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Abstract: An approach to the vicinal oxyazidation
of alkenes has been achieved under mild and
transition metal-free conditions. This method uti-
lizes NaN3 as the azidation agent and 2,2,6,6-
tetramethylpiperidine-1-oxoammonium tetrafluoro-
borate (TEMPO+BF4� ) as the single-electron oxi-
dant as well as the oxygen source. By using this
protocol, various β-aminooxy azides were synthe-
sized and several complex bioactive molecules were
functionalized.
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Organic azides as a versatile reagent have been
widely applicated in synthetic chemistry, biochemis-
try and materials science.[1] In particular, β-oxy
azides not only exists in biologically active mole-
cules but also can be transformed into other
important compounds that contain two vicinal nitro-
gen and oxygen atoms.[2] For example, zidovudine is
a prodrug used in the treatment of HIV/AIDS.[2a]
Azidocillin is an anti-inflammatory drug.[2b] Salbuta-
mol is an important bronchodilator.[2c] Bupropion is
an antidepressant (Figure 1).[2d]

Thus, the efficient synthesis of β-oxy azides has
attracted much attention from organic and pharma-
ceutical chemists.[3–5] In the past few years, a series
of metal-catalyzed and metal-free methods on oxy-
azidation of alkenes have been developed.[4,5] For
instance, Mn-catalyzed hydroxyazidation,[4e] Cu-cat-
alyzed alkoxyazidation[4f]/oxo-azidation[4g] and Ag-
catalyzed azidotrifluoromethoxylation[4h] of olefins
were individually reported by several different
research groups (Scheme 1a). Moreover, Studer[5a]

et al. demonstrated a novel TEMPONa mediated
azidooxygenation of alkenes with Zhdankin reagent.
Lu’s,[5d] Wei’s[5f] and Kashyap’s[5g,h] groups independ-
ently disclosed visible-light-promoted oxyazidation
of olefins. Lin[5e] and co-workers developed a
convenient electrochemical azidooxygenation of al-
kenes (Scheme 1b). Despite these elegant works
toward this end, however, the progress is far from
meeting the need of synthesis, and the exploration of
an efficient and low-cost approach to this structur-
ally important β-oxy azides is still in demand.

As a continuation of our research on the
difunctionation of alkenes,[6] herein we wish to
present a new and efficient method for the oxy-
azidation of various alkenes by using commercially

available NaN3 as the azidation reagent and easily
prepared TEMPO+BF4

� as the oxidant as well as the
oxygen source (Scheme 1c).[7] This strategy not only
provides a practical way for the convenient synthesis
of biologically important β-aminooxy azides but also
can be applied to late-stage modification of bioactive
molecule derivatives.

We commenced our study by subjecting styrene
(1a) (1.0 equiv.) to NaN3 (1.0 equiv.) and TEMPO+

BF4
� (1.0 equiv.) in CH3CN under an argon atmos-

phere at room temperature for 24 h. To our delight,

Figure 1. Bioactive molecules containing β-oxy azide/1,2-
amino alcohol/α-amino ketone moiety.
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the desired product 1-(2-azido-1-phenylethoxy)-
2,2,6,6-tetramethylpiperidine (2a) was generated in
79% yield (Table 1, entry 1). When the usage
amounts of NaN3 and TEMPO+BF4� were both
increased to 1.1 equivalent, the yield of 2a was
improved to 89% (Table 1, entry 2). However, fur-
ther increasing the application amounts of NaN3 and
TEMPO+BF4� did not give a better result (Table 1,

entry 3). Amazingly, 2a was still obtained in 85%
yield under air atmosphere (Table 1, entry 4). Be-
sides CH3CN, several other solvents, such as THF,
PhCl, DMSO, DMF, and DCM were also inves-
tigated, but no better yield was obtained (Table 1,
entries 5–9). In addition, other azidation agent and
other oxidant were also examined, but the outcomes
received under these conditions were not satisfying
(Table 1, entries 10 and 11).

