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GRAPHICAL ABSTRACT

Abstract A facile environmentally friendly synthesis of bezaldehyde and phenylacetaldehyde

analogs from readily available toluene derivatives is described. Oxidation of the styryla-

mines by H2O2 affords benzaldehydes in moderate yields, while the hydrolysis of styryla-

mines afforded phenylacetaldehyde analogs in good yields.

Keywords Bezaldehyde; hydrolysis; oxidation; phenylacetaldehyde

INTRODUCTION

Aromatic aldehydes constitute an important class of compounds with numer-
ous applications in organic synthesis. They have been employed as building blocks
for a wide variety of heterocyclic and pharmaceutical compounds and as intermedi-
ates for the synthesis of naturally occurring alkaloids. For example, 2-nitrobenzalde-
hyde is a precursor for the synthesis of enantiomerically pure a-amino acids,[1] and
2-aminobenzaldehyde[2] has been used as a key intermediate for preparation of
a-methylamino acids.[3] 2-Nitro-4-chlorobenzaldehyde plays a very important role
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in the total synthesis of an anti-HIV agent siamenol.[4] 2-Chloro-4-nitrobenzalde-
hyde also serves as an essential intermediate in the preparation of another anti-HIV
agent, orally active CCR5 antagonist.[5] 4-Nitrobenzaldehyde and 4-cyanobenzalde-
hyde are crucial materials for the production of diarylmethanols, important building
blocks in the synthesis of natural products and pharmacologically active com-
pounds.[6] Phenylacetaldehyde derivatives are extensively used in perfumery.

Traditional synthetic processes for manufacturing benzaldehyde and phenyl-
acetaldehyde analogs with electron-withdrawing substituents often lead to serious
contamination to the environment by releasing large amounts of pollutants to air
and water. For example, the synthesis of 2-nitrobenzaldehyde from 2-nitrotoluene
involved the bromination of 2-nitrotoluene to 2-nitrobenzylidenedibromide followed
by the oxidation of 4-nitrosodimethylaniline to 2-nitrobenzaldehyde.[7] This pro-
cedure required the use of expensive bromine and carcinogenic 4-nitrosodimethylani-
line. Another three-step sequence, consisting of the chlorination of 2- nitrotoluene,
alkaline dimerization to 2,20-dinitrostilbene, and ozonolysis, suffered from poor con-
version rates and poor selectivity.[8] All approaches involving the intermediate
2-nitrobenzyl halides suffer from dangers of explosive decomposition of these
compounds.[9] The synthesis of 2-nitrophenylacetaldehyde by the nitration of
phenylacetaldehyde causes problems separating the other two isomers, 3-nitropheny-
lacetaldehyde and 4-nitrophenylacetaldehyde.[10] Diazotization of 2-nitroaniline to
diazonium salt followed by the Meerwein arylation with an unsaturated acceptor
afforded the desired product with a poor yield.[11] Although different methods are
available for the synthesis of 2-nitrobenzaldehyde and 2-nitrophenylacetaldehyde,
development of another facile, high-yielding, nonpolluting preparation is still of
great importance.[12,13]

In 2007, Naffziger et al. reported an efficient pathway to the 2-nitro-4-chloro-
benzaldehyde starting from 2-nitro-4-chlorotoluene.[4] In his article, the methyl
group was oxidized by N,N-dimethylformamide dimethyl acetal (DMFA) in the
presence of dimethylformamide (DMF) to the styrylamine, which was further
oxidized by NaIO4 to obtain 2-nitro-4-chlorobenzaldehyde in good yield. However,
the high cost of the NaIO4 and the production of inorganic halide waste impeded its
application on a large scale. To facilitate the industrial manufacturing process, we
turned our attention to other economic and environmentally friendly oxidants.
Hydrogen peroxide finally became our choice (Scheme 1).

