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The local structures of rhodium complexes derived from the immobilization of Wilkinson’s complex, RhCl
(PPh3)3, on SBA-15 silica functionalized with primary–amine, secondary–amine, or diphenylphosphine
groups within the mesoporous channels were characterized by a series of techniques including XRD,
HR-TEM, multinuclear (13C/29Si/31P) solid-state NMR, 2D 31P{1H} HETCOR NMR, XPS, and Rh K-edge
EXAFS. Immobilization of RhCl(PPh3)3 through covalent bond formation with different functional groups
grafted to the silica surface lead to variations in the local structure of the Rh center that has important
implications for catalysis. The immobilized Rh complexes demonstrated high activity for the addition
of alkynes with thiols (hydrothiolation) or sulfonic acids (hydrosulfonation) with excellent regio- and
stereoselectivity under mild reaction conditions. This work demonstrates the elucidation of the local
structure of the immobilized Rh complexes requires a complimentary multi-technique characterization
approach that probes both the metal center itself and surrounding ligands.

� 2018 Elsevier Inc. All rights reserved.
1. Introduction

The immobilization of catalytically active species, i.e.
organometallic complexes, onto a solid support to produce a
molecular heterogeneous catalyst is one potential solution to
issues associated with homogeneous catalysis, such as catalyst
recyclability and separation from the product mixture [1–3]. The
merits of heterogeneous catalysts are derived not only from their
ease of separation from the reaction media, but also their unique
activity derived from their site-isolation and the structure of the
surface-bound catalytic active sites.

Functionalization of supports via organic modification provides
their surfaces with many favorable properties for various practical
applications in gas storage, separation, catalysis, and drug delivery.
Immobilization of organometallic complexes through covalent
bond formation with functional groups on supports is the most
commonly employed method to form heterogenized organometal-
lic catalysts that are applicable for a variety of catalytic chemistries
including hydrogenation [4–6], hydroformylation [7–10], and
hydrosilylation [12,13]. The chemical bonding betweenmetal com-
plexes and functional groups of the support maintains the isolated
nature of metal complexes at dilute surface densities, which can
influence the catalytic performance in a manner that the analogous
homogeneous complex does not exhibit in solution [14–19]. These
grafted structures not only reduce metal leaching from the support
and subsequent metal contamination of the products, but in
selected examples provide an enhancement in activity and selec-
tivity relative to the analogous homogeneous complex [4–11].

Wilkinson’s complex, RhCl(PPh3)3, is a well-known homoge-
neous hydrogenation catalyst in organic synthesis and the produc-
tion of fine chemicals [20–26]. It has been immobilized onto
supports using various functional groups to form heterogeneous
catalysts which have shown high activity and stability during
catalysis [6,27–34]. In spite of tremendous effort dedicated to the
immobilization of homogeneous complexes over the last two dec-
ades [35], investigations of the local structures of RhCl(PPh3)3 upon
immobilization on surface-functionalized supports especially with
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emphasis on the correlation of the structures with catalytic activ-
ities and/or selectivity are scarce. Possible structures of immobi-
lized Rh species have been proposed previously in the literature
[36–38], but these studies have not adequately combine spectro-
scopic characterization(s) of the heterogeneous species that probe
both the grafted metal center and ligand environment. Addition-
ally, the most thorough study to date [36] did not perform catalytic
experiments to correlate kinetic behavior with the structure of the
grafted organometallic catalyst (i.e. a structure-function relation-
ship). We aim to determine the local structure of immobilized ana-
logs of Wilkinson’s catalyst through rigorous spectroscopic
characterization in order to establish structure-function relation-
ships for carbon-heteroatom bond formation reactions.

Recently, we reported the highly regio- and stereoselective
hydrothiolation of alkynes with thiols to produce valuable vinyl
sulfides catalyzed by immobilized Rh complexes with high activity
and stability (Scheme 1) [39]. We found the regio- and stereoselec-
tivity for vinyl sulfides is highly dependent on the immobilized Rh
complexes derived from the reaction of RhCl(PPh3)3 with surface-
functionalized SBA-15 bearing different functional groups: pri-
mary–amine, secondary–amine, and diphenylphosphine. We
believe the local structure of the immobilized Rh complexes is pri-
marily responsible for such differences in stereoselectivity, but did
not pursue the origin of these stereoselectivity differences in our
previous work, which motivated us to determine their exact struc-
ture with an in-depth characterization study to reveal the
structure-function relationships between activity/selectivity and
the Rh center.

In this paper, we elucidate the local structure of immobilized Rh
complexes, derived from the reaction of Wilkinson’s complex with
surface-functionalized SBA-15 by systematic characterization
using X-ray diffraction (XRD), physical adsorption, high-
resolution transmission electron microscopy (HR-TEM), X-ray pho-
toelectron spectroscopy (XPS), multi-nuclear (13C, 29Si, and 31P)
solid-state nuclear magnetic resonance (NMR) spectroscopy, 31P
{1H} HETCOR (heteronuclear correlation) 2D NMR, and Rh K-edge
extended X-ray absorption fine structure (EXAFS) spectroscopy.
The structure-function relationship between activity/selectivity
of the Rh center for alkyne hydrothiolation was clearly disclosed.
In addition, we extend the use of such immobilized Rh complexes
Scheme 1. Preparation of immobilzed Rh com
to CAO bond formation chemistry – the addition of alkynes with
sulfonic acids (hydrosulfonation) – to produce valuable vinyl sul-
fonates, which are important and versatile building blocks in
organic synthesis, especially for cross-coupling [40–44], carbonyla-
tion [45], and polymerization [46] reactions. They also represent
attractive intermediates for the formation of vinyl cations or alky-
lidiene carbenes [47]. The immobilized Rh complexes demonstrate
high activity, excellent regio- and stereoselectivity, broad substrate
versatility, and significant stability.
2. Results and discussion

