DiPrPF complex 3 afforded 99% of PhCF3
after 24 h at the same temperature. Finally, 4 produced
benzotrifluoride in 82% yield after heating at 80 °C for 35
min.25−28

Eyring plots were generated by evaluating the initial reaction
rate of PhCF3 formation from 3 and 4 at different
temperatures. As summarized in Table 3, reductive elimination
from complex 3 proceeds with a ΔH⧧ of 29.7 kcal/mol, a ΔS⧧
of −5.8 eu, and a ΔG⧧

298 of 31.4 kcal/mol. The analogous
reaction at 4 proceeds with a ΔH⧧ of 28.0 kcal/mol, a ΔS⧧ of
+9.0 eu, and a ΔG⧧

298 of 25.3 kcal/mol.29 The comparable
ΔH⧧ values and relatively large difference in ΔS⧧ observed
between 3 and 4 suggest that the faster rate of reductive
elimination from 4 is largely entropically controlled.

DFT Study of Ph−CF3 Coupling from Phosphinofer-
rocene-Ligated PdII(Ph)(CF3) Complexes. We next turned
to DFT to investigate the mechanism of Ph−CF3 coupling in
these systems.30−36 The literature suggests three possible
pathways for this reaction.13,15 The first (Scheme 2, pathway a)
involves concerted coupling of the σ-phenyl and σ-CF3 ligands
from the bisphosphine PdII starting material. The second
involves pre-equilibrium dissociation of one arm of the
bidentate phosphine followed by concerted reductive elimi-
nation from the three-coordinate intermediate B (Scheme 2,
pathway b). Finally, the third involves α-fluoride elimination
from three-coordinate intermediate B to form difluorocarbene
complex D, followed by α-phenyl migration to generate
intermediate E (Scheme 2, pathway c). This PdII

(difluorobenzyl)(fluoro) complex could then undergo
PhF2C−F coupling via either a three- or a four-coordinate
pathway.
Our initial DFT studies focused on the DtBPF complex 4,

and we first evaluated pathway a. Importantly, this pathway has
been implicated in the literature for (Xantphos)Pd(Ph)-
(CF3).

15 As shown in red in Figure 5, this mechanism involves
the three-membered transition structure TS-4/A. The
calculated barrier (ΔG⧧

298) is 25.2 kcal/mol, which is in
excellent agreement with that determined experimentally (25.3
kcal/mol, Table 3). The Pd−CF3 bond lengthens significantly
in the transition state (by 0.26 Å) relative to the ground state,
whereas the Pd−Ph bond elongates only slightly (by 0.03 Å).
This is consistent with previous proposals that Pd−CF3 bond
breaking is the major contributor to the overall barrier for Ph−
CF3 coupling at PdII centers.3a

We next examined concerted reductive elimination via a
three-coordinate transition structure involving a monodentate
DtBPF ligand (Scheme 2, pathway b, and Figure 5, blue
pathway). Notably, this pathway has been implicated in the
literature from PdII(Ph)(CF3) complexes bearing the Brett-
Phos ligand.13 DFT predicts that dissociation of one arm of
DtBPF to form B is thermodynamically unfavorable (ΔG =
+6.5 kcal/mol). The barrier for this dissociation is estimated
from potential energy scans as ΔE⧧ ∼10 kcal/mol). This is
consistent with the dynamic behavior of 4 observed by NMR
spectroscopy (Figure 3 and Scheme 1). However, concerted
reductive elimination from B has a barrier significantly higher
than that from the four-coordinate species (ΔΔG⧧ = +5.9
kcal/mol, respectively). As such, the calculations suggest that
this is not a competitive pathway for the formation of PhCF3.
Finally, we explored the pathway involving C−F coupling

from a PdII (difluorobenzyl)(fluoro) intermediate (Scheme 2,
pathway c). Importantly, this pathway has been implicated in
our recent studies of Ph−CF3 coupling from three-coordinate

Figure 4. Time study of PhCF3 formation from 1−4.

