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Summary of main observation and conclusion  Four ruthenium(II) complexes 1—4 [RN=CH-(2,4-(tBu)2C6H2O)]RuH(PPh3)2(CO) (R = C6H5, 1; R = 4-MeC6H4, 
2; R = 4-ClC6H4, 3; R = 4-BrC6H4, 4) bearing Schiff base ligand were prepared by treating RuHClCO(PPh3)3 with RN=CH-(2,4-(tBu)2C6H2OH (L1—L4) in the 
presence of triethylamine. Their structures were fully characterized by elemental analysis, IR, NMR spectroscopy and X-ray crystallography. These Ru(II) 
complexes exhibit high catalytic performance and good functional-group compatibility in the acceptorless dehydrogenation of secondary alcohols, 
affording the corresponding ketones in 82—94% yields. 

 

Background and Originality Content 
Efficient oxidation of alcohols to aldehydes or ketones is a 

pivotal reaction in organic synthesis.[1-3] The corresponding 
carbonyl compounds are the key and versatile intermediates for 
the synthesis of a wide range of fine and pharmaceutical 
chemicals.[4-5] Classical methods for this transformation use 
stoichiometric oxidants such as hypochlorite,[6] manganese salts,[7] 
and hypervalent iodines,[8] etc., and produce large amounts of 
toxic wastes or undesirable by-products. Catalytic systems for this 
transformation operate with molecular oxygen[9,10] or H2O2[11] as 
environmentally friendly oxidants have also been reported. 
However, additives like TEMPO 
((2,2,6,6-tetramethylpiperidyl-l-oxy) or carboxylic acids are 
required to accelerate the reactions. Besides, ketones and 
aldehydes can also be synthesized via the oxidation of the C−H or 
C−X (Cl, Br) bond of alkyl arenes[12] or the oxidation of alkenes.[13] 
For most of the synthetic approaches described above, oxidizing 
agents or additives are necessary in order to achieve short 
reaction time and a high yield, which cause environmental 
problems. With the increasing focus on environmental problems, 
the quest for oxidant-free, cost-effective and more green 
strategies is pressing and highly desirable. 
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Figure 1 Selected Ru complexes for acceptorless 

dehydrogenation of secondary alcohols. 
Indeed, significant efforts have been made to develop new 

catalytic protocols in an environmentally friendly manner. In the 
past decade, acceptorless alcohol dehydrogenation (AAD) 
reactions have gained major interest and have emerged as an 
important transformation in synthesising carbonyl compounds 
without using any oxidants.[14] The advantage of the ADD 
reactions is that H2 gas is the only by-product, which can be a 
clean source of energy.[15] Many catalytic systems for such 
transformation have been reported based on the complexes of 
noble metals such as Ir,[16] Ru,[17] and Os[18] or nonprecious metals 
such as Fe[19] and Co.[20] Among the employed transition metal 
complexes, ruthenium complexes have been intensively studied 
due to their excellent catalytic performance. In 2011, Beller et al. 
reported the tridentate PNP Ru complexes generated in suit for 
the dehydrogenation of isopropyl alcohol, giving acetone with 
high turnover frequency (Figure 1).[21] Subsequently, Milstein’s 
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group successfully developed a Ru-NNP pincer complex for the 
dehydrogenation of secondary alcohols under base-free 
condition.[14c] In the same year, Szymcazk and co-workers reported 
that an NNN-Ru(II) hydride complex is efficient for oxidation of 
secondary alcohols in the presence of primary alcohols with good 
chemoselectivity.[22] In 2017, Song et al. described the use of 
N-heterocyclic carbene (NHC) supported Ru complex for the 
dehydrogenation of secondary alcohols to give ketones in good 
yield at high temperature (140 oC).[23] Moreover, Sun and Solan 
explored the catalytic activity of tridentate PNN-Ru catalyst in 
such reactions to afford the corresponding aromatic and 
cycloalkyl-containing ketones in refluxing p-xylene.[24] Although 
these examples for the acceptorless dehydrogenation of 
secondary alcohols have been proved to be highly useful, most of 
the reported ruthenium catalysts were focused on using pincer 
ligands, especially phosphine ligands that are difficult to prepare 
(through multi-steps) and inconvenient to handle (air and 
moisture-sensitive). The development of easily-accessed ligands 
and their stable metal complexes for such transformation under 
mild condition is still highly desirable. Recently, our group 
successfully developed a series of pyridyl-alcohol-based Ru 
complexes that displayed high efficiency for dehydrogenative 
oxidation of alcohols, producing ketones in excellent yield.[25] 

