Accepted Manuscript

Direct Aminophosphonylation of aldehydes catalyzed by cyclopentadienyl ruthenium(II) complexes

Ivânia R. Cabrita, Sara C.A. Sousa, Pedro R. Florindo, Ana C. Fernandes

PII: S0040-4020(18)30192-3

DOI: 10.1016/j.tet.2018.02.047

Reference: TET 29318

To appear in: *Tetrahedron*

- Received Date: 12 December 2017
- Revised Date: 5 February 2018
- Accepted Date: 20 February 2018

Please cite this article as: Cabrita IvâR, Sousa SCA, Florindo PR, Fernandes AC, Direct Aminophosphonylation of aldehydes catalyzed by cyclopentadienyl ruthenium(II) complexes, *Tetrahedron* (2018), doi: 10.1016/j.tet.2018.02.047.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical abstract

Direct Aminophosphonylation of Aldehydes Catalyzed by Cyclopentadienyl Ruthenium(II) Complexes

Ivânia R. Cabrita, Sara C. A. Sousa, Pedro R. Florindo and Ana C. Fernandes

Direct Aminophosphonylation of Aldehydes Catalyzed by Cyclopentadienyl Ruthenium(II) Complexes

Ivânia R. Cabrita, Sara C. A. Sousa, Pedro R. Florindo and Ana C. Fernandes*

Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal, Tel: 351 218419264; Fax: 351 218464455, <u>anacristinafernandes@tecnico.ulisboa.pt</u>

Abstract: This work reports a novel method for the direct aminophosphonylation of aldehydes catalyzed by cyclopentadienyl ruthenium(II) complexes. The system HP(O)(OEt)₂/[CpRu(PPh₃)₂Cl] was very efficient for the aminophosphonylation of aldehydes with primary and secondary amines, producing the corresponding α -aminophosphonates in good to excellent yields. This novel method has several advantages including the use of a small amount of catalyst (0.5 mol%), high chemoselectivity, solvent-free conditions and application of the catalyst [CpRu(PPh₃)₂Cl] for at least 12 cycles with excellent activity.

Keywords: aminophosphonylation, aldehydes, α -aminophosphonates, ruthenium complexes

1.Introduction

 α -Aminophosphonates and α -aminophosphonic acids¹ are structurally analogous to α amino acids and constitute an important class of compounds with diverse biological activities and potential to be employed as enzyme inhibitors,^{2,3} antibiotics,⁴ and antitumor agents.^{5,6} They also have a wide range of antiviral⁷ and antifungal properties and are extensively used as insecticides and herbicides.⁸ Thus, a number of methods have been developed for the synthesis of α -aminophosphonates both in racemic and in optically active forms.⁹⁻¹⁵ Among the available synthetic methods for α aminophosphonates, the three-component reaction of aldehyde, amine, and phosphite, also known as Kabachnik–Fields reaction, has gained much attention due to its one-pot manner and convenience of synthesis of α -aminophosphonates including SnCl₂.2H₂O,¹⁸ ZnBr₂,¹⁹ HfCl₄,²⁰ lanthanide triflate,²¹ Yb(PFO)₃,²² SmI₂,²³ TaCl₅,²⁴ Cd(ClO₄)₂·xH₂O,²⁵ BiCl₃,²⁶ LiClO₄,²⁷ FeCl₃²⁸ or MoO₂Cl₂.²⁹ In the last years, several methods for the synthesis of α -aminophosphonates have also been developed using microwaves radiations.³⁰⁻³⁴ However, the use of ruthenium complexes as catalysts for the synthesis of α -aminophosphonates has never been studied. In this work we reported the first method for the synthesis of α -aminophosphonates of α -aminophosphonates with high yields catalyzed by cyclopentadienyl ruthenium(II) complexes.

2. Results and discussion

The catalytic activity of several cyclopentadienyl ruthenium(II) complexes was evaluated in the aminophosphonylation of 4-(methylthio)benzaldehyde with aniline and HP(O)(OEt)₂ under solvent-free conditions in air atmosphere (Table 1). All the catalysts were very efficient, producing the α -aminophosphonate in excellent yields. The best result (95%) was obtained in the presence of 0.5 mol% of [CpRu(PPh₃)₂Cl] after 15 min (Table 1, entry 1). Using 0.25 mol% of this catalyst the reaction required 1h and the α -aminophosphonate was isolated in only 51% yield (Table 1, entry 2). The reaction carried out at room temperature afforded the product in only 42% yield after 24 h (Table 1, entry 3). The catalysts [CpRu(PPh₃)(2,2'-bipy)][PF₆] **2**, [CpRu(dppe)Cl] **3** and [CpRu(PPh₃)(phen)][PF₆] **4** were also very efficient, giving excellent yields of α -aminophosphonate (Table 1, entries 4-6). The reactions carried out with the complexes containing a carbohydrate moiety derived from xylose and fructose also produced excellent yields of the product (Table 1, entries 7 and 8). Finally, in the absence of catalyst only 19% of product was obtained after 1 h (Table 1, entry 9).

Fig. 1. Structure of catalysts 1-6.

Table 1

Direct aminophosphonylation of aldehydes catalyzed by CpRu(II) complexes^a

	H_3CS	mplexes, HP(O) free conditions	(OEt) ₂ H ₃ CS	HN P(OEt) ₂	
Entry	Catalyst	Catalyst	Temp. (°C)		Yield
		(mol%)		Time	(%) ^b
1	$[CpRu(PPh_3)_2Cl]$ 1	0.5	80	15 min	95
2	$[CpRu(PPh_3)_2Cl]$ 1	0.25	80	1 h	51
3	$[CpRu(PPh_3)_2Cl]$ 1	0.5	r.t.	24 h	42
4	[CpRu(PPh ₃)(2,2'-bipy)][PF ₆] 2	0.5	80	30 min	94
5	[CpRu(dppe)Cl] 3	0.5	80	40 min	93
6	[CpRu(PPh ₃)(phen)][PF ₆] 4	0.5	80	50 min	91
7	$[CpRu(PPh_3)_2(NCXylAc)][PF_6]$ 5	0.5	80	40 min	95
8	$[CpRu(PPh_3)_2(Fru)][PF_6]$ 6	0.5	80	20 min	92
9	Without catalyst	_	80	1 h	19

^a All reactions were carried out with 2.0 mmol of 4-(methylthio)benzaldehyde, 2.0 mmol of aniline and 2.0 mmol of HP(O)(OEt)₂.

^b Isolated yields

Aminophosphonylation of 4-(methylthio)benzaldehyde with aniline catalyzed by $[CpRu(PPh_3)_2Cl]$ (0.5 mol%) was investigated with the H-phosphonates HP(O)(OEt)_2, HP(O)(OMe)_2, HP(O)(OBu)_2 and HP(O)(OPh)_2 under solvent-free conditions at 80 °C in air atmosphere (Table 2). Although all H-phosphonates afforded the α -aminophosphates in excellent yields, the reaction with HP(O)(OEt)_2 was much faster, requiring only 15 minutes (Table 2, entry 1). In contrast, the reaction performed with HP(O)(OPh)_2 needed 24 h to be completed (Table 2, entry 4).

Table 2

Direct aminophosphonylation of 4-(methylthio)benzaldehyde with aniline catalyzed by [CpRu(PPh₃)₂Cl] using different HP(O)(OR)₂^a

^a The reactions were carried out with 2.0 mmol of 4-(methylthio)benzaldehyde, 2.0 mmol aniline and 2.0 mmol of HP(O)(OR)₂. ^b Isolated yields.

To evaluate the efficiency of the system $HP(O)(OEt)_2/[CpRu(PPh_3)_2Cl]$ (0.5 mol%), it was tested in the direct aminophosphonylation of a large variety of aldehydes with aniline under solvent-free conditions at 80 °C in air atmosphere (Table 3). In general, the reactions were very fast, affording the corresponding α -aminophosphonates in good to excellent yields, with high chemoselectivity, tolerating several functional groups such as -OCH₃, -SCH₃, -F, -Br, -CF₃, -OH, -CO₂R, and heterocyclic or Cp rings.

Table 3

Direct aminophosphonylation of aldehydes with the system HP(O)(OEt)₂/[CpRu(PPh₃)₂Cl]^a

^a The reactions were carried out with 2.0 mmol of aldehyde, 2.0 mmol aniline and 2.0 mmol of HP(O)(OEt)₂. ^b Isolated yields.