Table 2. Reductive Elimination of Benzotrifluoride from 1−
4

complex solvent temp (°C) time yield of PhCF3 (%)

1 p-xylene 130 168 h 24
2 p-xylene 130 36 h 89
3 p-xylene 130 24 h 99
4 C6D6 80 35 min 82
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PdII(Ph)(CF3) complexes of PtBu3
8 and has also been

calculated as a feasible pathway for (Xantphos)Pd(Ph)(CF3).
15

As shown in black in Figure 5, this pathway starts with
dissociation of one arm of DtBPF to form B. α-Fluoride
elimination then occurs to generate the difluorocarbene
intermediate D. Subsequent migratory insertion of the phenyl
group into the PdCF2 bond affords three-coordinate
complex E, which can traverse a very small barrier to give
the four-coordinate analogue 5. Notably, the calculations

indicate that 5 is 16 kcal/mol more stable than 4. Both E and 5
can participate in PhCF2−F bond-forming reductive elimi-
nation, but reaction from the three-coordinate complex has a
higher transition state (ΔΔG⧧ = +2 kcal/mol). Overall, the
highest energy transition structure along this pathway is that
for the initial α-fluoride elimination (+26.4 kcal/mol). This is
1.2 kcal/mol higher than that for concerted Ph−CF3 coupling
from 4, suggesting that this is not the major pathway operating
for complex 4.
We next examined analogous pathways for the DiPrPF

complex 3 (Figure 6). In this system, concerted Ph−CF3
coupling from the four-coordinate complex (pathway a) has a
calculated barrier of 33.6 kcal/mol. This is similar to that
observed experimentally (31.4 kcal/mol, Table 3). The
dissociation of one arm of the DiPrPF ligand to form a
three-coordinate intermediate involves a large energetic
penalty, as Bi is 21.4 kcal/mol uphill from the starting material
3. Furthermore, concerted Ph−CF3 coupling from Bi (pathway
b) does not appear to be feasible in this system. Instead, all
attempts to locate a transition structure for this reaction
resulted in recoordination of the pendant phosphine arm.
Finally, the transition state for α-fluoride elimination from Bi

(the first step of pathway c) is at 36.1 kcal/mol. This is 2.5
kcal/mol higher than that for concerted reductive elimination
from 3, suggesting that pathway c is unlikely to be a major
contributor to the reactivity of the DiPrPF complex. Addition-
ally, this step leads to a very stable four-coordinate (DiPrPF)-
Pd(CF2Ph)(F) complex 6. This complex appears to be a

Table 3. Activation Parameters for Ph−CF3 Coupling from Complexes 3 and 4

experimental DFT

complex ΔG⧧
298 (kcal/mol) ΔH⧧ (kcal/mol) ΔS⧧ (eu) ΔG⧧

298 (kcal/mol) ΔH⧧ (kcal/mol)

3 31.4 ± 0.6 29.7 ± 0.6 −5.8 ± 0.2 33.6 33.8
4 25.3 ± 0.2 28.0 ± 0.1 +9.0 ± 0.1 25.2 26.3

Scheme 2. Pathways for Formation of PhCF3

Figure 5. Energy profile for computed reactivity of (DtBPF)Pd(Ph)(CF3) (4), illustrating pathway a (in red), pathway b (in blue), and pathway c
(in black). A and F are conformers. Energies ΔG(ΔH) in kcal/mol.
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thermodynamic sink in this system, as it is at considerably
lower energy than both the starting material 3 (−24.5 kcal/mol
relative to 3) and the reductive elimination product Fi (−15.9
kcal/mol relative to Fi).
Overall, these calculations implicate concerted reductive

elimination from the four-coordinate starting materials as the
major pathways for PhCF3 formation in these systems.
Additionally, they suggest that PdII(CF2Ph)(F) complexes
should be stable species that can be independently isolated,
characterized, and evaluated.
Synthesis of (DiPrPF)PdII(CF2Ph)(F) (6). A final set of