2.1. Preparation and characterization of the catalysts

SBA-15 silica was prepared using a (EO)20(PO)70(EO)20 (P123)
triblock co-polymer and tetraethyl orthosilicate (TEOS) under
acidic conditions according to a previously reported procedure
[48]. The immobilized Wilkinson’s complex, RhCl(PPh3)3, on
surface-functionalized SBA-15 was prepared under a nitrogen
atmosphere in a step-by-step manner as shown in Scheme 1.
The functionalized samples were labeled as N-SBA-15 (primary
amine, (3-aminopropyl)triethoxysilane)), 2N-SBA-15 (secondary
amine, [3-(2-aminoethylamino)-propyl]triethoxysilane)), P-SBA-15
(diphenylphosphine), and the corresponding immobilized catalysts
were labeled as Rh-N-SBA-15, Rh-2N-SBA-15, and Rh-P-SBA-15,
respectively. A nominal loading of 1 wt% Rh was introduced to each
sample, and the Rh loading determined by ICP-AES to be 0.92, 0.89,
and 0.91, respectively.

The nitrogen adsorption isotherms of SBA-15, P-SBA-15, and
Rh-P-SBA-15 as representative samples, respectively, shown in
Fig. S1, displayed typical IV type N2 adsorption-desorption iso-
therms with a clear H1 hysteresis loop, indicating the highly
ordered mesoporous channel structures of SBA-15 were preserved
upon organic functionalization and subsequent immobilization of
Wilkinson’s complex. The hysteresis loops of SBA-15, P-SBA-15,
and Rh-P-SBA-15 gradually shifted to lower relative pressures,
especially for Rh-P-SBA-15, indicating a lower relative pressure
at which capillary condensation commences and a decrease in sur-
face area. This is consistent with changes in pore size distribution,
plexes on surface-functionalized SBA-15.
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as shown in Fig. S1. We observed a similar behavior for the amine-
functionalized SBA-15 silica materials.

Functionalization and immobilization of Wilkinson’s complex
caused a reduction in the surface area, total pore volume, and
mean pore size compared with pure SBA-15, as listed in Table S1.
The low-angle XRD pattern (Fig. S2) for all samples showed three
well-resolved peaks in the region of 0.6–2� indexed to (1 1 0), (2
0 0), and (2 1 1) reflections of hexagonal mesoporous arrays and
a significant decrease in their reflection intensities compared with
pure SBA-15. A positive shift in peak position for the P-SBA-15 and
Rh-P-SBA-15 samples was observed relative to the parent SBA-15
due to the increased thickness of the pore wall, demonstrating
the organic functional groups and rhodium complex were grafted
predominantly onto the internal surface of the pore. The HR-TEM
images in Fig. S3 clearly demonstrate the mesoporous channels
were preserved upon functionalization and immobilization of
Wilkinson’s complex and no metallic Rh nanoparticles were
formed.

In order to further characterize differences in SBA-15 before and
after functionalization and immobilization, we conducted 13C and
29Si solid-state NMR experiments. Fig. 1 shows the 29Si CP-MAS
NMR spectra for pure SBA-15, N-SBA-15, 2N-SBA-15, and P-SBA-
15, respectively. As shown in Fig. 1A, two signals around �101
and �110 ppm for the pure SBA-15, characteristic of Q3 and Q4 sil-
icon sites of the SiO4-substructures (Qn = Si(OSi)n(OH)4-n, n = 2–4)
are present. The structural changes of the silica after the function-
alization are visible in Fig. 1B, C, and D (spectra a, c, e). An addi-
tional set of peaks between �50 and �70 ppm, assignable to Tm-
site groups (Tm = RSi(OSi)m(OH)3-m, m = 1–3) are present, indicat-
Fig. 1. 29Si CP-MAS NMR spectra for (A) SBA-15; (B) a: N-SBA-15, b: Rh-N-SBA-15;
(C) c: 2N-SBA-15, d: Rh-2N-SBA-15; (D) e: P-SBA-15 passivated with ClSiMe3, f:
Rh-P-SBA-15 passivated with ClSiMe3.
ing successful incorporation of organic moieties into the silica
framework. An additional peak at -16 ppm assignable to
ASiAOASiMe3 functionalities on P-SBA15 was observed for sam-
ples passivated with chlorotrimethylsilane prior to reaction with
LiPPh2. The subsequent immobilization of RhCl(PPh3)3 on the
surface-functionalized SBA-15 causes marginal changes in the
29Si CP-MAS spectra for the Tm and Qn groups, as shown in
Fig. 1B, C, and D (spectra b, d, f). It is unclear why T-groups for
the P-SBA-15 and Rh-P-SBA-15 (Fig. 1) are so weak, but all other
characterizations and reactivity studies are consistent with RhCl
(PPh3)3 grafted to phosphine.