Schiff base compounds are very useful because of their 
widespread applications in fluorescence properties,[26] catalytic 
processes[27] and biological activities.[28] Recently, metal 
complexes of tetradentate and tridentate Schiff bases were 
screened for their catalytic activity in the oxidation of alcohols 
with oxygen or other oxidants.[29] However, the complexes 
containing Schiff base ligands for ADD are rarely reported. In this 
paper we describe the syntheses of a series of readily available 
ruthenium hydride complexes stabilized by N,O-bidentate Schiff 
base ligands and their catalytic behaviour toward the acceptorless 
dehydrogenation of secondary alcohols under mild condition. 

Results and Discussion 
Synthesis and characterization of Schiff base ruthenium 
complexes 

The bidentate Schiff base ligands RN=CH-(2,4-(tBu)2C6H2OH (R 
= C6H5, L1; R = 4-MeC6H4, L2; R = 4-ClC6H4, L3; R = 4-BrC6H4, L4) 
were synthesized by the condensation reactions of 
3,5-di-tert-butyl-2-hydroxybenzaldehyde with the corresponding 
primary amines in ethanol. Reactions of RuHClCO(PPh3)3 with the 
Schiff bases in refluxing THF in the presence of triethylamine, 
afforded the ruthenium(II) complexes 1—4 in isolated yields of 42 
to 57% (Scheme 1). In these reactions, one PPh3 and the Cl in the 
starting ruthenium compound were replaced by one molecule of 
the bidentate Schiff base ligand. It was found the complexes are 
stable against air and moisture during work-up by column 
chromatography using undried commercial solvents as eluent. 
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Scheme 1  Synthesis of ruthenium complexes 1—4.  

Complexes 1—4 were fully characterized by routine analyses 
and single-crystal X-ray diffraction as well. The NMR analyses of 
the complexes are in agreement with their structure. In the 1H 
NMR spectra of 1—4, the OH protons in their free ligand around 
8.63 ppm disappeared, suggesting the formation of Ru—O bonds 
in the finally Ru complexes. The triplet at −10.41 (for 1), −10.39 
(for 2), and −10.48 ppm (for 3 and 4) belong to the Ru–H bonds. 
The 31P{1H} NMR spectra of all the complexes show a singlet at 
~41.0 ppm for the two PPh3. The IR spectra of 1—4 display one 
absorption peak at 1914, 1916, 1919 and 1911 cm−1, respectively, 
revealing the presence of one terminal CO, which are comparable 
to those of the similar ruthenium carbonyl complexes reported in 
the literature.[30] The stretching vibration peaks for Ru—H were 
found from 2004 to 2053 cm−1. 