Initially, we set out to identify the optimal conditions for the new oxidation
system. N,N-Dimethyl-2-(4-chloro-2-nitrophenyl)ethenamine 2a was subjected to
hydrogen peroxide–mediated oxidation in various solvents. Some representative
results are given in Table 1. It was found that the oxidation in CH3CN afforded a

Scheme 1. Synthesis of benzaldehydes using H2O2 as the oxidant.
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better yield (entry 1, Table 1). Two other solvents, isobutyl alcohol and tertbutyl
alcohol, also gave comparable results (entries 4 and 5, Table 1).

Then we examined the oxidation of 2a by H2O2 in the presence of CH3CN at
various temperatures (Table 2). The results in Table 2 showed that at 25 �C, a higher
yield was obtained.

With the increased molar ratio of H2O2 to 2a from 1:2 to 1:3, the yield of the
aldehyde was increased to 45% (entry 1, Table 3). Other substrates also afforded the
desired product as described in Table 3.

Table 2. Effect of temperatures on oxidation of 2a by H2O2
a

Entry Temperature (�C) Yield (%)b

1 15 34

2 20 35

3 25 37

4 30 24

5 35 16

aReaction conditions: styrylamine 4.4mmol, H2O2 8.8mmol,

solvent, CH3CN mL, t¼ 5 h.
bOverall yield over two steps of isolated and purified product.

Table 1. Effect of solvents on oxidation of 2a by H2O2
a

Entry Solvent Yield (%)b

1 CH3CN 37

2 CH3OH 27

3 DMF nrc

4 (CH3)2CHOH 32

5 (CH3)3COH 34

aReaction conditions: styrylamine 4.4mmol, H2O2 8.8mmol, solvent

10mL, T¼ rt, t¼ 5 h.
bOverall yield over two steps of isolated and purified product.
cnr, no reaction.
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Table 3. Synthesis of benzaldehyde analogs using H2O2 as the oxidanta

Entry X Y Z Time (h) Product Yield (%)b

1 NO2 H Cl 5 3a 45

2 NO2 H H 4 3b 50

3 H H NO2 6 3c 39

4 Cl H NO2 12 3d 37

5 H Cl NO2 7 3e 34

6 H H CN 3 3f 43

aReaction conditions: styrylamine 1 g, molar ratio of H2O2 to styrylamine is 1:3, solvent CH3CN 10mL,

T¼ 25�C.
bOverall yield over two steps of isolated and purified product.

Scheme 2. Synthesis of phenylacetaldehyde analogs by hydrolysis of the styrylamines.

Table 4. Synthesis of phenylacetaldehyde analogs by hydrolysisa

Entry X Y Z Product Yield (%)b

1 NO2 H Cl 4a 85

2 NO2 H H 4b 77

3 H H NO2 4c 68

4 Cl H NO2 4d 65

5 H Cl NO2 4e 60

6 H H CN 4f 70

aReaction conditions: styrylamine 1 g, 30% (m=m) sulfuric acid 10mL, CHCl3 10mL, rt, t¼ 2 h.
bOverall yield over two steps.
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The hydrolysis of the styrylamine would afford phenylacetaldehyde, which was
also an important building block for organic synthesis. We then investigated the
reaction of styrylamines in the presence of sulfuric acid in CHCl3 (Scheme 2).
Hydrolysis results are displayed in Table 4. In all the cases, moderate to good yields
of phenylacetaldehyde were obtained.

In summary, we disclosed a facile, environmentally friendly synthesis of benzal-
dehydes and phenylacetaldehydes analogs from the readily available toluene deriva-
tives. The mild reaction condition, low cost, and diversity make our methodology a
valid contribitution to the existing process in the field of aromatic aldehyde sythesis.

CHARACTERIZATION DATA OF REPRESENTATIVE COMPOUNDS 3

2-Nitro-4-chlorobenzaldehyde (3a)

Yellow crystal, mp 64–65 �C; 1H NMR (500MHz, CDCl3): d¼ 10.39 (s, 1 H),
8.11 (d, J¼ 1.95Hz, 1 H), 7.95 (d, J¼ 8.25Hz, 1 H), 7.77 (m, 1 H).