Direct aminophosphonylation of 4-(methylthio)benzaldehyde was also explored using different anilines containing electron-donating and electron-withdrawing groups with the system HP(O)(OEt)₂/[CpRu(PPh₃)₂Cl] (0.5 mol%) producing the corresponding α -aminophosphonates in excellent yields (Table 4).

Table 4

Direct aminophosphonylation of 4-(methylthio)benzaldehyde with different anilines using the system $HP(O)(OEt)_2/[CpRu(PPh_3)_2Cl]^a$

^a The reactions were carried out with 2.0 mmol of 4-(methylthio)benzaldehyde, 2.0 mmol aniline and 2.0 mmol of HP(O)(OEt)₂. ^b Isolated yields.

Finally, the direct aminophosphonylation of different aldehydes using methyl-*N*aniline with the system HP(O)(OEt)₂/[CpRu(PPh₃)₂Cl] (0.5 mol%) was studied, obtaining the corresponding tertiary α -aminophosphonates in good to excellent yields.

Table 5

Direct aminophosphonylation of aldehydes with methyl-*N*-aniline using the system HP(O)(OEt)₂/[CpRu(PPh₃)₂Cl]^a

^a The reactions were carried out with 2.0 mmol of aldehyde, 2.0 mmol methyl-*N*-aniline and 2.0 mmol of HP(O)(OEt)₂.

^b Isolated yields.

To study the possible use of the complex $[CpRu(PPh_3)_2Cl]$ (0.5 mol%) as catalyst in multiple cycles, successive reactions were carried out by sequential addition of fresh substrate 4-(methylthio)benzaldehyde, aniline and HP(O)(OEt)₂ to the reaction mixture. The results showed that $[CpRu(PPh_3)_2Cl]$ can be used for at least 12 catalytic cycles with excellent yields (Figure 2).

Fig 2. Use of the complex [CpRu(PPh₃)₂Cl] as catalyst in multiple cycles. The reactions were carried out by successive addition of 4-(methylthio)benzaldehyde (1 mmol), aniline (1 mmol) and HP(O)(OEt)₂ (2 mmol). Yields were determined by ¹H NMR spectroscopy, using mesitylene as an internal standard.

ACCEPTED MANUSCRIPT

Aminophosphonylation of aldehydes catalyzed by cyclopentadienyl ruthenium complexes should start with the formation of the imine by reaction between the aldehyde and aniline. Then, the activation of the H-phosphonate by the catalyst [CpRu(PPh₃)₂Cl] should occur, producing the species [CpRu(PPh₃)Cl(PO)(OEt)₂]⁻, detected by mass spectrometry. Finally, the reaction between this species and the imine lead to the formation of α -aminophosphonate.

3.Conclusions

In this work it has been demonstrated that the system HP(O)(OEt)₂/[CpRu(PPh₃)₂Cl] (0.5 mol%) is very efficient for the aminophosphonylation of a large variety of aldehydes with different anilines under solvent-free conditions. This is the first example of aminophosphonylation of aldehydes catalyzed by a ruthenium complex. This method is highly chemoselective, tolerating a large range of functional groups including -SCH₃, -OCH₃, -F, -Br, -CF₃, -OH, CO₂CH₃, and heterocyclic or Cp rings.

The reactions were performed with a small amount of catalyst (0.5 mol%), with high yields and short reaction times, and the complex [CpRu(PPh₃)₂Cl] can be used for at least 12 cycles with excellent activity. This work extends the use of CpRu(II) complexes as efficient catalysts for C-P bond forming reactions.

4. Experimental Section

4.1 General information

Aldehydes, anilines and H-phosphonates were obtained from commercial suppliers and $[CpRu(PPh_3)_2Cl]$,³⁵ The catalysts used without further purification. were [CpRu(dppe)Cl],³⁵ $[CpRu(PPh_3)(2,2'-bipy)][PF_6]$,³⁶ $[CpRu(PPh_3)(phen)][PF_6]^{37}$ $[CpRu(PPh_3)_2(NCXyIAc)][PF_6]^{38}$ and $[CpRu(PPh_3)_2(Fru)][PF_6]^{39}$ were prepared according to literature procedures. Flash chromatography was performed on MN Kieselgel 60M 230-400 mesh. ¹H NMR, ¹³C NMR and ³¹P NMR spectra were measured on a Bruker Avance II⁺ 400 MHz and 300 MHz spectrometers. Chemical shifts are reported in parts per million (ppm) downfield from an internal standard. Microanalyses were performed at Laboratório de Análises do Instituto Superior Técnico, using a Fisons Instruments EA1108 system and data acquisition, integration and handling were performed using the software package Eager-200 (Carlo Erba Instruments).

4.2. General Procedure for Direct Aminophosphonylation of Aldehydes with HP(O)(OEt)₂/[CpRu(PPh₃)₂Cl]

The mixture of aldehyde (2 mmol), aniline (2 mmol) and $[CpRu(PPh_3)_2Cl]$ (0.5 mol%, 0.073 g) was stirred during 5 minutes at room temperature. To this mixture was added HP(O)(OEt)₂ (2.0 mmol, 0.26 mL) and the reaction mixture was stirred at 80 °C under air atmosphere (the reaction times are indicated in Tables 3-5). The progress of the reaction was monitored by TLC and ¹H NMR spectroscopy. When the reaction is complete, water (3.0 mL) was added and the mixture was stirred at 80 °C. After 1 hour, the reaction mixture was cooled to ambient temperature and extracted with ethyl acetate (2×10.0 mL). The combined organic layers were dried over Na₂SO₄, filtered and the solvent removed under reduced pressure. The residue was purified by flash chromatography with *n*-hexane:ethyl acetate (3:1) to afford the α-aminophosphonates, which are known compounds.^{20,22,27}

4.3. NMR characterization of products

Table 2, entry 1: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.38 (d, *J* = 8.0 Hz, 2H, H-arom), 7.20 (d, *J* = 8.0 Hz, 2H, H-arom), 7.09 (t, *J* = 8.0 Hz, 2H, H-arom), 6.68 (t, *J* = 8.0 Hz, 1H, H-arom), 6.58 (d, *J* = 8.0 Hz, 2H, H-arom), 4.98 (s, 1H, NH), 4.75 (d, *J* = 24.0 Hz, 1H, CH), 4.17-4.06 (m, 2H, OC<u>H</u>₂CH₃), 3.99-3.93 (m, 1H, OC<u>H</u>₂CH₃), 3.77-3.71 (m, 1H, OC<u>H</u>₂CH₃), 2.43 (s, 3H, SC<u>H</u>₃), 1.27 (t, *J* = 4.0, 8.0 Hz, 3H, OCH₂C<u>H</u>₃), 1.14 (t, *J* = 8.0 Hz, 3H, OCH₂C<u>H</u>₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 146.29 (d, *J* = 15.15 Hz, <u>C</u>q), 138.26 (d, *J* = 4.04 Hz, <u>C</u>q), 132.65 (d, *J* = 3.03 Hz, <u>C</u>q), 129.21 (s, <u>C</u>H-arom), 128.34 (d, *J* = 6.06 Hz, <u>C</u>H-arom), 126.61 (d, *J* = 3.03 Hz, CH-arom), 118.52 (s, <u>C</u>H-arom), 113.94 (s, <u>C</u>H-arom), 63.43 (t, *J* = 6.06, 7.07 Hz, O<u>C</u>H₂CH₃), 55.66 (d, *J* = 152.51 Hz, <u>C</u>H), 16.47 (d, *J* = 6.06 Hz, OCH₂<u>C</u>H₃), 16.28 (d, *J* = 6.06 Hz, OCH₂<u>C</u>H₃), 15.67 (s, <u>S</u>CH₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 22.77 ppm. Anal. Calcd. for C₁₈H₂₄NO₃PS: C, 59.16; H, 6.62; N, 3.83. Found: C, 59.07; H, 6.50; N, 3.69.