The molecular structures of 1—4 were further confirmed by 
X-ray crystallography, as shown in Figures 2—5 with selected bond 
lengths and angles. The crystallographic data of the four Ru 
complexes are in Supporting Information (Table S1). In each 
complex, the Ru ion is coordinated in an octahedral geometry 
environment surrounded by the bidentate Schiff base ligand, two 
PPh3, one hydride and one CO. The distance of Ru—H bond in 
complex 1 (1.55(3) Å) is shorter than that in complex 2 (1.578(19) 
Å) and longer than those in complexes 3 and 4 (1.463(14) Å and 
1.509(19) Å, respectively), which is close to the values in the 
literature.[31,5a] The N—Ru—H angles of the four Ru complexes 
are in the range of 159.5(17) ~ 174.6(12)°, indicating the hydride 
is positioned trans to the imine nitrogen atom. The P–Ru–P axis is 
approximately linear, as seen in the angles from 166.33(5) to 
168.62(4)° in 1—4. The Ru—O and Ru—N bond lengths in 1—4 
are in the average of 2.131(4) and 2.186(4) Å, respectively, which 
are comparable with those observed in their bis-chelate Ru(II) 
analogues reported previously.[32] 
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Figure 2  Molecular structure of complex 1 with ellipsoids at 30% 
probability level. Hydrogen atoms were omitted for clarity. Selected bond 
lengths (Å) and angles (°): Ru(1)–O(1) 2.140(3), Ru(1)–N(1) 2.192(3), 
Ru(1)–P(1) 2.3684(12), Ru(1)–P(2) 2.3842(12), Ru(1)–H(0) 1.55(3); O(1)–
Ru(1)–N(1) 84.81(12), O(1)–Ru(1)–P(1) 89.14(8), O(1)–Ru(1)–P(2) 85.54(8), 
P(1)–Ru(1)–P(2) 168.62(4). 

 
Figure 3  Molecular structure of complex 2 with ellipsoids at 30% 
probability level. Hydrogen atoms and disordered part were omitted for 
clarity. Selected bond lengths (Å) and angles (°): Ru(1)–O(1) 2.145(3), 
Ru(1)–N(1) 2.183(4), Ru(1)–P(1) 2.3893(13), Ru(1)–P(2) 2.3636(13), Ru(1)–
H(0) 1.578(19); O(1)–Ru(1)–N(1) 84.66(14), O(1)–Ru(1)–P(1) 84.80(10), 
O(1)–Ru(1)–P(2) 88.85(10), P(1)–Ru(1)–P(2) 167.39(5). 

 
Figure 4  Molecular structure of complex 3 with ellipsoids at 30% 
probability level. Hydrogen atoms and disordered part were omitted for 
clarity. Selected bond lengths (Å) and angles (°): Ru(1)–O(1) 2.158(3), 
Ru(1)–N(1) 2.180(3), Ru(1)–P(1)  2.3617(11), Ru(1)–P(2) 2.3858(11), 
Ru(1)–H(0) 1.463(14); O(1)–Ru(1)–N(1) 84.33(12), O(1)–Ru(1)–P(1) 
88.67(8), O(1)–Ru(1)–P(2) 84.78(8), P(1)–Ru(1)–P(2) 166.36(5). 

 

Figure 5  Molecular structure of complex 4 with ellipsoids at 30% 
probability level. Hydrogen atoms and disordered part were omitted for 
clarity. Selected bond lengths (Å) and angles (°): Ru(1)–O(1) 2.142(3), 
Ru(1)–N(1) 2.182(3), Ru(1)–P(1) 2.3593(9), Ru(1)–P(2) 2.3833(10), Ru(1)–
H(0) 1.509(19); O(1)–Ru(1)–N(1) 84.66(10), O(1)–Ru(1)–P(1) 88.97(11) 
88.73(7), O(1)–Ru(1)–P(2) 84.64(8), P(1)–Ru(1)–P(2) 166.06(4). 

Catalytic dehydrogenation of alcohols 
We firstly examined the dehydrogenation reaction using 

1-phenylethanol (1.0 mmol) as substrate and complex 1 (1.0 mol%) 
as catalyst in toluene to screen the best base. Employment of 
inorganic base such as KOH or K2CO3 etc. gave the desired product 
acetophenone in low yield (21~48%, Table S2, entries 1–4). When 
organic base (e.g. DBU, DABCO or t-BuOK) was used, the yield 
increased remarkably (Table S2, entry 5-7) and t-BuOK was found 
to be much more active than the other bases to give 
acetophenone in 84% yield. The performance of inorganic bases 
showed less efficient probably because of the poor solubility of 
them than those of organic bases in toluene. Screening of solvent 
variety indicated that toluene is the best. The yields were much 
lower in the other solvents such as THF, CH2Cl2, acetone or 
1,4-dioxane, even at higher refluxing temperature in xylene (Table 
S2, entries 8−13). 