investigations focused on the synthesis and reactivity studies of
(DiPrPF)Pd(CF2Ph)(F) (6). As discussed above, such PdII

difluorobenzyl fluoride intermediates have been proposed (but
not detected or isolated) in other PhCF3 couplings at PdII

centers.8,15 However, in the current system, our calculations
indicate that the barrier for PhF2C−F coupling from 6 is >50
kcal/mol (Figure 6). Baker has recently shown that the
reaction of CoIII−CF3 complexes with trimethylsilyl trifluor-
omethanesulfonate (TMSOTf) results in the abstraction of a
fluoride to yield trimethylsilyl fluoride (TMSF) and CoIII
CF2

+.37 We hypothesized that the treatment of 3 with
TMSOTf would afford the difluorocarbene complex 7, which
could undergo fast phenyl migration to produce (DiPrPF)Pd-
(CF2Ph)(OTf) (8). The addition of CsF to 8 should then
form product 6. Indeed, as summarized in Scheme 3, this
reaction sequence yielded 6 in 50% isolated yield after
recrystallization. Complex 6 was characterized by X-ray
crystallography (Figure 7) as well as 1H, 19F, and 31P NMR
spectroscopy.
Studying the thermolysis of 6 required a change of solvent,

as this complex is insoluble in p-xylene even at 130 °C.
However, 6 does dissolve in N-methyl-2-pyrrolidone after 5
min of heating at 130 °C. After heating at 130 °C for 2.25 h,
no starting material remained, as determined by 19F NMR
spectroscopic analysis. Additionally, no trace of benzotri-
fluoride was detected, suggesting that 6 decomposes by
unproductive pathways under these conditions (Scheme 4).38

This result is consistent with the DFT calculations showing an

extremely high barrier (54.7 kcal/mol) for PhF2C−F bond-
forming reductive elimination from 6.

■ CONCLUSION
Phosphinoferrocenes (P∼P) have been identified as effective
ligand scaffolds for promoting Ph−CF3 coupling from PdII

centers. Systematic studies revealed that increasing the size of
the phosphine substituents increases the rate of reductive
elimination of PhCF3. The mechanism of the reductive
elimination to form PhCF3 was explored computationally.
The lowest energy pathway appears to involve concerted Ph−
CF3 bond-forming reductive elimination from four-coordinate
(P∼P)Pd(Ph)(CF3) complexes. There is excellent agreement
between experimental and DFT-derived activation parameters
for this pathway. Reductive elimination from a three-
coordinate complex, formed upon dissociation of one arm of
the bidentate ligand, is a higher energy pathway in all cases
examined. Additionally, DFT analysis suggests that pathways
involving α-fluoride elimination are not competitive in these
systems. This prediction was validated through the synthesis of
(DiPrPF)Pd(CF2Ph)(F) and the demonstration that this
complex does not form PhCF3 upon thermolysis at temper-
atures up to 130 °C. Overall, the results of these studies are
consistent with many of the computational findings of
Schoenebeck14 as well as Bakhmutov, Grushin, and Mac-
gregor.15 Specifically, they show experimentally that the use of
sterically large and wide bite angle bidentate phosphine ligands

Figure 6. Energy profile for computed reactivity of (DiPrPF)Pd(Ph)-
(CF3) (3), illustrating pathway a and key steps of pathway c (in
black). Pathway b is not feasible in this system, as efforts to find a TS
for Ph−CF3 coupling from Bi led to recoordination of the phosphine
ligand. Ai and Fi are conformers. Energies ΔG(ΔH) in kcal/mol.

Scheme 3. Independent Synthesis of Complex 6

Figure 7. ORTEP diagram for 6. Hydrogen atoms have been omitted
for clarity, and ellipsoids are shown at 50% probability.

Scheme 4. Thermolysis of Complex 6
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can be highly effective for promoting Ph−CF3 bond-forming
reductive elimination from PdII centers.
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