Table 2, entry 2: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.41 (d, *J* = 8.0 Hz, 2H, H-arom), 7.24 (d, *J* = 8.0 Hz, 2H, H-arom), 7.14 (t, *J* = 8.0 Hz, 2H, H-arom), 6.74 (t, *J* = 4.0, 8.0 Hz, 1H, H-arom), 6.61 (d, *J* = 8.0 Hz, 2H, H-arom), 4.79 (d, *J* = 20.0 Hz, 2H, N<u>H</u>, C<u>H</u>), 3.80 (d, *J* = 12.0 Hz, 3H, OC<u>H</u>₃), 3.55 (d, *J* = 8.0 Hz, 3H, OC<u>H</u>₃), 2.48 (s, 3H, SC<u>H</u>₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 146.9 (d, *J* = 15.15 Hz, <u>C</u>q), 138.55 (d, *J* = 4.04 Hz, <u>C</u>q), 132.39 (d, *J* = 3.03 Hz, <u>C</u>q), 129.32 (s, <u>C</u>H-arom), 128.32 (d, *J* = 5.05

Hz, <u>C</u>H-arom), 126,72 (d, J = 2.02 Hz, <u>C</u>H-arom), 118.77 (s, <u>C</u>H-arom), 114.01 (s, <u>C</u>H-arom), 55.36 (d, J = 152.51 Hz, <u>C</u>H), 53.99 (d, J = 4.04 Hz, O<u>C</u>H₃), 53.92 (d, J = 4.04 Hz, O<u>C</u>H₃), 15.67 (s, S<u>C</u>H₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 25.22 ppm. Anal. Calcd. for C₁₆H₂₀NO₃PS: C, 56.96; H, 5.98; N, 4.15. Found: C, 56.79; H, 5.83; N, 4.01.

Table 2, entry 3: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.38 (d, J = 8.0 Hz, 2H, H-arom), 7.20 (d, J = 8.0 Hz, 2H, H-arom), 7.10 (t, J = 8.0 Hz, 2H, H-arom), 6.69 (t, *J* = 8.0 Hz, 1H, H-arom), 6.57 (d, *J* = 8.0 Hz, 2H, H-arom), 4.78-4.67 (m, 2H, <u>C</u>H+N<u>H</u>), 4.10-3.98 (m, 2H, OCH2CH2CH2CH3), 3.94-3.87 (m, 1H, OCH2CH2CH2CH3), 3.71-3.63 (m, 1H, OCH₂CH₂CH₂CH₃), 2.44 (s, 3H, SCH₃), 1.62-1.58 (m, 2H, OCH₂CH₂CH₂CH₃), 1.48-1.44 (m, 2H, OCH₂CH₂CH₂CH₃), 1.38-1.32 (m, 2H, $OCH_2CH_2CH_2CH_3$), 1.27-1.21 (m, 2H, $OCH_2CH_2CH_2CH_3$), 0.89 (t, J = 8.0 Hz, 3H, $OCH_2CH_2CH_2CH_3$), 0.84 (t, J = 8.0 Hz, 3H, $OCH_2CH_2CH_2CH_3$) ppm. ¹³C NMR (101) MHz, CDCl₃) δ 146.35 (d, J = 15.15 Hz, Cq), 138.21 (d, J = 4.04 Hz, Cq), 132.89 (d, J = 3.03 Hz, Cq), 129.27 (s, CH-arom), 128.37 (d, J = 5.05 Hz, CH-arom), 126.70 (d, J = 3.03 Hz, CH-arom), 118.54 (s, CH-arom), 113.94 (s, CH-arom), 67.09 (d, J = 7.07Hz, $OCH_2CH_2CH_2CH_3$), 66.08 (d, J = 8.08 Hz, $OCH_2CH_2CH_2CH_3$), 55.70 (d, J = 151.50 Hz, <u>C</u>H), 32.64 (d, J = 5.05 Hz, OCH₂CH₂CH₂CH₃), 32.47 (d, J = 5.05 Hz, $OCH_2CH_2CH_2CH_3$), 18.71 (d, J = 10.10 Hz, $OCH_2CH_2CH_2CH_3$), 15.80 (s, SCH_3), 13.66 (d, J = 5.05 Hz, OCH₂CH₂CH₂CH₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 22.76 ppm. Anal. Calcd. for C₂₂H₃₂NO₃PS: C, 62.68; H, 7.65; N, 3.32. Found: C, 62.55; H, 7.57; N, 43.29.

Table 2, entry 4: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.45 (dd, J = 4.0, 8.0 Hz, 2H, H-arom), 7.26-7.19 (m, 6H, H-arom), 7.17-7.07 (m, 6H, H-arom), 6.90 (d, J = 8.0 Hz, 2H, H-arom), 6.74 (t, J = 4.0, 8.0 Hz, 1H, H-arom), 6.62 (d, J = 8.0 Hz, 2H, H-arom), 5.10 (dd, J = 8.0, 16.0 Hz, 1H, C<u>H</u>), 4.92 (t, J = 8.0 Hz, 1H, N<u>H</u>), 2.43 (s, 3H, SC<u>H</u>₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 150.47 (d, J = 10.10 Hz, <u>C</u>q), 150.29 (d, J = 10.10 Hz, <u>C</u>q), 145.88 (d, J = 5.05 Hz, <u>C</u>q), 138.99 (d, J = 3.03 Hz, <u>C</u>q), 129.83 (d, J = 8.08 Hz, <u>C</u>q), 129.40 (s, <u>C</u>H-arom), 128.67 (s, <u>C</u>H-arom), 126.87 (d, J = 3.03 Hz, <u>C</u>H-arom), 120.77 (d, J = 4.04 Hz, <u>C</u>H-arom), 120.43 (s, <u>C</u>H-arom), 114.18 (s, <u>C</u>H-arom), 55.87 (d, J = 144.54 Hz, <u>C</u>H), 15.76 (s, S<u>C</u>H₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 15.43 ppm. Anal. Calcd. for C₂₆H₂₄NO₃PS: C, 67.66; H, 5.24; N, 3.03. Found: C, 67.50; H, 5.19; N, 2.93.

Table 3, entry 1²²: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.38 (d, *J* = 8.0 Hz, 2H, H-arom), 7.09 (t, *J* = 8.0 Hz, 2H, H-arom), 6.85 (d, *J* = 8.0 Hz, 2H, H-arom), 6.67 (t, *J* = 4.0, 8.0 Hz, 1H, H-arom), 6.59 (d, *J* = 8.0 Hz, 2H, H-arom), 4.81 (brs, 1H, N<u>H</u>), 4.70 (d, *J* = 24.0 Hz, 1H, C<u>H</u>), 4.15-4.07 (m, 2H, OC<u>H</u>₂CH₃), 3.99-3.89 (m, 1H, OC<u>H</u>₂CH₃), 3.75-3.66 (m, 4H, OC<u>H</u>₂CH₃+OC<u>H</u>₃), 1.27 (t, *J* = 4.0, 8.0 Hz, 3H, OCH₂C<u>H</u>₃), 1.13 (t, *J* = 4.0, 8.0 Hz, 3H, OCH₂C<u>H</u>₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 159.39 (d, *J* = 3.03 Hz, <u>C</u>q), 146,46 (d, *J* = 15.15 Hz, <u>C</u>q), 129.22 (s, <u>C</u>H-arom), 129.04 (d, *J* = 6.06 Hz, <u>C</u>H-arom), 127.78 (d, *J* = 3.03 Hz, <u>C</u>q), 118.42 (s, <u>C</u>H-arom), 114.14 (d, *J* = 3.03 Hz, <u>C</u>H-arom), 113.97 (s, <u>C</u>H-arom), 63.32 (d, *J* = 4.04 Hz, O<u>C</u>H₂CH₃), 63.25 (d, *J* = 4.04 Hz, O<u>C</u>H₂CH₃), 55.45 (d, *J* = 153.52 Hz, <u>C</u>H), 55.30 (s, O<u>C</u>H₃), 16.53 (d, *J* = 6.06 Hz, OCH₂<u>C</u>H₃), 16.35 (d, *J* = 6.06 Hz, OCH₂<u>C</u>H₃), 16.92; N, 4.01. Found: C, 61.02; H, 6.89; N, 3.94.