Secondly, the effects of catalyst loading and other parameters 
of reaction condition were examined. As seen in Table 1, if the 
catalyst loading increased from 1.0 mol% to 2.0 mol %, the yield 
of acetophenone was gradually improved from 84% to 91% (Table 
1, entries 1−3). However, further increasing the catalyst loading to 
3.0 mol% did not improve the yield (90%). Increasing the amounts 
of t-BuOK from 0.5 mmol to 2.0 mmol reduced the yield to 54% 
(entries 5−6 vs. 3). Different reaction temperatures were also 
tested. The reaction at a lower temperature (80 °C) afforded a 
much lower yield of 54% (entry 7). Shortening the reaction time 
by 2 hours (from 12 to 10 h) led to the yield decrease from 91% to 
79% (entry 8 vs entry 3) and prolonging the reaction time to 24 
did not improve the yield significantly (entry 9). The control 
experiments showed that only a small amount of acetophenone 
was obtained when the reaction was carried out in the absence of 
either a base or the Ru catalyst, suggesting both the two 
components play crucial role in the reaction (entries 10−11). Then, 
the catalytic activities of complexes 2−4 were investigated under 
the optimal conditions (entries 12−14). The yields indicated that 
the complexes 3 and 4 bearing electron-withdrawing substituents 
on the phenyl ring of the Schiff base ligand are a little more active 
than complex 2 bearing electron-rich substituent and 1 without 
any substituent. Finally, a poor yield was found when 
RuHCl(CO)(PPh3)3 was employed as the catalyst (entry 15). 

Table 1  Optimization of reaction conditionsa 

toluene, temperature

OH O

+    H2

Catalyst 1-4 
, t-BuOK

 

Entry Catalyst (mol%) Base/mmol Temp./°C Time/h Yieldb/% 

1 1(1.0) 0.5 110 12 84 
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2 1(1.5) 0.5 110 12 87 

3 1(2.0) 0.5 110 12 91 

4 1(3.0) 0.5 110 12 90 

5 1(2.0) 1.0 110 12 79 

6 1(2.0) 2.0 110 12 54 

7 1(2.0) 0.5 80 12 51 

8 1(2.0) 0.5 110 10 79 

9 1(2.0) 0.5 110 24 94 

10 — 0.5 110 12 13 

11 1(2.0) — 110 12 25 

12 2(2.0) 0.5 110 12 88 

13 3(2.0) 0.5 110 12 94 

14 4(2.0) 0.5 110 12 92 

15 RuHCl(CO)(PPh3)3(2.0) 0.5 110 12 42 
a Reaction conditions: 1-phenylethanol (1.0 mmol), toluene (4.0 mL) under 
N2. b Determined by GC analysis. 

Under the optimized conditions of Entry 13 in Table 1, we 
lastly examined the substrate generality of secondary alcohols for 
this catalytic system and the data are presented in Table 2. As 
shown, a variety of substituted 1-phenylethanols bearing 
electron-rich and electron-poor groups on the phenyl ring 
including 1-(naphthalen-2-yl)ethan-1-ol can be converted to the 
corresponding ketones in 88−94% yields (Table 2, entries 1−10). 
Notably, the potential steric hindrance by o-substituted group on 
1-phenylethanol did not hamper the reaction. Reactions of 
diphenylmethanols were also proved to be amenable to afford 
the desired products in ~90% yields (entries 11−12). Likewise, 
benzoin was oxidized to give benzil in excellent yield (entry 13). 
The dehydrogenation reactions of benzocycloalkanols (1-tetralol 
and 1-indanol) were slightly low yielding under the typical 
condition. 1-Tetralone and 1-indanone were obtained in 85% and 
82% yields respectively (entries 14−15). It is worth noting that 
aliphatic alcohols were also dehydrogenated very well by this 
catalytic system, generating the aliphatic ketones compounds 
in >80% yields (entries 16−18). Unsurprisingly, they reacted 
slower than the 1-phenylethanols and the reaction duration was 
prolonged by 12 more hours. 