Fig. 2 summarizes the 13C CP-MAS NMR spectra for the SBA-15
upon organic functionalization and the corresponding catalysts
after subsequent immobilization of RhCl(PPh3)3. Peaks correspond-
ing to the pure organic functional linkers (Fig. 2A, spectrum a, 2B,
d; and 2C, g) appear in the 13C solid-state NMR spectra of the
organically functionalized SBA-15 samples and their respective
immobilized Rh complexes, indicating the successful grafting and
structural retention of the organic linkers on the silica surface.
Using N-SBA-15 as an example, the appearance of peaks at d =
10.8, 18.6, 27.9, 45.4, and 58.6 ppm, corresponding to ASiCH2,
AOCH2CH3, ACH2CHCH2, ACH2NH2, and AOCH2CH3, respectively,
demonstrates the successful grafting of 3-aminopropyl linkers to
the SBA-15 surface through the condensation reaction between
AOH and ASiOCH2CH3 (Fig. 2A, spectrum b). After subsequent
immobilization of RhCl(PPh3)3, no significant differences in the
13C CP-MAS NMR spectra were found among the catalysts with
the exception of the appearance of a broad peak around d = 128–
132 ppm, assignable to the phenyl group of triphenylphosphine
ligands coordinated to rhodium.

Notably, in the case of Rh-P-SBA-15 (Fig. 2C, spectrum k), the
signal intensity of the phenyl group ranging from 128 to 132
ppm significantly increases; while the same signal for Rh-2N-
SBA-15 (Fig. 2B, spectrum f) is virtually absent in the 13C CP-MAS
spectra. The most likely reason for this observation is due to the
complete replacement of the PPh3 ligand with the secondary-
amine groups on the silica surface. Collectively, these results
demonstrate the organic functional linkers and RhCl(PPh3)3 were
successfully immobilized onto the surface of SBA-15. The results
thus far demonstrate differences among grafted samples, but do
not provide significant insight into the local structures of the indi-
vidual immobilized Rh centers.

2.2. Local structure of the immobilized Rh complex on SBA-15

Various attempts towards the covalent immobilization of
Wilkinson’s complex, RhCl(PPh3)3, on a variety of solid supports
have been undertaken and the resulting catalysts demonstrate
high activity and stability during catalysis [27–34], but insuffi-
cient attention has been paid to the structure of the heteroge-
nized catalyst. We deem this a critical element in the synthesis
of supported molecular catalysts because knowledge of the local
structure allows for the elucidation of structure-function relation-
ships between activity/selectivity and the structure of the Rh cen-
ter. To address this shortcoming, we applied a series of
techniques in concert to obtain a better understanding of the
chemical environment of surface-supported Rh complexes includ-
ing 31P CP-MAS NMR, 2D 31P{1H} HETCOR NMR, XPS, and Rh K-
edge EXAFS.

2.2.1. Solid-State 31P NMR characterization of immobilized Rh
catalysts

Fig. 3 shows the 31P CP-MAS NMR spectra for the as-prepared
catalysts, Rh-N-SBA-15, Rh-2N-SBA-15, and Rh-P-SBA-15, respec-
tively. The spectrum of Wilkinson’s complex upon immobilization
on the surface-functionalized SBA-15 differs significantly from the



Fig. 2. 13C liquid and CP-MAS NMR spectra for (a): (3-aminopropyl)triethoxysilane; (b): N-SBA-15, (c): Rh-N-SBA-15; (d): [3-(2-aminoethylamino)-propyl]triethoxysilane;
(e): 2N-SBA-15, (f): Rh-2N-SBA-15; (g): 3-chloropropyltriethoxysilane, (h): Cl-SBA-15, (i): Cl-SBA-15 upon passivation with ClSiMe3, (g): P-SBA-15, (k): Rh-P-SBA-15.
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solid-state complex. The spectrum of the solid-state complex
shows three center-split peaks with isotropic chemical shifts of
48.0, 32.5, and 22.3 ppm, attributable to the three nonequivalent
phosphorus atoms in the complex molecule (Fig. 3A). Note that,
in the solid state, RhCl(PPh3)3 has a distorted square planar struc-
ture in which the three phosphorous atoms are nonequivalent, the
31P NMR spectrum therefore gives rise to the ABM part of an ABMX
spectrum. The AB part of the spectrum is due to the two mutually
trans 31P nuclei, since 2J(P,P)trans couplings are usually found to be
much larger than 2J(P,P)cis. Analysis of the 1D CP/MAS spectrum of
RhCl(PPh3)3 yields the following parameters: d(P1) = 22.3 ppm, d
(P2) = 32.5 ppm, d(P3) = 48.0 ppm, J(Rh-P1) = 144 Hz, J(Rh-P2) = 140
Hz, and J(Rh-P3) = 194 Hz. Such results are in line with reported
results [49]. A single broad symmetric peak at d = 32.0 ppm was
observed upon immobilization of RhCl(PPh3)3 onto N-SBA-15
(Fig. 3B, spectrum d), which is in good agreement with previously
reported results [36]. After immobilization of RhCl(PPh3)3 onto 2N-
SBA-15 (Fig. 3B, spectrum c), a single broad peak centered at d =
28.6 ppm was detected albeit with a considerably lower intensity,
compared with the other two immobilized Rh complexes, indicat-
ing a reduced number of triphenylphosphine groups are ligated to
rhodium on the SBA-15 surface. This is in good agreement with
previously discussed 13C CP-MAS NMR and XPS results to be dis-
cussed in Section 2.2.3. Notably, a peak at d = 0 ppm was observed,
most likely due to the lower signal-to-noise ratio (even with long
accumulation times common to solid state NMR) rather than
deriving from a true P or Rh-P species on the surface of Rh-2N-
SBA-15, which was further supported by XPS in Section 2.2.3.