Table 3, entry 3²¹: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ: 7.45 (dd, J = 4.0 Hz, J = 8.0 Hz, 2H, H-arom), 7.11 (t, J = 8.0 Hz, 2H, H-arom), 7.02 (t, J = 8.0 Hz, 2H, H-arom), 6.70 (d, J = 4.0, 8.0 Hz, 1H, H-arom), 6.57 (d, J = 8.0 Hz, 2H, H-arom), 4.74 (d, J = 24.0 Hz, 1H, C<u>H</u>), 4.47 (brs, 1H, N<u>H</u>), 4.14-4.08 (m, 4H, OC<u>H</u>₂CH₃), 3.98-3.94 (m, 1H, OC<u>H</u>₂CH₃), 3.78-3.72 (m, 1H, OC<u>H</u>₂CH₃), 1.28 (t, J = 8.0 Hz, 3H, OCH₂C<u>H</u>₃), 1.14 (t, J = 4.0, 8.0 Hz, 3H, OCH₂C<u>H</u>₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 163.74 (d, J = 4.04 Hz, <u>Cq</u>), 161.32 (t, J = 8.08, 4.04 Hz, <u>Cq</u>), 146.20 (d, J = 15.15 Hz, <u>Cq</u>), 131.75 (t, J = 3.03 Hz, <u>Cq</u>), 129.53 (t, J = 3.03, 6.06 Hz, <u>C</u>H-arom), 129.37 (d, J = 15.15 Hz, <u>C</u>H-arom), 118.67 (s, <u>C</u>H-arom), 115.77 (d, J = 3.03 Hz, <u>C</u>H-arom), 115.55 (d, J = 2.02 Hz, <u>C</u>H-arom), 113.93 (s, <u>C</u>H-arom), 63.46 (d, J = 7.07 Hz, O<u>C</u>H₂CH₃), 63.34 (s, O<u>C</u>H₂CH₃), 55.46 (d, J = 152.51 Hz, <u>C</u>H), 16.52 (d, J = 5.05 Hz, OCH₂<u>C</u>H₃), 16.32 (d, J = 6.06 Hz, OCH₂<u>C</u>H₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 22.93 ppm. Anal. Calcd. for C₁₇H₂₁FNO₃P: C, 60.53; H, 6.27; N, 4.15. Found: C, 59.98; H, 6.11; N, 4.03.

Table 3, entry 4: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.24 (t, *J* = 8.0 Hz, 2H, H-arom), 6.83-6.78 (m, 3H, H-arom), 4.50 (d, *J* = 16.0 Hz, 1H, C<u>H</u>), 4.30 (s, 2H, Cp), 4.30-3.90 (m, 11H, Cp, OC<u>H</u>₂CH₃) 1.21-1.14 (m, 6H, OCH₂CH₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 147.23 (d, *J* = 6.06 Hz, <u>C</u>q), 129.30 (s, <u>C</u>H-arom), 118.30 (s, <u>C</u>H-arom), 113.55 (s, <u>C</u>H-arom), 85.33 (d, *J* = 7.07 Hz, <u>C</u>q), 68.69 (s, <u>C</u>H, Cp), 68.03 (s, <u>C</u>H, Cp), 67.67 (s, <u>C</u>H, Cp), 65.93 (d, *J* = 2.02 Hz, <u>C</u>H, Cp), 63.13 (d, *J* = 7.07 Hz, O<u>C</u>H₂CH₃), 62.55 (d, *J* = 7.07 Hz, O<u>C</u>H₂CH₃), 51.77 (d, *J* = 162.61 Hz, <u>C</u>H), 16.45 (d,

J = 5.05 Hz, OCH₂CH₃), 16.35 (d, J = 5.05 Hz, OCH₂CH₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 21.91 ppm. Anal. Calcd. for C₂₃H₃₂FeNO₃P: C, 60.40; H, 7.05; N, 3.06. Found: C, 59.99; H, 6.90; N, 2.94.

Table 3, entry 5: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 8.01 (d, J = 8.0 Hz, 2H, H-arom), 7.56 (d, J = 8.0 Hz, 2H, H-arom), 7.09 (t, J = 8.0, 4.0 Hz, 2H, H-arom), 6.70 (t, J = 8.0 Hz, 1H, H-arom), 6.57 (d, J = 8.0 Hz, 2H, H-arom), 5.35 (brs, 1H, N<u>H</u>), 4.82 (d, J = 24.0 Hz, 1H, C<u>H</u>), 4.17-4.07 (m, 2H, OC<u>H</u>₂CH₃), 4.00-3.94 (m, 1H, OC<u>H</u>₂CH₃), 3.89 (s, 3H, OC<u>H</u>₃), 3.78-3.70 (m, 1H, OC<u>H</u>₂CH₃), 1.28 (t, J = 8.0, 4.0 Hz, 3H, OCH₂C<u>H</u>₃), 1.14 (t, J = 4.0, 8.0 Hz, 3H, OCH₂C<u>H</u>₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 166.87 (s, <u>C</u>=O), 146.10 (d, J = 15.15 Hz, <u>C</u>q), 141.57 (d, J = 3.03 Hz, <u>C</u>q), 129.95 (d, J = 3.03 Hz, <u>C</u>H-arom), 129.86 (d, J = 3.03 Hz, <u>C</u>H-arom), 129.33 (s, <u>C</u>H-arom), 127.97 (d, J = 5.05 Hz, <u>C</u>q), 118.79 (s, <u>C</u>H-arom), 113.92 (s, <u>C</u>H-arom), 63.64 (d, J = 7.07 Hz, O<u>C</u>H₂CH₃), 63.54 (d, J = 7.07 Hz, O<u>C</u>H₂CH₃), 16.51 (d, J = 8.08 Hz, OCH₂CH₃), 16.32 (d, J = 8.08 Hz, OCH₂<u>C</u>H₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 21.69 ppm.Anal. Calcd. for C₁₉H₂₄NO₅P: C, 60.47; H, 6.41; N, 3.71. Found: C, 59.23; H, 6.02; N, 3.59.

Table 3, entry 6⁴⁰: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.07 (t, J = 8.0, 4.0 Hz, 2H, H-arom), 7.00 (s, 1H, H-arom), 6.91 (d, J = 8.0 Hz, 1H, H-arom), 6.84 (d, J = 8.0 Hz, 1H, H-arom), 6.66 (t, J = 8.0, 4.0 Hz, 1H, H-arom), 6.61 (d, J = 8.0 Hz, 2H, H-arom), 4.89 (brs, 1H, N<u>H</u>), 4.70 (d, J = 24.0 Hz, 1H, C<u>H</u>), 4.16-4.05 (m, 2H, OC<u>H</u>₂CH₃), 3.97-3.91 (m, 1H, OC<u>H</u>₂CH₃), 3.74-3.66 (m, 4H, OC<u>H</u>₂CH₃+OC<u>H</u>₃), 1.25 (t, J = 4.0, 8.0 Hz, 3H, OCH₂C<u>H</u>₃), 1.11 (t, J = 4.0, 8.0 Hz, 3H, OCH₂C<u>H</u>₃) ppm. ¹³C NMR (101 MHz, CDCl₃) 147.19 (d, J = 3.03 Hz, <u>C</u>q), 146.29 (d, J = 4.04 Hz, <u>C</u>q), 145.75 (d, J = 3.03 Hz, <u>C</u>q), 128.96 (s, <u>C</u>H-arom), 114.72 (d, J = 2.02 Hz, <u>C</u>H-arom), 113.77 (s, <u>C</u>H-arom), 118.21 (s, <u>C</u>H-arom), 114.72 (d, J = 2.02 Hz, <u>C</u>H-arom), 113.77 (s, <u>C</u>H-arom), 110.53 (d, J = 5.05 Hz, <u>C</u>H-arom), 63.21 (t, J = 7.07 Hz, OCH₂CH₃), 55.62 (d, J = 153.52 Hz, <u>C</u>H), 55,71 (s, OCH₃), 16.25 (d, J = 5.05 Hz, OCH₂CH₃), 16.09 (d, J = 5.05 Hz, OCH₂CH₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 22.86 ppm. Anal. Calcd. for C₁₈H₂₄NO₅P: C, 59.17; H, 6.62; N, 3.83. Found: C, 58.24; H, 5.97; N, 3.69.