With the optimized conditions in hand (Table 1,
entry 2), the scope of styrenes was surveyed (Ta-
ble 2). First, ortho/meta/para-substituted styrenes
with a variety of electronic properties were well
compatible in the reaction, delivering the desired
products 2a–q in good to excellent yields. Polysub-
stituted styrene also participated well in the proce-
dure, affording the expected product 2 r in 65%
yield. Reaction of 2-vinylnaphthalene with NaN3 and
TEMPO+BF4� yielded the product 2 s in 84% yield.
The heterocyclic substrates such as 2-vinylpyridine,
4-vinylpyridine, 4-methyl-5-vinylthiazole, and 1-
vinyl-1H-imidazole were also good candidates for
this process, providing the corresponding oxyazida-
tion products 2 t–w in 24% to 79% yields. The
structure of 2w was confirmed by a single-crystal X-
ray diffraction study.[8] Significantly, this strategy
was also suitable to 1,2-disubstituted substrates, as
exhibited in the cases of 2x–aa.

Having successfully achieved the oxyazidation of
styrenes, we next shifted our attention to explore the
applicability of this new approach to aliphatic
alkenes (Table 3). Gratifyingly, both simple and
various functionalized terminal alkenes participated
smoothly in the reaction, delivering the correspond-
ing oxyazidation products 2ab–ag in 23–38% yields
with starting material being recovered in some cases
(66% of 1ad, 64% of 1ae and 32% of 1af).
Unfortunately, pent-4-en-1-ol was not applicable for
this method and only unidentifiable complex mix-
tures were observed. Significantly, internal alkenes
such as cyclopentene, cyclohexene, and (Z)-cyclo-
octene were very suitable for this strategy, providing
the desired products 2ai–ak in good to excellent
yields. When buta-1,3-dien-1-ylbenzene was used as
the substrate, the reaction did not yield the expected
oxyazidation product; instead, compound 2al’ was
acquired in a yield of 23%.[9] In addition, phenyl-
acetylene was also investigated, but only unidentifi-
able complex mixtures were obtained.

To demonstrate the synthetic potentiality of this
strategy, this reaction was applied to the late-stage
modification of complex molecules derived from
natural products and drugs (Figure 2). For example,
when estrone and deoxycholic acid derivatives were
used as substrates, the desired oxyazidation product
2an and 2ao were gained in good yields. Moreover,
styrenes derived from drugs such as aspirin, ibupro-

Scheme 1. Representative oxyazidation of alkenes and our
work using TEMPO+BF4� .

Table 1. Optimization of the reaction conditions.[a]

Entry NaN3 TEMPO+BF4 Solvent Yield (%)[b]

1 1.0 equiv. 1.0 equiv. CH3CN 79
2 1.1 equiv. 1.1 equiv. CH3CN 89
3 1.5 equiv. 1.5 equiv. CH3CN 89
4[c] 1.1 equiv. 1.1 equiv. CH3CN 85
5 1.1 equiv. 1.1 equiv. THF 49
6 1.1 equiv. 1.1 equiv. PhCl 63
7 1.1 equiv. 1.1 equiv. DMSO 0
8 1.1 equiv. 1.1 equiv. DMF 28
9 1.1 equiv. 1.1 equiv. DCM 47
10[d] 1.1 equiv. 1.1 equiv. CH3CN 15
11[e] 1.1 equiv. 2.2 equiv. CH3CN 0
[a] Unless otherwise specified, all reactions were carried out by
stirring a mixture of 1a (0.3 mmol, 1.0 equiv.), NaN3 and
TEMPO+BF4� in 2 mL of solvent under argon atmosphere
(1 atm) at room temperature for 24 h.

[b] Isolated yield.
[c] Under air atmosphere (1 atm).
[d] TMSN3 was used instead of NaN3.
[e] TEMPO was used instead of TEMPO+BF4� .
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fen, probenecid, and oxaprozin were also applicable
for this protocol, affording the expected products
2ap–as in moderate to excellent yields.

To further examine the practicability of this
protocol in the organic synthesis chemistry, a gram-
scale reaction of styrene 1a was performed under the
standard conditions. Cheerfully, the reaction still
worked smoothly and the product 2a was obtained
in 89% yield (Scheme 2). Moreover, β-oxy azides

are functional synthetic building blocks in organic
synthesis. Follow-up conversions of β-oxy azides

Table 2. Oxyazidation of styrenes.[a,b]

[a] Reaction conditions: 1 (0.3 mmol, 1.0 equiv.), NaN3
(1.1 equiv.) and TEMPO+BF4� (1.1 equiv.) in CH3CN
(2 mL) at room temperature under argon atmosphere (1 atm)
for 24 h.