In sharp contrast, two well-resolved peaks centered at d = 27.0
and 44.0 ppm were observed upon immobilization of RhCl(PPh3)3
onto P-SBA-15 (Fig. 3B, spectrum b), indicative of two non-
equivalent phosphorus groups coordinated to rhodium. Addition-
ally, free grafted diphenylphosphine ligand at d = �15.8 ppm was
also observed. This peak position is in good agreement with the
spectrum of P-SBA-15 (Fig. 3B, spectrum a). There is no indication
of an oxidized phosphine peak (d = 38.0 ppm) or phosphonium spe-
cies (d = 24.0 ppm) among the as-prepared catalysts [50,51], which
is further supported by the XPS observation of P 2p binding energy
(to be discussed in Section 2.2.3). An additional passivation step
was performed to the P-SBA-15 material in order to eliminate
the potential reaction between the basic LiPPh2 and the remaining
surface OH groups after grafting 3-chloropropyltriethoxysilane;
the support surface was passivated by treatment with
chlorotrimethylsilane to replace surface OH groups with OSiMe3
groups. The removal of residual hydroxyl groups by passivation
ensured a high probability of reaction between grafted propylchlo-
ride and LiPPh2. We examined the necessity of this passivation step
with solid-state 31P NMR (Fig. S4). The 31P spectra demonstrate
very little difference between passivated and non-passivated P-
SBA15 suggesting the reaction between LiPPh2 was minor. As a
consequence, the 31P CP-MAS NMR results strongly indicate RhCl
(PPh3)3 was successfully immobilized onto surface-functionalized



Fig. 3. 31P CP-MAS NMR spectra for (A) RhCl(PPh3)3; (B) a: P-SBA-15, b: Rh-P-SBA-
15, c: Rh-2N-SBA-15, d: Rh-N-SBA-15. Possible local structure of supported Rh
complex is depicted next to the figure. Note: * represents spinning side bands.
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SBA-15 with distinct differences in the exact structures of the local
Rh complexes.

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.jcat.2018.06.012.
2.2.2. 2D 31P{1H} HETCOR NMR characterization of immobilized Rh
catalysts

The substantial breadth of the 1D 31P CP-MAS NMR spectra pre-
vents an accurate determination of the Rh-P coupling constants
and determination of the non-equivalency of phosphorus atoms.
Two-dimensional 31P{1H} HETCOR NMR experiments were con-
ducted to provide additional information on the phosphorus spe-
cies grafted to the surface of SBA-15 in order to gain insight into
the local structure of the Rh site. The 2D spectra for the as-
prepared catalysts Rh-P-SBA-15, Rh-N-SBA-15, and Rh-2N-SBA-
15 are shown in Fig. 4A–C, respectively. The 31P NMR peak at d =
�15.8 ppm from the grafted diphenylphosphine ligands on Rh-P-
SBA-15 is strongly correlated to the methylene species (1H NMR
peaks ranging from 0.8 to 2.8 ppm) and to the aromatic rings (1H
NMR peaks, 7.0–7.5 ppm), as shown in Fig. 4A. An identical corre-
lation was found for the 31P NMR peak centered at d = 27.0 ppm
with the 1H peaks at 0.8–2.8 and 7.0–7.5 ppm, suggesting 1 or 2
PPh3 ligands are displaced when RhCl(PPh3)3 is grafted to P-SBA-
15. The 31P NMR peak centered at 44.0 ppm shows no correlation
to the 1H NMR peaks ranging from 0.8 to 2.8 ppm, but does show
a correlation to the aromatic protons (1H peaks, 7.0–7.5 ppm),
which is attributed to the remaining PPh3 ligated to rhodium.
Deconvolution of the 31P CP-MAS spectrum (Fig. 3, spectrum b)
revealed the intensity ratio of peaks at d = 27.0 and 44.0 ppm is
�2:1, indicating two equivalents of the tethered diphenylphos-
phine replaced two PPh3 ligands to coordinate with rhodium upon
immobilization of RhCl(PPh3)3 on the surface of SBA-15. The excess
grafted diphenylphosphine increased the probability that adjacent
free diphenylphosphine groups were available to ligate the same
Rh center. For Rh-N-SBA-15, the 31P NMR peak at 32 ppm, as
expected, only has one correlation to the 1H peak of the aromatic
rings, as shown in Fig. 4B. However, a considerably weaker corre-
lation between the 31P and 1H peaks was found in the case of Rh-
2N-SBA-15, in accordance with the results of the 1D 31P CP-MAS
NMR experiment, further confirming the existence of trace phos-
phorus groups. The trace phosphorus species are most likely in
the form of physically adsorbed RhCl(PPh3)3 on the surface even
after thorough washing by Soxhlet extraction.