Table 3, entry 7²²: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.47 (d, J = 8.0 Hz, 2H, H-arom), 7.32 (t, J = 8.0 Hz, 2H, H-arom), 7.25 (t, J = 8.0 Hz, 1H, H-arom), 7.09 (t, J = 8.0 Hz, 2H, H-arom), 6.68 (t, J = 4.0, 8.0 Hz, 1H, H-arom), 6.60 (d, J = 12.0 Hz, 2H, H-arom), 4.88 (brs, 1H, N<u>H</u>), 4.76 (d, J = 24.0 Hz, 1H, C<u>H</u>), 4.14-4.08 (m, 2H,

OC<u>H</u>₂CH₃), 3.94-3.90 (m, 1H, OC<u>H</u>₂CH₃), 3.70-3.64 (m, 1H, OC<u>H</u>₂CH₃), 1.28 (t, $J = 4.0, 3H, 8.0 \text{ Hz}, \text{OCH}_2\text{C}_{\text{H}_3}$), 1.10 (t, $J = 4.0, 3H, 8.0 \text{ Hz}, \text{OCH}_2\text{C}_{\text{H}_3}$) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 146.43 (d, J = 15.15 Hz, <u>C</u>q), 136.01 (s, <u>C</u>q), 128.67 (d, J = 2.02 Hz, <u>C</u>H-arom), 128.00 (d, J = 2.02 Hz, <u>C</u>H-arom), 127.92 (s, <u>C</u>H-arom), 118.47 (s, <u>C</u>H-arom), 113.95 (s, <u>C</u>H-arom), 63.41 (d, J = 1.01 Hz, O<u>C</u>H₂CH₃), 63.34 (d, J = 2.02 Hz, O<u>C</u>H₂CH₃), 56.16 (d, J = 151.5 Hz, <u>C</u>H), 16.51 (d, J = 6.06 Hz, OCH₂<u>C</u>H₃), 16.27 (d, J = 6.06 Hz, OCH₂<u>C</u>H₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 23.02 ppm. Anal. Calcd. for C₁₇H₂₂NO₃P: C, 63.94; H, 6.94; N, 4.39. Found: C, 63.80; H, 6.77; N, 4.28.

Table 3, entry 8: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.60 (s, 4H, H-arom), 7.12 (t, J = 8.0 Hz, 2H, H-arom), 6.73 (t, J = 4.0, 8.0 Hz, 1H, H-arom), 6.56 (d, J = 8.0 Hz, 2H, H-arom), 4.83 (d, J = 20.0 Hz, 2H, N<u>H</u>+C<u>H</u>), 4.16-4.10 (m, 2H, OC<u>H</u>₂CH₃), 4.04-3.98 (m, 1H, OC<u>H</u>₂CH₃), 3.85-3.79 (m, 1H, OC<u>H</u>₂CH₃), 1.29 (t, J = 4.0, 8.0 Hz, 3H, OCH₂C<u>H</u>₃), 1.16 (t, J = 8.0 Hz, 3H, OCH₂C<u>H</u>₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 146.02 (d, J = 15.15 Hz, <u>C</u>q), 140.51 (s, <u>C</u>q), 130.09 (s, <u>C</u>q), 129.42 (s, <u>C</u>H-arom), 128,26 (d, J = 5.05 Hz, <u>C</u>H-arom), 125.65 (s, <u>C</u>H-arom), 118.95 (s, <u>C</u>H-arom), 113.92 (s, <u>C</u>H-arom), 63.69 (d, J = 7.07 Hz, O<u>C</u>H₂CH₃), 64.00 (d, J = 7.07 Hz, O<u>C</u>H₂CH₃), 56.04 (d, J = 150.49 Hz, <u>C</u>H), 16.53 (d, J = 6.06 Hz, OCH₂<u>C</u>H₃), 16.31 (d, J = 6.06 Hz, OCH₂<u>C</u>H₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 21.91 ppm. Anal. Calcd. for C₁₈H₂₁F₃NO₃P: C, 55.82; H, 5.46; N, 3.62. Found: C, 55.70; H, 5.31; N, 3.53.

Table 3, entry 9²⁷: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.46 (d, *J* = 8.0 Hz, 2H, H-arom), 7.36 (t, *J* = 4.0, 8.0 Hz, 2H, H-arom), 7.11 (t, *J* =8.0, 12.0 Hz, 2H, H-arom), 6.71 (t, *J* = 12.0, 8.0 Hz, 1H, H-arom), 6.56 (d, *J* = 12.0 Hz, 2H, H-arom), 4.76-4.66 (m, 2H, N<u>H</u>, C<u>H</u>), 4.18-3.92 (m, 3H, OC<u>H</u>₂CH₃), 3.85-3.72 (m, 1H, OC<u>H</u>₂CH₃), 1.29 (t, *J* = 8.0, 12.0 Hz, 3H, OCH₂C<u>H</u>₃), 1.14 (t, *J* = 8.0, 12.0 Hz, 3H, OCH₂C<u>H</u>₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 146.15 (d, *J* = 19.19 Hz, <u>C</u>q), 135.32 (d, *J* = 4.04 Hz, <u>C</u>q), 131.86 (d, *J* = 4.04 Hz, <u>C</u>H-arom), 129.63 (d, *J* = 7.07 Hz, <u>C</u>H-arom), 129.37 (s, <u>C</u>H-arom), 121.98 (d, *J* = 6.06 Hz, <u>C</u>q), 118.82 (s, <u>C</u>H-arom), 113.98 (s, <u>C</u>H-arom), 6.55 (d, *J* = 8.08 Hz, OCH₂CH₃), 63.42 (s, OCH₂CH₃), 55.77 (d, *J* = 200.99 Hz, <u>C</u>H), 16.57 (d, *J* = 8.08 Hz, OCH₂<u>C</u>H₃), 16.39 (d, *J* = 8.08 Hz, OCH₂<u>C</u>H₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 22.10 ppm. Anal. Calcd. for C₁₇H₂₁BrNO₃P: C, 51.27; H, 5.32; N, 3.52. Found: C, 51.04; H, 5.19; N, 3.38.

Table 3, entry 10^{20}: Brown solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.40 (s, 1H, H-arom), 7.17 (t, J = 8.0 Hz, 2H, H-arom), 6.76 (t, J = 8.0, 4.0 Hz, 1H, H-arom), 6.69 (d,

J = 8.0 Hz, 2H, H-arom), 6.41 (t, *J* = 4.0 Hz, 1H, H-arom), 6.34 (s, 1H, H-arom), 4.93 (d, *J* = 24.0 Hz, 1H, C<u>H</u>), 4.44 (brs, 1H, N<u>H</u>), 4.25-4.15 (m, 2H, OC<u>H</u>₂CH₃), 4.13-4.04 (m, 1H, OC<u>H</u>₂CH₃), 3.95-3.85 (m, 1H, OC<u>H</u>₂CH₃), 1.32 (t, *J* = 4.0, 8.0 Hz, 3H, OCH₂C<u>H</u>₃), 1.22 (t, *J* = 8.0, 4.0 Hz, 3H, OCH₂C<u>H</u>₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 149.13 (s, <u>C</u>q), 145.96 (d, *J* = 45.45 Hz, <u>C</u>q), 142.50 (s, <u>C</u>H-arom), 129.20 (s, <u>C</u>H-arom), 118.20 (s, <u>C</u>H-arom), 113.95 (s, <u>C</u>H-arom), 110.79 (s, <u>C</u>H-arom), 108.80 (d, *J* = 7.07 Hz, <u>C</u>H-arom), 63.36 (s, O<u>C</u>H₂CH₃), 50.23 (d, *J* = 160.59 Hz, <u>C</u>H), 16.45 (d, *J* = 6.06 Hz, OCH₂<u>C</u>H₃), 16.30 (d, *J* = 6.06 Hz, OCH₂<u>C</u>H₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 20.61 ppm. Anal. Calcd. for C₁₅H₂₀NO₄P: C, 58.25; H, 6.52; N, 4.53. Found: C, 57.96; H, 6.41; N, 4.38.