2-Nitrobenzaldehyde (3b)

Yellow crystal, mp 42–43 �C; 1H NMR (500MHz, CDCl3): d¼ 10.43 (s, 1 H),
8.13 (m, 1 H), 7.96 (m, 1 H), 7.80 (m, 2 H).

4-Nitrobenzaldehyde (3c)

Yellow crystal, mp 101–102 �C; 1H NMR (500MHz, CDCl3): d¼ 10.17 (s, 1
H), 8.41 (m, 2 H), 8.08 (m, 2 H).

2-Chloro-4-nitrobenzaldehyde (3d)

Orange crystal, mp 68–69 �C; 1H NMR (500MHz, CDCl3): d¼ 10.55 (s, 1 H),
8.35 (d, J¼ 2.10Hz, 1 H), 8.24 (m, 1 H), 8.11 (d, J¼ 8.55Hz, 1 H).

3-Chloro-4-nitrobenzaldehyde (3d)

Orange crystal, mp 56–57 �C; 1H NMR (500MHz, CDCl3): d¼ 10.07 (s, 1 H),
8.07 (d, J¼ 1.60Hz, 1 H), 7.99 (d, J¼ 8.25Hz, 1 H), 7.94 (m, 1 H).

4-Cyanobenzaldehyde (3f)

Yellow crystal, mp 96–97 �C; 1H NMR (500MHz, CDCl3): d¼ 10.10 (s, 1 H),
8.01 (m, 2 H), 7.86 (m, 2 H).

CHARACTERIZATION DATA OF REPRESENTATIVE COMPOUNDS 4

2-Nitro-4-chlorophenylacetaldehyde (4a)

Yellow crystal, mp 65–66 �C; 1H NMR (500MHz, CDCl3): d¼ 9.81 (s, 1 H),
8.12 (d, J¼ 2.21Hz, 1 H), 7.59 (m, 1 H), 7.27 (d, J¼ 8.20Hz, 1 H), 4.12 (s, 2 H).
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2-Nitrophenylacetaldehyde (4b)

Yellow liquid; 1H NMR (500MHz, CDCl3): d¼ 9.80 (s, 1 H), 8.08 (m, 1 H),
7.60 (m, 1 H), 7.48 (m, 1 H), 7.31 (m, 1 H), 4.11 (s, 2 H).

4-Nitrophenylacetaldehyde (4c)

Orange crystal, mp: 85–86 �C; 1H NMR (500MHz, CDCl3): d¼ 9.82 (m, 1 H),
8.23 (m, 2 H), 7.40 (d, J¼ 8.60Hz, 2 H), 3.87 (d, J¼ 1.40, 2 H).

2-Chloro-4-nitrophenylacetaldehyde (4d)

Yellow crystal, mp 67–68 �C; 1H NMR (500MHz, CDCl3): d¼ 9.80 (d,
J¼ 1.05Hz, 1 H), 8.28 (d, J¼ 2.30Hz, 1 H), 8.11 (m, 1 H), 7.44 (d, J¼ 8.42Hz, 1
H), 4.02 (s, 2 H).

3-Chloro-4-nitrophenylacetaldehyde (4e)

Orange viscous liquid, 1H NMR (500MHz, CDCl3): d¼ 9.81 (m, 1 H), 7.90 (d,
J¼ 8.30, 1 H), 7.43 (d, J¼ 1.59Hz, 1 H), 7.28 (d, J¼ 3.29Hz, 1 H), 3.83 (s, 2 H).

4-Cyanophenylacetaldehyde (4f)

Yellow viscous liquid, 1H NMR (500MHz, CDCl3): d¼ 9.79 (m, 1 H), 7.65 (d,
J¼ 8.20Hz, 2 H), 7.34 (d, J¼ 8.16Hz, 2 H), 3.83 (d, J¼ 1.41Hz, 2 H).
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