Table 2  Scope of secondary alcohols catalyzed by complex 3a 

toluene, 110 oC, 12 hR1 R2

OH
+    H2

Catalyst 3
 
, t-BuOK

R1 R2

O

 

Entry Substrate Product Time/h Yieldb/% 

1 

OH

 

O

 
12 89(84) 

2 

OH

MeO  

O

MeO  
12 88(83) 

3 

OH

Cl  

O

Cl  
12 92(89) 

4 

OH
Cl

 

O
Cl

 
12 93(90) 

5 

OHCl

 

OCl

 
12 90 (86) 

6 

OH

Br  

O

Br  
12 94(92) 

7 

OH
Br

 

O
Br

 
12 93(90) 

8 

OH

O2N  

O

O2N  
12 91(84) 

9 

OH

F3C  

O

F3C  
12 88(85) 

10 

OH

 

O

 
12 91(86) 

11 

OH

 

O

 
12 90(86) 

12 

OH

 

O

 

12 90(85) 

13 
OH

O  

O

O  
12 94(90) 

14 

OH

 

O

 
12 85(80) 

15 
OH

 

O

 
12 82(77) 

16 

OH

 

O

 
24 87 

17 
OH

 

O

 
24 85 

18 OH  O  24 82 

a Reaction conditions: substrate (1.0 mmol), catalyst 3 (2.0 mol%), t-BuOK 
(0.5 mmol), toluene (4.0 mL) under N2. b Determined by GC analysis. 
Isolated yields in the parentheses. 
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Scheme 2 Proposed catalytic cycle for the dehydrogenation of 
secondary alcohols. 
 

Generally, the Ru-H core is regarded as the catalytically active 
species in transfer hydrogenation and dehydrogenation pathways. 
[22,35,36] Based on our experimental results and the literature 
reports,[24,37,38] a plausible mechanism was proposed in Scheme 2. 
First, the Ru complex A reacts with potassium alkoxide (from the 
alcohol and base) to give the RuII-alkoxide intermediate B and KH. 
Then B undergoes β-H elimination to afford the ketone product 
and regenerate A. Meanwhile, the KH formed in the first step 
reacts with the alcohol to release H2 gas and produce potassium 
alkoxide to complete the catalytic cycle. 

Conclusions 
In summary, four ruthenium(II) complexes 1−4 bearing Schiff 

base ligand have been successfully synthesized and well 
characterized. All the complexes exhibit high catalytic activities 
for the acceptorless dehydrogenation of secondary alcohols to 
ketones. These catalysts are easy to synthesize from commercially 
available materials and are stable to air and moisture. Such a 
catalytic system operates under mild conditions and displays a 
broad functional group tolerance. It provides an alternative 
enviromentlly friendly approach to synthesize ketones. 

Experimental 
General considerations 

All manipulations of potential air and moisture sensitive 
materials were performed under a dry argon atmosphere using 
standard Schlenk techniques. Solvents were distilled from 
appropriate drying agents under N2 before use. 
3,5-di-tert-butyl-2-hydroxybenzaldehyde, aniline, p-toluidine, 
4-chloroaniline, and 4-bromoaniline and other reagents were 
purchased from Boka Chemical Co. and used without further 
purification unless indicated. The Schiff base ligands were 
synthesized using literature method.[33] RuHCl(CO)(PPh3)3 was 
prepared according to the literature procedure.[34] 1H and 31P{1H} 
NMR spectra were recorded on a Zhongke-Niujin Quantum-I 400 
spectrometer. Elemental analysis data were obtained on a Vario 
EL III element analyzer. IR spectra were recorded as KBr disks on a 

Thermo Fisher iS 50 spectrometer. X-ray diffraction studies were 
carried out on a Bruker SMART 1000 CCD diffractometer with 
graphite-monochromated Mo-K radiation (λ = 0.71073 Å). 
Solution, refinement and geometrical calculations for all crystal 
structures were performed using SHELXTL. 