[b] Isolated yields.
[c] NaN3 (1.7 equiv.) and TEMPO+BF4� (1.7 equiv.) were used.
[d] NaN3 (1.3 equiv.) and TEMPO+BF4� (1.3 equiv.) were used.
[e] NaN3 (2.1 equiv.) and TEMPO+BF4� (2.1 equiv.) were used.
[f] The ratio of diastereomers was determined by 1H NMR
spectroscopy.

Table 3. Oxyazidation of aliphatic alkenes.[a,b]

[a] Reaction conditions: 1 (0.3 mmol, 1.0 equiv.), NaN3
(1.8 equiv.) and TEMPO+BF4� (1.8 equiv.) in CH3CN
(2 mL) at room temperature under argon atmosphere (1 atm)
for 24 h.

[b] Isolated yields.
[c] The yield of recovered substrate is listed in brackets.
[d] The ratio of diastereomers was determined by 1H NMR
spectroscopy.

Figure 2. Oxyazidation of natural product derivatives and drug
derivatives.[a] The ratio of diastereomers was determined by 1H
NMR spectroscopy.
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can supply multifarious important N/O-containing
compounds that are potentially bioactive molecules
or significant organic synthetic precursors. Trans-
formations of product 2a via click reaction, Stau-
dinger reaction, reduction, and oxidation to afford
corresponding triazole, amine, alcohol, and α-azido-
ketone have previously been described in the
literature.[5a] Notably, the α-azidoketone skeleton is
very useful in the synthesis of pyrroles,[10]
imidazoles,[11] isoquinoline,[12] and other azacyclic
compounds.[13] Furthermore, as illustrated in
Scheme 2, some important synthetic intermediates
such as α-diazoketone 3, 4-phenyl-1H-1,2,3-triazole
4, and N-(2-oxo-2-phenylethyl)benzamide 5 can be
obtained separately as well through corresponding
subsequent transformations of 2a.

To gain insights into the reaction mechanism, the
control experiments were conducted as shown in
Scheme 3. When dimethyl 2,2-diallylmalonate was
subjected to the standard conditions, the cyclic
product 7 was obtained in 9% yield, with 75% of 6
being recovered. When (2-vinylcyclopropyl)benzene
was applied to the same conditions, the ring opening
product 9 was gained in 53% yield along with
recovered substrate 8 in 18% yield. These results
demonstrated clearly that the oxyazidation reaction
is triggered by the azide radical.

Based on the above results and previous
literatures,[5e,14] a free radical mechanism is sug-
gested to rationalize the oxoammonium salt-medi-

ated vicinal oxyazidation process. As shown in
Scheme 4, NaN3 is firstly oxidized to the azide
radical by TEMPO+BF4� via single electron transfer
(SET). At the same time, TEMPO+BF4� is reduced
to TEMPO. Then, azide radical adds to alkene 1 to
give the carbon-centered radical A. Finally, A is
trapped immediately by TEMPO, yielding the oxy-
azidation product 2.

In summary, a protocol for the vicinal oxy-
azidation of alkenes has been developed. This
method employs NaN3 as the azide source and
readily accessible TEMPO+BF4� as the oxidant as
well as the oxygen donor. Consequently, this proto-
col has the advantages of transition metal free, broad
substrate applicability, mild conditions, simple oper-
ation, and late-stage functionalization of bioactive
molecules. By using this new method, various
alkenes can be very easily converted into β-amino-
oxy azides. We hope that the reaction depicted
herein will find applications in the synthesis of
important bioactive compounds which contain vici-
nal nitrogen and oxygen atoms. Further studies of
the oxoammonium salt-mediated reactions are in
progress in our laboratory.

Experimental Section
General experimental procedure for synthesis of products 2

Substrates 1 (0.30 mmol, 1.0 equiv.), NaN3 (1.1–2.2 equiv.),
TEMPO+BF4� (1.1–2.2 equiv.) and MeCN (2 mL) were added
to a 25 mL round bottom flask. The mixture was stired at room
temperature under argon atmosphere (1 atm) for 24 h. Upon
completion of the reaction, the solvent was then removed under
vacuo. The residue was purified with chromatography column
on silica gel (gradient eluent of EtOAc/petroleum ether: 1/100
to 1/1) to give the corresponding product 2.

Scheme 2. Gram-scale reaction and follow-up transformations
of 2a. For the reaction conditions in details, see Supporting
Information.

Scheme 3.Mechanistic investigations.

Scheme 4. Proposed mechanism.
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