2.2.3. XPS characterization of immobilized Rh catalysts
Fig. S6 shows the XPS spectra for RhCl(PPh3)3, Rh-N-SBA-15,

Rh-2N-SBA-15, and Rh-P-SBA-15, respectively. The binding
energy (BE) value of Rh 3d5/2 in RhCl(PPh3)3 was observed at
309.2 eV, in agreement with literature [52]. Upon immobilization
of RhCl(PPh3)3 on the surface-functionalized SBA-15, the BE val-
ues of Rh 3d5/2 differed from the homogeneous precursor. The
magnitude of each BE shift relative to pure RhCl(PPh3)3 depended
on the functional groups tethered to the SBA-15 surface as shown
in Fig. S7. In the case of Rh-P-SBA-15, no distinct deviations in Rh
3d5/2 BEs were observed. This result is reasonable because the
electronic and steric characteristics of the immobilized rhodium
complex was intrinsically retained upon immobilization since
two PPh3 ligands were replaced with two equivalent surface-
tethered diphenylphosphines, as observed from 2D 31P{1H} HET-
COR NMR. However, a significant shift to lower values in the BE
of the Rh 3d5/2 peak (307.9 and 307.5 eV) was found in Rh-N-
SBA-15 and Rh-2N-SBA-15, respectively, and the shift in the case
of Rh-2N-SBA-15 is slightly larger than Rh-N-SBA-15. We attri-
bute the larger shift in Rh-2N-SBA-15 to twice as many amine
interactions between the secondary-amine ligands, compared to
the primary-amine, and rhodium. Primary and secondary amine
ligands can replace two or even three PPh3 ligands to coordinate
with Rh during the formation of the immobilized Rh complexes
because surface amine groups are stronger r-electron donors
than PPh3 ligands. PPh3 is a stronger p-acid than the amine
ligands and the d-p back-donation decreases with the replace-
ment of PPh3 by ANH2, thereby shifting the BEs of the Rh 3d5/2

peaks to lower values [53]. Notably, no shift in the BE values of
P 2p to 133.4 eV (phosphine oxide) [53] or 132.6 eV (phos-
phinium salt) [54] was observed, ruling out their on the immobi-
lized Rh catalysts.

Table 1 summarizes the elemental composition for each cata-
lyst measured by XPS. The observed results for the atomic ratio
of P-to-Rh and Cl-to-Rh for RhCl(PPh3)3 matched the expected
results of three and unity, respectively, while the atomic ratio of
P-to-Rh varied among Rh-P-SBA-15, Rh-N-SBA-15, and Rh-2N-
SBA-15. For Rh-N-SBA-15, the atomic ratio decreased to unity, sug-
gesting only one PPh3 remains ligated to rhodium. No significant
phosphorus signal was detected for Rh-2N-SBA-15, suggesting
near complete replacement of PPh3 with surface-tethered sec-
ondary amine groups on the surface of SBA-15. The lack of phos-
phorous signal is likely due to the lower sensitivity of XPS
compared to 31P CP-MAS NMR. In the case of Rh-P-SBA-15, owing
to an excess of free tethered diphenylphosphine ligands on the
SBA-15 surface, the atomic ratio of P-to-Rh exceeds three. Such a

https://doi.org/10.1016/j.jcat.2018.06.012


Fig. 4. 31P {1H} HETCOR (heteronuclear correlation) NMR for (A) Rh-P-SBA-15; (B) Rh-N-SBA-15; (C) Rh-2N-SBA-15.

Table 1
Elemental composition measured by XPS for RhCl(PPh3)3 and the Rh-grafted catalysts.

Sample Binding Energy (eV) Relative Concentration (atom %) P/Rh Cl/Rh

N
(1s)

P
(2p)

Cl
(2p)

Rh
(3d3/2/3d5/2)

N P Cl Rh

RhCl(PPh3)3 – 132.1 198.1 314.3/309.2 – 4.90 1.54 1.65 2.97 0.93
Rh-N-SBA-15 399.6 131.6 198.2 312.8/307.9 3.93 0.68 0.84 0.65 1.05 1.29
Rh-2N-SBA-15 399.1 – 198.1 312.3/307.5 6.60 – 1.06 1.09 – 0.97
Rh-P-SBA-15 – 132.1 198.0 314.4/309.2 – 2.52 0.77 0.72 3.50 1.07
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value is reasonable and agrees with 31P NMR results (Fig. 3, spec-
trum b). The atomic ratio of Cl-to-Rh (1:1) in each as-prepared cat-
alyst is constant at the stoichiometry of the neat complex,
demonstrating Cl is not replaced during immobilization.

2.2.4. EXAFS characterization of immobilized Rh catalysts
Rh K-edge EXAFS experiments were conducted to further char-

acterize the local structure of the immobilized Rh complexes. Fig. 5
is a compilation of the collected spectra and Table 2 summarizes
the fitting results. In Fig. 5, the solid lines represent the experimen-
tal data while the dashed lines represent the phase-corrected fitted
models. For Rh-P-SBA-15, the coordination number, N, was found
to be 2.00 and 2.00 for Rh-P and Rh-Cl, respectively (experimental
details are provided in Section 4.8 of the Supporting Information).
Due to the similar interatomic distance and electronic structure of
Rh-Cl and Rh-P, distinguishing between P and Cl atoms is difficult.
Considering that the Cl:Rh ratio was determined to be unity for
Rh-P-SBA-15 from XPS, we interpret our EXAFS results as
confirmation that three phosphine-containing ligands are grafted
to the Rh center. 31P NMR results (both 1D and 2D) allows us to dif-
ferentiate between these phosphine-containing ligands as a single
PPh3 ligand and a pair of diphenylphosphine ligands. For the
immobilized Rh-2N-SBA-15 catalyst, we excluded a Rh-P scatter-
ing path for our EXAFS fitting due to the lack of P signals from both
the XPS and NMR results. The fitting for Rh-2N-SBA-15 shows N
values of 4.05 and 0.95 for Rh-N and Rh-Cl, respectively. These
results also support the proposed structure with the local atomic
environments consisting of 4 Rh-N bonds and 1 Rh-Cl bond. Finally,
for Rh-N-SBA-15, the N values were found to be 0.80, 1.09, and 2.11
for Rh-P, Rh-Cl, and Rh-N, respectively. The ratio of these numbers
is close to the proposed structure (1:1:2 for P:Cl:N). No Rh-Rh scat-
tering path could be fit in any of the samples, thereby ruling out
the formation of metallic Rh nanoparticles. This result is in good
agreement with HR-TEM observation and results of Hg(0) poison-
ing experiments as shown in Scheme S1. Overall, our EXAFS results
show that the local atomic structures agree with the proposed