Table 4, entry 1: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.37 (d, J = 8.0 Hz, 2H, H-arom), 7.20 (d, J = 8.0 Hz, 2H, H-arom), 6.69 (d, J = 8.0 Hz, 2H, H-arom), 6.56 (d, J = 12.0 Hz, 2H, H-arom), 5.42 (brs, 1H, N<u>H</u>), 4.66 (d, J = 24.0 Hz, 1H, C<u>H</u>), 4.18-4.07 (m, 2H, OC<u>H</u>₂CH₃), 4.00-3.94 (m, 1H, OC<u>H</u>₂CH₃), 3.79-3.71 (m, 1H, OC<u>H</u>₂CH₃), 3.68 (s, 3H, OC<u>H</u>₃), 2.48 (s, 3H, SC<u>H</u>₃), 1.29 (t, J = 8.0 Hz, 3H, OCH₂C<u>H</u>₃), 1.15 (t, J = 8.0 Hz, 3H, OCH₂C<u>H</u>₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 152.92 (s, <u>C</u>q), 140.11 (d, J = 16.16 Hz, <u>C</u>q), 138.29 (d, J = 4.04 Hz, <u>C</u>q), 132.65 (d, J = 3.03 Hz, <u>C</u>q), 128.46 (d, J = 6.06 Hz, <u>C</u>H-arom), 126.60 (d, J = 7.07 Hz, O<u>C</u>H₂CH₃), 63.46 (d, J = 7.07 Hz, O<u>C</u>H₂CH₃), 56.70 (d, J = 152.51 Hz, <u>C</u>H), 55.74 (s, O<u>C</u>H₃), 16.54 (d, J = 6.06 Hz, OCH₂CH₃), 16.35 (d, J = 6.06 Hz, OCH₂CH₃), 15.71 (s, S<u>C</u>H₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 22.75 ppm. Anal. Calcd. for C₁₉H₂₆NO₄PS: C, 57.71; H, 6.63; N, 3.54. Found: C, 57.62; H, 6.54; N, 3.40.

Table 4, entry 3: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.36 (d, J = 4.0 Hz, 2H, H-arom), 7.21 (d, J = 8.0 Hz, 2H, H-arom), 6.81 (t. J = 8.0 Hz, 2H, H-arom), 6.52-6.49 (m, 2H, H-arom), 6.64 (d, J = 24,0 Hz, 1H, C<u>H</u>), 4.14-4.09 (m, 2H, OC<u>H</u>₂CH₃), 3.99-3.93 (m, 1H, OC<u>H</u>₂CH₃), 3.77-3.71 (m, 1H, OC<u>H</u>₂CH₃), 2.81 (brs, 1H, N<u>H</u>), 2.46 (s, 3H, SC<u>H</u>₃), 1.30 (t, J = 4.0, 8.0 Hz, 3H, OCH₂C<u>H</u>₃), 1.15 (t, J = 8.0 Hz, 3H, OCH₂C<u>H</u>₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 157.52 (s, <u>C</u>q), 155.18 (s, <u>C</u>q), 142.66 (d, J = 2.02 Hz, <u>C</u>q), 138.46 (d, J = 3.03 Hz, <u>C</u>q), 132.37 (d, J = 3.03 Hz, <u>C</u>q), 128.35 (d, J = 5.05 Hz, <u>C</u>H-arom), 126.59 (d, J = 3.03 Hz, <u>C</u>H-arom), 115.58 (s, <u>C</u>H-arom), 114.96 (d, J = 7.07 Hz, <u>C</u>H-arom), 63.49 (d, J = 7.07 Hz, OCH₂CH₃), 56.32 (d, J = 152.51 Hz, <u>C</u>H), 16.47 (d, J = 5.05 Hz, OCH₂<u>C</u>H₃), 16.28 (d, J = 6.06 Hz, OCH₂<u>C</u>H₃), 15.62 (s,

S<u>C</u>H₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 22.62 ppm. Anal. Calcd. for C₁₈H₂₃FNO₃PS: C, 56.39; H, 6.05; N, 3.65. Found: C, 56.22; H, 5.93; N, 3.55.

Table 4, entry 4: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.35 (t, *J* = 4.0 Hz, 2H, H-arom), 7.22-7.16 (m, 4H, H-arom), 6.45 (d, *J* = 8.0 Hz, 2H, H-arom), 4.84 (brs, 1H, N<u>H</u>), 4.66 (d, *J* = 24.0 Hz, 1H, C<u>H</u>), 4.19-4.08 (m, 2H, OC<u>H</u>₂CH₃), 3.97-3.92 (m, 1H, OC<u>H</u>₂CH₃), 3.76-3.72 (m, 1H, OC<u>H</u>₂CH₃), 2.45 (s, 3H, SC<u>H</u>₃), 1.29 (t, *J* = 8.0 Hz, 3H, OCH₂C<u>H</u>₃), 1.14 (t, *J* = 4.0, 8.0 Hz, 3H, OCH₂C<u>H</u>₃) ppm. ¹³C NMR (CDCl₃, 101 MHz) δ 145.39 (d, *J* = 15.2 Hz, Cq), 138.64 (s, Cq), 132.21 (s, Cq), 132.03 (s, CH-arom), 128.32 (d, *J* = 5.05 Hz, CH-arom), 126.70 (d, *J* = 3.03 Hz, CH-arom), 115.61 (s, CH-arom), 110.39 (s, Cq), 63.56 (d, *J* = 7.07 Hz, OCH₂CH₃), 63.47 (d, *J* = 7.07 Hz, OCH₂CH₃), 55.78 (d, *J* = 152.51 Hz, CH), 16.55 (d, *J* = 6.06 Hz, OCH₂CH₃), 16.37 (d, *J* = 5.05 Hz, OCH₂CH₃), 15.72 (s, SCH₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 22.38 ppm. Anal. Calcd. for C₁₈H₂₃BrNO₃PS: C, 48.66; H, 5.22; N, 3.15. Found: C, 48.51; H, 5.08; N, 3.03.

Table 4, entry 5: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ : 7.32 (d, J = 8.0 Hz, 2H, H-arom), 6.97 (d, J = 8.0 Hz, 2H, H-arom), 6.77 (d, J = 4.0 Hz, 1H, H-arom), 6.62 (d, J = 8.0 Hz, 1H, H-arom), 6.54 (d, J = 8.0 Hz, 1H, H-arom), 6.48 (d, J = 8.0 Hz, 1H, H-arom), 4.86 (d, J = 24.0 Hz, 1H, C<u>H</u>), 4.29-4.21 (m, 2H, OC<u>H</u>₂CH₃), 4.00-3.90 (m, 1H, OCH₂CH₃), 3.74-3.65 (m, 1H, OCH₂CH₃), 2.32 (s, 3H, SCH₃), 1.29 (t, J = 8.0 Hz, 3H, OCH₂CH₃), 1.13 (t, J = 8.0 Hz, 3H, OCH₂CH₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 145.25 (s, Cq), 138.17 (d, J = 3.03 Hz, Cq), 134.84 (d, J = 17.2 Hz, Cq), 132.30 (d, J = 1.01 Hz, Cq), 128.55 (d, J = 6.06 Hz, CH-arom), 126.35 (d, J = 2.02 Hz, CH-arom), 119.93 (s, CH-arom), 118.44 (s, CH-arom), 114.56 (s, CH-arom), 112.07 (s, CH-arom), 64.32 (d, J = 7.07 Hz, OCH₂CH₃), 63.77 (d, J = 8.08 Hz, OCH₂CH₃), 55.52 (d, J = 155.54 Hz, CH), 16.47 (d, J = 5.05 Hz, OCH₂CH₃), 16.22 (d, J = 6.06 Hz, OCH₂<u>C</u>H₃), 15.47 (s, S<u>C</u>H₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ: 24.08 ppm. Anal. Calcd. for C₁₈H₂₄NO₄PS: C, 56.68; H, 6.34; N, 3.67. Found: C, 56.60; H, 6.27; N, 3.59. **Table 5, entry 1**: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.41 (d, J = 8.0 Hz, 2H, H-arom), 7.19 (t, J = 8.0 Hz, 2H, H-arom), 7.14 (d, J = 8.0 Hz, 2H, H-arom), 6.85 (d, J = 12.0 Hz, 2H, H-arom), 6.74 (t, J = 4.0, 12.0 Hz, 1H, H-arom), 5.28 (d, J = 24.0 Hz, 1H, CH), 4.18-3.95 (m, 4H, OCH₂CH₃), 2.91 (s, 3H, CH₃), 2.34 (s, 3H, SCH₃), 1.19-1.14 (m, 6H, OCH₂CH₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 149.62 (d, J = 7.07 Hz, Cq), 138.00 (s, Cq), 130.44 (d, J = 8.08 Hz, Cq), 128.91 (s, CH-arom), 128.76 (d, J = 9.09 Hz, <u>C</u>H-arom), 125.68 (s, <u>C</u>H-arom), 117.67 (s, <u>C</u>H-arom), 113.47 (s, <u>C</u>H-arom), 62.57 (d, J = 7.07 Hz, O<u>C</u>H₂CH₃), 61,62 (d, J = 7.07 Hz, O<u>C</u>H₂CH₃), 60.82 (d, J = 154.53 Hz, <u>C</u>H), 34.12 (s, <u>C</u>H₃), 16.02 (d, J = 5.05 Hz, OCH₂<u>C</u>H₃), 15.85 (d, J = 5.05 Hz, OCH₂<u>C</u>H₃), 14.81 (s, <u>S</u><u>C</u>H₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 22.13 ppm. Anal. Calcd. for C₁₉H₂₆NO₃PS: C, 60.14; H, 6.91; N, 3.69. Found: C, 59.97; H, 6.85; N, 3.54.