Synthesis of complex 1 
To a 50 mL of round-bottom flask was placed 

[RuHCl(CO)(PPh3)3] (0.81 g, 0.85 mmol) and 15 mL of anhydrous 
THF. The mixture was stirred at room temperature for half an hour. 
A solution of L1 (0.26 g, 0.85 mmol) and triethylamine (1.05 g, 
10.4 mmol) in 5 mL of anhydrous THF was then added and the 
resulting mixture was refluxed with stirring for 18 h. After being 
cooled to room temperature, the reaction was concentrated and 
the residue was purified by neutral Al2O3 chromatography to 
afford complex 1 as an orange solid (0.46 g, 57% yield). Single 
crystals suitable for X-ray crystallographic determination were 
grown from CH2Cl2/n-hexane solution at ambient temperature. 
Anal. Calc. for C58H57NO2P2Ru: C, 72.33; H, 5.97; N, 1.45. Found 
(%): C, 72.45; H, 5.82; N, 1.31. 1H NMR (400 MHz, CDCl3) δ: 7.48–
7.44 (m, 13H, HC=N, Ar–H), 7.38 (s, 1H, Ar–H), 7.26–7.22 (m, 6H, 
Ar–H), 7.14 (t, 12H, J = 7.6 Hz, Ar–H), 7.02 (d, 2H, J = 7.6 Hz, Ar–H), 
6.94 (s, 1H, Ar–H), 6.27 (d, 2H, J = 8.0 Hz, Ar–H), 6.23 (s, 1H, Ar–H), 
1.18 (s, 9H, tBu–H), 0.75 (s, 9H, tBu–H), –10.41 (t, 1H, J = 19.7 Hz, 
Ru–H). 13C NMR (100 MHz, CDCl3) δ: 205.6 (CO), 166.5 (HC=N), 
165.4, 158.0, 134.5, 134.3, 132.7, 132.2, 132.1, 129.7, 129.2, 
128.8, 128.6, 128.5, 128.2, 127.7, 127.5, 124.6, 123.5, 121.0, 34.8 
(CMe3), 33.50 (CMe3), 31.4 (CMe3), 29.5 (CMe3).31P{1H} NMR (162 
MHz, CDCl3) δ: 40.9 (s, PPh3). IR (KBr, cm-1): 1914 (vs) (νC≡O), 2006 
(s) (νRu–H). 

Synthesis of complex 2 
Using the same procedure as described for 1, with L2 in place 

of L1, complex 2 was obtained as an orange solid (0.38 g, 46% 
yield). Anal. Calc. for C59H59NO2P2Ru: C, 72.52; H, 6.09; N, 1.43. 
Found (%): C, 72.64; H, 5.92; N, 1.55. 1H NMR (400 MHz, CDCl3) δ: 
7.48–7.44 (m, 12H, HC=N, Ar–H), 7.34 (d, 3H, J = 10.4 Hz, Ar–H), 
7.24–7.21 (m, 6H, Ar–H), 7.13 (t, 13H, J = 7.6 Hz, Ar–H), 6.92 (s, 1H, 
Ar–H), 6.83 (d, 2H, J = 8.0 Hz, Ar–H), 2.30 (s, 3H, CH3), 1.17 (s, 9H, 
tBu–H), 0.75 (s, 9H, tBu–H), –10.39 (t, 1H, J = 19.6 Hz, Ru–H). 13C 
NMR (100 MHz, CDCl3) δ: 205.7 (CO), 166.3 (HC=N), 165.2, 155.9, 
141.6, 134.6, 134.4, 134.2, 132.6, 129.6, 129.2, 128.7, 127.7, 
127.6, 123.3, 121.0, 34.9 (CMe3), 33.50 (CMe3), 31.5 (CMe3), 29.6 
(CMe3), 20.8 (ArMe). 31P{1H} NMR (162 MHz, CDCl3) δ: 40.9 (s, 
PPh3). IR (KBr, cm-1): 1916 (vs) (νC≡O), 2041 (s) (νRu–H). 