Fig. 5. (A) k2-weighted and (B) Fourier transform of Rh K-edge EXAFS spectra of the
supported Rh catalysts.
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structures from our XPS and NMR results, including retention of
the Cl ligand upon immobilization among all types of grafted
organic functional groups. Based on the above characterization
results, the local structure of the immobilized Rh-complexes upon
reaction of RhCl(PPh3)3 with functionalized SBA-15 bearing pri-
mary amine, or secondary amine, or diphenylphosphine groups
are proposed in Fig. 3.
Table 2
Curve-fitting analysis for the Rh K-edge EXAFS data.a.

Sample Path Nb

Rh-P-SBA-15 Rh-P 3.04 ± 0.6
Rh-Cl 0.96 ± 0.6

Rh-N-SBA-15 Rh-P 0.80 ± 0.2
Rh-N 1.09 ± 0.3
Rh-Cl 2.11 ± 0.3

Rh-2N-SBA-15 Rh-N 4.05 ± 0.5
Rh-Cl 0.95 ± 0.1

a Fourier transform and inverse Fourier transform regions were limited, where Dk = 2
the Rh K-edge.

b Coordination number.
c Bond distance between absorber and backscatter atoms.
d The inner potential correction accounts for the difference in the inner potential betw
e The Debye-Waller factor (r2), is a measure of the thermal disorder in the system as
2.3. Catalytic performance of grafted Rh-(N, 2N, P)-SBA-15 catalysts
2.3.1. Catalytic hydrothiolation of alkynes with thiols
Several metal-based homogeneous catalysts such as Rh

[55–60], Ir [61], Ni [62,63], Cu [64,65], Pd [66,67], Pt [68], Au
[69], Zr [70–72], and f-elements [70–72] have been developed to
produce regio- and stereoselective vinyl sulfides, which are versa-
tile intermediates for the synthesis of biologically active com-
pounds, organic building blocks, and new materials. However,
highly regio- and stereoselective hydrothiolation of a wide range
of alkynes with various thiols catalyzed by a heterogeneous cata-
lyst is still not readily available to date. Given the utility and pro-
ficiency of homogeneous Rh complexes for alkyne hydrothiolation
as previously reported [55–60], we developed immobilized Rh
complex catalysts with different grafting ligands for the hydrothio-
lation of alkynes with thiols (see Table S2 for hydrothiolation reac-
tion data) [39]. The homogeneous Wilkinson’s complex, RhCl
(PPh3)3, showed high activity and excellent regio- and stereoselec-
tivity for the addition of phenylacetylene (1a) to thiophenol (1b),
achieving up to 98% conversion and 94% selectivity to E-1ab along
with 6% selectivity to the Markovnikov adduct in DCE at room tem-
perature within 45 min, as shown in Scheme 2. The immobilized
Rh complexes – Rh-N-SBA-15, Rh-2N-SBA-15, and Rh-P-SBA-15 –
exhibited similar conversions (around 80%) after 20 h. The stereos-
electivity differed depending on the functional groups linked to the
Rh complex, though all immobilized catalysts were completely
regioselective to the anti-Markovnikov product. The Rh-N-SBA-15
catalyst gave a mixture of anti-Markovnikov ((E + Z)-(1 + 2)ab)
products with the (Z)-isomer (1ab) as the main product, while
Rh-2N-SBA-15 produced Z-2ab with 99% stereoselectivity. In sharp
contrast, exclusive and reversed stereoselectivity to E-1ab was
obtained in the presence of Rh-P-SBA-15 under otherwise identical
reaction conditions. The Markovnikov addition was completely
suppressed upon immobilization of RhCl(PPh3)3 onto surface-
functionalized SBA-15.

In order to better understand the relationship between the local
structure and catalytic hdyrothiolation activity/selectivity of the
immobilized catalysts, two equivalents of organic amine with
respect to RhCl(PPh3)3 were mixed with phenylacetylene and thio-
phenol in solution. A dramatic decrease in catalytic activity with
significant change in stereoselectivity was observed compared to
the reaction without the addition of amine in the presence of
RhCl(PPh3)3. A conversion of 92.0% with 30/70 of E/Z stereoselec-
tivity to 2ab was observed after 20 h at room temperature
(Scheme 3) when 2 equivalent of propylamine was added. This
result is roughly equal to the activity and stereoselectivity of the
Rh-N-SBA-15 catalyst. Likewise, excellent stereoselectivity to
Z-2ab (96%) at lower conversion (61.2%) comparable to the
Rh-2N-SBA-15 catalyst was afforded when 2 equivalents of N--
R(Å)c DE0(eV)d 1000 � r2e(Å2)

2.29 ± 0.02 �3.6 ± 4.4 5 ± 1
2.37 ± 0.02 �1.2 ± 1.2 5 ± 1

2.29 ± 0.02 �2.0 ± 0.8 3 ± 1
2.08 ± 0.02 0.9 ± 1.8 3 ± 1
2.37 ± 0.02 �5.3 ± 1.7 3 ± 1

2.08 ± 0.02 �9.7 ± 2.1 3 ± 1
2.37 ± 0.02 7.5 ± 2.6 3 ± 1

–10.0 Å�1 and Dr = 1.0–3.0 Å, respectively. Curve-fitting analysis was performed for

een the sample and reference.
sumed identical for every path in a sample.