Table 5, entry 2: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 5.49 (dd, J = 4.0, 8.0 Hz, 2H, H-arom), 7.23 (t, J = 8.0 Hz, 2H, H-arom), 6.98 (t, J = 8.0 Hz, 2H, H-arom), 6.87 (d, J = 8.0 Hz, 2H, H-arom), 6.78 (t, J = 4.0, 8.0 Hz, 1H, H-arom), 5.30 (d, J = 24.0 Hz, 1H, C<u>H</u>), 4.21-4.00 (m, 4H, 2OC<u>H</u>₂CH₃), 2.93 (s, 3H, C<u>H</u>₃), 1.22-1.17 (m, 6H, 2OCH₂C<u>H</u>₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 163.45 (s, <u>C</u>q), 160.99 (s, <u>C</u>q), 149.91 (d, J = 8.08 Hz, <u>C</u>q), 130.58 (s, <u>C</u>H-arom), 129.08 (s, <u>C</u>H-arom), 118.16 (s, <u>C</u>H-arom), 115.32 (s, <u>C</u>H-arom), 113.85 (s, <u>C</u>H-arom), 63.04 (d, J = 7.07 Hz, O<u>C</u>H₂CH₃), 62.03 (d, J = 7.07 Hz, O<u>C</u>H₂CH₃), 61.01 (d, J = 161.60 Hz, <u>C</u>H), 34.39 (s, <u>C</u>H₃), 16.30 (d, J = 5.05 Hz, OCH₂<u>C</u>H₃), 16.11 (d, J = 6.06 Hz, OCH₂<u>C</u>H₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 22.05 ppm. Anal. Calcd. for C₁₈H₂₃FNO₃P: C, 61.53; H, 6.60; N, 3.99. Found: C, 60.38; H, 6.49; N, 3.84.

Table 5, entry 3: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.41 (q, *J* = 8.0 Hz, 4H, H-arom), 7.23 (t, *J* = 8.0 Hz, 2H, H-arom), 6.85 (d, *J* = 8.0 Hz, 2H, H-arom), 6.78 (t, *J* = 8.0 Hz, 1H, H-arom), 5.26 (d, *J* = 24.0 Hz, 1H, C<u>H</u>), 4.20-4.00 (m, 4H, OC<u>H</u>₂CH₃), 2.92 (s, 3H, C<u>H</u>₃), 1.22-1.18 (m, 6H, OCH₂C<u>H</u>₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 149.87 (d, *J* = 7.07 Hz, Cq), 133.46 (d, *J* = 7.07 Hz, Cq), 131.51 (s, CH-arom), 130.40 (d, *J* = 9.09 Hz, CH-arom), 129.14 (s, CH-arom), 121.93 (s, Cq), 118.27 (s, CH-arom), 113.88 (s, CH-arom), 63.12 (d, *J* = 7.07 Hz, OCH₂CH₃), 62.11 (d, *J* = 7.07 Hz, OCH₂CH₃), 61.22 (d, *J* = 160.59 Hz, CH), 34.57 (s, CH₃), 16.39 (d, *J* = 6.1 Hz, OCH₂CH₃), 16.22 (d, *J* = 5.1 Hz, OCH₂CH₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 21.66 ppm. Anal. Calcd. for C₁₈H₂₃BrNO₃P: C, 52.44; H, 5.62; N, 3.40. Found: C, 52.33; H, 5.47; N, 3.29.

Table 5, entry 4: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.30 (d, J = 8.0 Hz, 2H, H-arom), 7.06 (s, 1H, H-arom), 6.92 (d, J = 2.0 Hz, 2H, H-arom), 6.80 (d, J = 8.0 Hz, 1H, H-arom), 6.53 (d, J = 8.0 Hz, 2H, H-arom), 4.25 (d, J = 24.0 Hz, 1H, C<u>H</u>), 3.99-3.94 (m, 2H, OC<u>H</u>₂CH₃), 3.84-3.80 (m, 5H, OC<u>H</u>₂CH₃+OC<u>H</u>₃), 2.75 (s, 3H, C<u>H</u>₃), 1.14-1.11 (t, J = 4.0, 8.0 Hz, 6H, OCH₂C<u>H</u>₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 148.38 (s, Cq), 146.77 (s, Cq), 144.95 (Cq), 130.04 (d, J = 8.08 Hz, CH-arom), 128.93 (s, CH-arom), 125.19 (d, J = 5.05 Hz, Cq), 122.14 (d, J = 9.09 Hz, CH-arom), 114.64 (s,

<u>C</u>H-arom), 112.47 (s, <u>C</u>H-arom) 112.27 (d, J = 7.07 Hz, <u>C</u>H-arom), 62.68 (d, J = 7.07 Hz, <u>OC</u>H₂CH₃), 62.54 (d, J = 7.07 Hz, <u>OC</u>H₂CH₃), 55.83 (s, <u>OC</u>H₃), 49.72 (d, J = 139.38 Hz, <u>C</u>H), 30.64 (s, <u>C</u>H₃), 16.31 (s, OCH₂<u>C</u>H₃), 16.25 (s, OCH₂<u>C</u>H₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 26.36 ppm. Anal. Calcd. for C₁₉H₂₆NO₅P: C, 60.15; H, 6.91; N, 3.69. Found: C, 59.01; H, 6.79; N, 3.53.

Table 5, entry 5: Beige solid. ¹H NMR (CDCl₃, 400 MHz) δ 8.00 (d, *J* = 8.0 Hz, 2H, H-arom), 7.60 (d, *J* = 8.0 Hz, 2H, H-arom), 7.25 (t, *J* = 8.0 Hz, 2H, H-arom), 6.87 (d, *J* = 8.0 Hz, 2H, H-arom), 6.80 (t, *J* = 8.0 Hz, 1H, H-arom), 5.37 (d, *J* = 24.0 Hz, 1H, C<u>H</u>), 4.20-4.03 (m, 4H, OC<u>H</u>₂CH₃), 3.89 (s, 3H, OC<u>H</u>₃), 2.98 (s, 3H, C<u>H</u>₃), 1.24-1.19 (m, 6H, OCH₂C<u>H</u>₃) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 166.70 (s, <u>C</u>=O), 149.95 (s, <u>C</u>q), 139.92 (s, <u>C</u>q), 129.71 (s, <u>C</u>H-arom), 129.23 (s, <u>C</u>H-arom), 128.70 (s, <u>C</u>q), 118.15 (s, <u>C</u>H-arom), 113.87 (s, <u>C</u>H-arom), 63.22 (d, *J* = 8.08 Hz, OCH₂CH₃), 62.28 (d, *J* = 7.07 Hz, OCH₂CH₃), 61.68 (d, *J* = 159.58 Hz, <u>C</u>H), 52.04 (s, OCH₃), 34.87 (s, <u>C</u>H₃), 16.43 (d, *J* = 6.1 Hz, OCH₂CH₃), 16.26 (d, *J* = 5.1 Hz, OCH₂CH₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 21.57 ppm. Anal. Calcd. for C₂₀H₂₆NO₅P: C, 61.37; H, 6.70; N, 3.58. Found: C, 60.19; H, 6.58; N, 3.40.