Synthesis of complex 3 
Using the same procedure as described for 1, with L3 in place 

of L1, complex 3 was obtained as an orange solid (0.36 g, 42% 
yield). Anal. Calc. for C58H56ClNO2P2Ru: C, 69.83; H, 5.66; N, 1.40. 
Found (%): C, 69.68; H, 5.78; N, 1.25. 1H NMR (400 MHz, CDCl3) δ: 
7.47–7.44 (m, 11H, HC=N, Ar–H), 7.25 (t, 7H, J = 6.8 Hz, Ar–H), 
7.18–7.13 (m, 13H, Ar–H), 6.95 (d, 3H, J = 8.4 Hz, Ar–H), 6.25 (s, 
1H, Ar–H), 6.13 (d, 2H, J = 8.4 Hz, Ar–H), 1.18 (s, 9H, tBu–H), 0.73 
(s, 9H, tBu–H), –10.48 (t, 1H, J = 19.2 Hz, Ru–H). 13C NMR (100 
MHz, CDCl3) δ: 205.5 (CO), 166.5 (HC=N), 165.8, 156.5, 141.9, 
134.5, 134.4, 133.0, 130.0. 129.5, 129.4, 129.3, 129.1, 128.0, 
127.8 127.6, 124.7, 121.8, 34.8 (CMe3), 33.50 (CMe3), 31.4 (CMe3), 
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29.4 (CMe3). 31P{1H} NMR (162 MHz, CDCl3) δ: 41.0 (s, PPh3). IR 
(KBr, cm-1): 1916 (vs) (νC≡O), 2053 (s) (νRu–H). 

Synthesis of complex 4 
Using the same procedure as described for 1, with L4 in place 

of L1, complex 4 was obtained as an orange solid (0.39 g, 45% 
yield). Anal. Calc. for C58H56BrNO2P2Ru: C, 66.85; H, 5.42; N, 1.34. 
Found (%): C, 66.69; H, 5.56; N, 1.51. 1H NMR (400 MHz, CDCl3) δ: 
7.47–7.43 (m, 12H, HC=N, Ar–H), 7.33 (s, 1H, Ar–H), 7.28–7.23 (m, 
7H, Ar–H), 7.18–7.09 (m, 12H, Ar–H), 7.10 (d, 2H, J = 8.4 Hz, Ar–H), 
6.94 (s, 1H, Ar–H), 6.07 (d, 2H, J = 8.4 Hz, Ar–H), 1.18 (s, 9H, tBu–
H), 0.72 (s, 9H, tBu–H), –10.48 (t, 1H, J = 16.8 Hz, Ru–H). 13C NMR 
(100 MHz, CDCl3) δ: 204.4 (CO), 166.3 (HC=N), 165.8, 156.8, 141.9, 
134.9, 134.5, 134.4, 134.2, 133.0, 129.3, 127.8, 127.6, 125.1, 
120.8, 117.8, 34.8 (CMe3), 33.50 (CMe3), 31.4 (CMe3), 29.4 (CMe3). 
31P{1H} NMR (162 MHz, CDCl3) δ: 41.0 (s, PPh3). IR (KBr, cm-1): 
1912 (vs) (νC≡O), 2052 (s) (νRu–H). 

Typical procedure for acceptorless dehydrogenation of 
secondary alcohols 

A mixture of 1-phenylethanol (1.0 mmol), catalyst (0.02mmol), 
t-BuOK (0.5 mmol) was stirred in toluene (4.0 mL) at 110 oC for 12 
h under an N2 atmosphere. After cooled to temperature, the 
reaction mixture was filtered through a plug of silica gel and 
analyzed by GC. Then the solvent was removed under reduced 
pressure. The resulting residue was purified by silica gel 
chromatography using petroleum ether/EtOAc as eluent to afford 
the desired product. 
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