Scheme 2. Product distribution for the hydrothiolation of phenylacetylene and thiophenol over different Rh catalysts. Reaction conditions: 0.5 mmol phenylacetylene, 0.55
mmol thiophenol, 50 mg catalyst (4.5 mmol Rh), 2 mL DCE and room temperature.

Scheme 3. Product distribution for the hydrothiolation of phenylacetylene and thiophenol over RhCl(PPh3)3 with 2 equivalents of propylamine or N-ethylethylenediamine.
Reaction conditions: 4.5 mmol RhCl(PPh3)3, 0.5 mmol phenylacetylene, 0.55 mmol thiophenol, 2 mL DCE, and room temperature.
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ethylethylenediamine were introduced into the reaction under
otherwise identical reaction conditions (Scheme 3). These findings
demonstrate the amino functional groups (either primary or sec-
ondary) significantly influence the activity and stereoselectivity
of alkyne hydrothiolation catalyzed by RhCl(PPh3)3 by displacing
amino groups with PPh3 ligand of RhCl(PPh3)3, which was further
evidenced by liquid 31P NMR characterization as presented in
Fig. S5. After Wilkinson’s complex RhCl(PPh3)3 reacted with 2
equivalents of propylamine (relative to RhCl(PPh3)3) in DCE at
room temperature for 2 h, the signal for the characteristic 31P
NMR peaks of RhCl(PPh3)3 in DCE decreased, and free PPh3 was
observed due to the exchange reaction between propylamine and
PPh3 ligands with concomitant formation of a new Rh species at
d = 27.8 ppm. After reaction with 2 equivalents of N-
ethylethylenediamine, the characteristic 31P NMR peaks for RhCl
(PPh3)3 disappeared with near complete release of PPh3 (d =
�5.0 ppm) in DCE. These results are consistent with 31P solid state
NMR results for Rh-N-SBA-15 and Rh-2N-SBA-15. We have not
identified the products of ligand exchange, but the combined cat-
alytic results and 31P NMR characterization of ligand exchange
are consistent with amine displacing phosphine from the Rh cen-
ter. Such outcomes obtained from the control experiments verify
the chemistry of the replacement of grafted amino functional
groups with PPh3 ligand upon immobilization of RhCl(PPh3)3 and
further confirm the relationship between the catalytic activity/
selectivity with the structure of the immobilized Rh center.

Mechanistic investigations point to a catalytic cycle initiated by
oxidative addition of the thiol with Rh center to generate a hydride
thiolate (H-Rh-SR) species and subsequent alkyne insertion into
the hydride ligand followed by reductive elimination to afford
the anti-Markovnikov (E, Z, or both) adducts [60,73]. The formation
of Z-b-vinyl sulfides generally requires isomerization of metal alke-
nyl intermediates prior to reductive elimination [74,75]. It appears
the active Rh species coordinated to amino-groups preferentially
favors the isomerization to produce Z-b-vinyl sulfides based on
our findings over both homogeneous and heterogeneous N-
ligated Rh centers.

2.3.2. Catalytic hydrosulfonation of alkynes with sulfonic acids over
immobilized Rh catalysts

The most straightforward and atom-economical method to
access vinyl sulfonates is via transition-metal catalyzed regioselec-
tive intermolecular addition of sulfonic acids to alkynes. Although
transition-metal-catalyzed addition of alkynes to various nucle-
ophilic reagents such as water [76–80], alcohols [81–87], amines
[61,88–97], thiols [38,58,60,68,70–73,98,99], carboxylic acids
[100–103], and sulfonic acids [104] for the formation of
regio- and stereo-defined vinyl C-heteroatom products have been
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developed, only a few catalytic systems have been reported for the
regioselective addition of sulfonic acids to alkynes [105–107]. Pre-
vious approaches to synthesize vinyl sulfonates suffered from com-
plicated synthesis of starting materials, tedious work-up
procedures, low regioselectivity, and limited substrate versatility
[108–111]. Studies documenting regio- and stereoselective addi-
tions over supported metal catalysts are not available thus far, to
the best of our knowledge. Therefore, development of a stable
heterogeneous catalyst that allows for highly regio- and stereose-
lective addition of alkynes to sulfonic acids to form the correspond-
ing vinyl sulfonates is of great interest.