4.4. Use of the catalyst [CpRu(PPh₃)₂Cl] in several catalytic cycles

To a mixture of 4-(methylthio)benzaldehyde (1.0 mmol), aniline (1.0 mmol) and $[CpRu(PPh_3)_2Cl]$ (0.5 mol %) was added HP(O)(OEt)_2 (2.0 mmol). The reaction mixture was stirred at 80 °C under an air atmosphere during 15 min. The reaction mixture was cooled and the yield was determined by ¹H NMR spectroscopy using mesitylene (1.0 mmol) as internal standard. In the next catalytic cycles, 4-(methylthio)benzaldehyde (1.0 mmol), aniline (1.0 mmol), HP(O)(OEt)_2 (2.0 mmol) and mesitylene (1.0 mmol) was added to the reaction mixture and stirred at 80 °C. The yields were determined by ¹H NMR spectroscopy.

Acknowledgements

This research was supported by Fundação para a Ciência e Tecnologia through project UID/QUI/00100/2013. Ivânia Cabrita (SFRH/BD/74280/2010), Sara Sousa and Pedro Florindo thank FCT for grants. Ana Fernandes (IF/00849/2012) acknowledges FCT for the "Investigador FCT" Program. Authors also thank the Portuguese NMR Network (IST-UTL Center) for providing access to the NMR facilities.

References

1 Kukhar, V. P.; Hudson, H. R. Aminophosphinic and aminophosphonic acids

chemistry and biological activity, Jonh Wiley-Sons LTD, New York, 2000.

- 2 Alonso, E.; Alonso, E.; Solis, A.; del Pozo, C. Synlett 2000, 698-700.
- 3 Peyman, A.; Stahl, W.; Wagner, K.; Ruppert, D.; Budt, K.-H. Bioorg. Med. Chem.

Lett. 1994, 4, 2601-2604.

- 4 Atherton, F. R.; Hassall, C. H.; Lambert, R. W. J. Med. Chem. 1986, 29, 29-40.
- 5 Rao, X.; Song, Z.; He, L. Heteroatom. Chem. 2008, 19, 512-516.

6 Kraicheva, I.; Bogomilova, A.; Tsacheva, I.; Momekov, G.; Troev, K. *Eur. J. Med. Chem.* **2009**, *44*, 3363-3367.

7 Huang, J.; Chen, R. Heteroatom. Chem. 2000, 11, 480-492.

8 Mao, M. K.; Franz, J. E. Synthesis 1991, 920-922.

9 Joly, G. D.; Jacobsen, E. N. J. Am. Chem. Soc. 2004,126, 4102-4103.

10 Pettersen, D.; Marcolini, M.; Bernardi, L.; Fini, F.; Herrera, R. P.; Sgarzani, V.; Ricci, A. J. Org. Chem. 2006, 71, 6269-6272.

- 11 Saito, B.; Egami, H.; Katsuki, T. J. Am. Chem. Soc. 2007, 129, 1978-1986.
- 12 Abell, J. P.; Hisashi Yamamoto, H. J. Am. Chem. Soc. 2008, 130, 10521-10523.
- 13 Xu, W.; Zhang, S.; Yang, S.; Jin, L.-H.; Bhadury, P. S.; Hu, D.-Y.; Zhang, Y. *Molecules* **2010**,*15*, 5782-5796.
- 14 Ohara, M.; Nakamura, S.; Shibata, N. Adv. Synth. Catal. 2011, 353, 3285-3289.

15 Yan, Z.; Wu, B.; Xiang Gao, X.; Chen, M.-W.; Zhou, Y.-G. Org. Lett. 2016, 18, 692-695.

16 Keglevich, G.; Erika Bálint, E. Molecules 2012, 17, 12821-12835.

17 Kafarski, P.; Gorny vel Gorniak, M.; Andrasiak, I. *Curr Green Chem.* **2015**, *2*, 218-222.

18 Sudhapriya, N.; Balachandran, C.; Awale, S.; Perumal, P. T. *New J. Chem.* **2017**, *41*, 5582-5594.

19 Sivala, M. R.; Devinenib, S. R.; Gollac, M.; Medarametlab, V.; Pothuru, G. K.;

Chamarthic, N. R. J. Chem. Sci. 2016, 128, 1303-1313.

20 Li, X.-C.; Gong, S.-S.; Zeng, D.-Y.; You, Y.-H.; Sun, Q. *Tetrahedron Lett.* **2016**, *57*, 1782-1785.

21 Lee, S.-G.; Park, J. H.; Kang, J.; Lee, J. K. Chem. Commun. 2001, 1698-1699.

22 Tang, J.; Wang, L.; Wang, W.; Zhang, L.; Wu, S.; Mao, D. J. Fluorine Chem. 2011, 132, 102-106.

23 Xu, F.; Luo, Y.; Deng, M.; Shen, Q. Eur. J. Org. Chem. 2003, 4728-4730.

24 Chandrasekhar, S.; Prakash, S. J.; Jagadeshwar, V.; Narsihmulu, C. *Tetrahedron Lett.* 2001, 42, 5561-5563.

25 Dindulkar, S. D.; Reddy, M. V.; Jeong, Y. T. Catal. Commun. 2012, 17, 114-117

26 Zhan, Z. P.; Li, J. P. Synth. Commun. 2005, 35, 2501-2504.

27 Azizi, N.; Saidi, M. R. Eur. J. Org. Chem. 2003, 4630-4633.

28 Rezaei, Z.; Firouzabadi, H.; Iranpoor, N.; Ghaderi, A.; Jafari, M. R.; Jafari, A. A.; Zare, wH. R. *Eur. J. Med. Chem.* **2009**, *44*, 4266-4275.

29 Noronha, R. G.; Romão, C. C.;. Fernandes, A. C. Catal. Commun. 2011, 12, 337-340.

30 Mu, X.-J.; Lei, M.-Y.; Zou, J.-P.; Zhang, W. Tetrahedron Lett. 2006, 47, 1125-1127.

31 Keglevich, G.; Szekrenyi, A. Lett. Org. Chem. 2008, 5, 616-622.

32 Bálint, E.; Takács, J.; Drahos, L.; Juranovič, A.; Kočevar, M.; Keglevich, G. *Heteroatom Chem.* **2013**, *24*, 221-225.

33 Tajti, Á.; Bálint, E.; Keglevich, G. Curr. Org. Synth. 2016, 13, 638-645.

34 Bálint, E.; Tajti, Á.; Kalocsai, D.; Mátravölgyi, B.; Karaghiosoff, K.; Czugler, M.; Keglevich, G. *Tetrahedron* **2017**, *73*, 5659-5667.

35 Ashby, G. S.; Bruce, M. I.; Tomkins, I. B.; Walli, R. C. Aust. J. Chem. 1979, 32, 1003-1016.

36 Moreno, V.; Font-Bardia, M.; Calvet, T. T.; Lorenzo, J.; Avilés, F. X.; Garcia, M.

H.; Morais, T. S.; Valente, A.; Robalo, M. P. J. Inorg. Biochem. 2011, 105, 241-249.

37 Florindo, P. R.; Pereira, D. M.; Borralho, P. M.; Costa, P. J.; Piedade, M. F. M.;

Rodrigues, C. M. P.; Fernandes, A. C. Dalton Trans. 2016, 45, 11926-11930.

38 Florindo, P. R.; Pereira, D. M.; Borralho, P. M.; Rodrigues, C. M. P.;

Piedade, M. F. M.; Fernandes, A. C. J. Med. Chem. 2015, 58, 4339-4347.

39 Florindo, P. R.; Marques, I. J.; Nunes, C. D.; Fernandes, A. C. *J. Organomet. Chem.* **2014**, *760*, 240-247.

40 Rezaei, Z.; Khabnadideh, S.; Zomorodian, K.; Pakshir, K.; Nadali, S.; Mohtashami, N.; Mirzaei, E. F. *Int J Med Chem* **2011**, *26*; 678101.

Highlights

 $[CpRu(PPh_3)_2Cl]$ is a very efficient catalyst for the direct aminophosphonylation of aldehydes

The catalyst [CpRu(PPh₃)₂Cl] can be use in 12 catalytic cycles with excellent activity

The reactions can be performed under solvent free conditions

A ALANA ALANA