As discussed above, the regio- and stereoselectivity to the
desired vinyl sulfides for hydrothiolation of alkynes with thiols is
controlled by the local structure of the immobilized Rh complexes.
We tested the ability of Wilkinson’s catalyst to perform hydrosul-
fonation reactions using 1.0 mol % catalyst in 2 mL DCE at 70 �C in
the presence of 1.0 mmol phenylacetylene and 0.5 mmol methane-
sulfonic acid. We achieved 86.2% yield (based on conversion of
methanesulfonic acid) to the Markovnikov product after 2 h. We
then performed the addition of phenylacetylene with methanesul-
fonic acid to form vinyl sulfonates catalyzed by Rh-P-SBA-15, Rh-
N-SBA-15, and Rh-2N-SBA-15, respectively, in DCE at 70 �C. The
immobilized catalysts displayed comparable activity and absolute
regioselectivity to Markovnikov vinyl sulfonates, as shown in
Table 3
Scopes of alkynes and sulfonic acids for hydrosulfonation.a

a Reaction conditions: 1 mmol alkyne, 0.50 mmol sulfonic acid, 5
The reported yield is based on the quantity of isolated product.
Scheme S2. The regioselectivity is independent of the local struc-
ture of the immobilized Rh complexes, which is completely differ-
ent and opposite to the anti-Markovnikov adducts formed during
hydrothiolation. We screened a limited number of alkyne and sul-
fonic acid substrates over Rh-P-SBA-15 and the results are summa-
rized in Table 3. Alkynes were hydrosulfonated with
methanesulfonic acid to produce the corresponding Markovnikov
vinyl sulfonates in moderate to high conversion with absolute
regioselectivity. A group of phenylacetylenes bearing electron-
rich (5-8a) and electron-poor substituents (10, 11a) at o-, m-, or
p- positions on the phenyl ring reacted efficiently with methane-
sulfonic acid. The electron-poor substituents exhibited a negative
effect on the reaction, resulting in considerably lower conversions
under otherwise identical reaction conditions. Internal alkynes
underwent regioselective hydrosulfonation to afford the corre-
sponding Markovnikov adducts (20, 21ab) with satisfactory con-
versions, but required longer reaction times.

Aromatic sulfonic acids featuring both electron-donating (16,
17b) and electron-withdrawing groups (18, 19b) could be added
to phenylacetylene efficiently to afford the corresponding vinyl
sulfonate esters in moderate to high conversions with exclusive
regioselectivity. Stronger acids are beneficial for this transforma-
tion. The addition of 4-chlorobenzenesulfonic acid to pheny-
lacetylene was converted into the corresponding vinyl sulfonate
0 mg catalyst Rh-P-SBA-15 (4.5 mmol Rh), 2 mL DCE and 70 �C.
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(18ab) in 92.4% yield after 24 h, while 73.2% yield of 17ab for the
addition of 4-ethylbenzensulfonic acid with phenylacetylene was
achieved under otherwise identical reaction conditions. Functional
groups on the alkynes such as fluoro, chloro, hydroxyl, and meth-
oxy were compatible with this catalytic system. In all cases listed
in Table 3, no double bond isomerization occurred.
2.4. Stability and recyclability of the immobilized Rh catalysts during
hydrosulfonation

In our previous studies, we found the immobilized Rh com-
plexes to be stable for the hydrothiolation of alkynes with thiols
[39]. We also examined the stability of the immobilized Rh com-
plexes during hydrosulfonation reactions. First, to verify whether
the observed catalysis was due to the heterogeneous catalyst,
Rh-P-SBA-15, or a leached rhodium species in solution, we carried
out the addition of phenylacetylene (1a) to methanesulfonic acid
(4b) and removed the catalyst from the reaction mixture by hot-
filtration at approximately 50% conversion of 4b (Fig. S8) at 70 �C.
After removal of Rh-P-SBA-15, the filtrate was again held at the
same temperature under an atmosphere of N2. No significant
increase in conversion was observed, indicating leached Rh species
from the catalyst are not responsible for the observed activity.
ICP-AES analysis provided further confirmation that no rhodium
species was detected in the filtrate (below detection limit). The
Rh-P-SBA-15 catalyst was recovered and could be reused up to four
times for the transformation of 1a and 4b without any significant
loss of catalytic activity and regioselectivity, as shown in Fig. S9.
Together, these results rule out any contribution to the observed
catalysis from a homogeneous rhodium species, confirming the
observed catalysis was intrinsically heterogeneous. Additionally,
results for 31P CP-MAS NMR of the grafted catalysts after reaction
showed little change in the local structure of the grafted Rh-
complexes (Fig. S10).
3. Conclusions

The structure of immobilized Rh complexes derived from the
reaction of Wilkinson’s complex RhCl(PPh3)3 with surface-
functionalized SBA-15 bearing primary or secondary amine and
diphenylphosphine functional groups within the mesoporous
channels have been elucidated. Their structure strongly depended
on the surface-tethered functional groups replacing two or three
PPh3 ligands of RhCl(PPh3)3 on SBA-15 during the transformation,
which were systematically identified by a series of techniques
including 31P CP-MAS NMR, 31P{1H} HETCOR NMR, XPS, and Rh
K-edge EXAFS. The resulting immobilized Rh complexes exhibited
high activity for the addition of alkynes with thiols or sulfonic
acids, respectively. The regio- and stereoselectivity for hydrothio-
lation to yield vinyl sulfides depended on the local structures of
grafted Rh complexes and the stereoselectivity could be readily
switched. In contrast, only Markovnikov vinyl sulfonate esters
were produced for the addition of alkynes with sulfonic acids with-
out such a dependence on the local structure of the grafted Rh
complexes. A wide range of substrates (alkynes, thiols, and sulfonic
acids) could be efficiently added to form their corresponding
adducts. The immobilized Rh-complexes could be reused several
times without significant loss in catalytic activity and regio- and
stereoselectivity for hydrothiolation and hydrosulfonation. This
study demonstrates that in order to understand why a particular
catalyst is or is not active and selective; it is paramount to deter-
mine the local structure of the surface organometallic catalyst
which ultimately requires complimentary spectroscopic tech-
niques if both the inner ligand sphere and metal center are to be
characterized.
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